Towards an Mobility Management Architecture

Phil Roberts and James Kempf, *Mobility Architecture for the Global Internet*, MobiArch’06

Munyoung Lee
mylee@mmlab.snu.ac.kr
2007.11.12
Contents

• The Architectural Problem of IP Mobility
• Global vs. Localized Mobility
• Host-based vs. Network-based Protocol
• A Sample of Existing Mobility Management Solutions
 • Mobile IP
 • GPRS
• Proposal For a Network-based Localized Mobility Protocol
 • NETLMM (NETwork based, Localized Mobility Management)
• Conclusion
What is an IP Address?

- An endpoint identifier
 - Uniquely identifying a communication endpoint
- A topological locator
 - Indicating where in the network topology a device interface is located
- A forwarding identifier
 - Allowing routing intermediaries to forward packets to a device interface
Why is Mobility an Architectural Problem?

• Mobile host movement splits the functions of an address
 – Forwarding identifier changes since the attachment point changes
 – Endpoint identifier remains the same since the mobile host is the same

• Up until now, most applications …
 – Nomadic application
 – Haven’t needed session continuity
 – User sits down, opens a laptop, works for a while, closes the laptop moves to a new location…
Why is Mobility an Architectural Problem?

• New services now require session continuity when the user moves between different locations
 – VoIP, streaming video, WiMAX

• Need Mobility Management Protocol
 – Support mobile usage
 – Maintain session continuity of mobile node by mapping
 – Alleviate the difficulties caused by the two functions of the IP address
 • One as an endpoint identifier and the other as a location marker
Global vs. Localized Mobility

- Based on topological distance in the routing infrastructure
 - by the number of routing hops, network provider
- Global mobility management
 - handles changes between different serving network providers' subnets
- Localized mobility management
 - handles mobility within the serving operator's network
Host-based vs. Network-based Protocol

- Host-based mobility management protocol
 - Host itself detects the movement at the IP layer
 - Perform the signaling that updates the mapping (between the forwarding identifier and the endpoint identifier)

- Network-based mobility management protocol
 - Mobility anchor rearranges the overlay routing so that the old address can still be used as a forwarding identifier
 - Host is not required to update the forwarding identifier to endpoint identifier mapping
Existing Mobility Management Solutions

- Split the identity and location function of the IP address
 - Use one IP address for identity, another for location
 - Mobile IP - global network mobility management protocol

- Change routing so that identity and location function remain equal on move
 - Overlay rerouting in the local topology
 - Proprietary solutions
 - GPRS – localized management protocol (operating within some part of a service provider’s network)
Mobile IP Basics

- Host-based mobility protocol
- Basic Architectural Idea: split address functions
 - Forwarding identifier
 - Changes as the mobile host moves from subnet to subnet
 - Care of address - address on the local subnet
 - End node identifier
 - Home address - address on a server (the home agent) in the home network
 - Identifier
Mobile IP Basics (cont’d)

• Global Rerouting Overlay
 – Correspondent hosts send packets to the home address
 – Home agent reroutes the packets to the care of address using a tunneling overlay
 – Mobile host sends routing updates to the home agent when the care of address changes
Problem: Two Koreans in America

- Long dogleg routes back to home agent in Korea
 - Could introduce substantial latency into VoIP
- Optimize routes by getting rid of overlay
 - Route optimization introduced into Mobile IPv6
- Mobile host signals directly to correspondent on movement
 - Sends new care-of address
 - Security complex: how can correspondent know that sender is authorized to change the IP address?
GPRS Basics

- General Packet Radio Service (GPRS)
- Proprietary protocol for cellular systems utilizing GSM signaling
- Provide a kind of IP localized mobility management
- Basic architectural idea: keep the IP address the same when the host moves \(\rightarrow\) change routing
 - Locator and endpoint identifier functions are not split
 - Locator function is updated by the network on movement to match current location
- Mobile host’s point of view
 - Nothing has happened at the IP layer
GPRS Basics (cont’d)

• Local Rerouting Overlay
 – A mobility anchor (GGSN) maintains host-routes to/from mobile host's current subnet
 – GGSN tunnels data traffic to/from SGSN on local subnet
 – Mobile host signals SGSN to detect movement but no change in IP address
 – SGSN signals host-route updates to GGSN
 – GGSN updates tunnel endpoint

• GPRS only handles localized mobility within some part of a service provider's network
GPRS Architecture

Movement Detection

Route Update

Corresponding Host
Proposal For a Network-based Localized Mobility Protocol

- NETLMM (NETwork based, Localized Mobility Management)
 - IETF Working Group developing a network based mobility management protocol for IPv6
 - Intend to provide an Internet standard with similar functionality to GPRS
 - The protocol will be an Internet standard that could be used in any IP based network
Conclusion

- Node mobility is a fundamental problem in the Internet architecture
 - Endpoint identity and forwarding identity
- Mobility management protocols
 - Such as Mobile IP and GPRS provide session continuity
- Network-based, localized mobility management
 - Local IP address doesn't change
 - Host is not required to update the forwarding identifier to endpoint identifier mapping
- Host-based, global mobility management
 - Change in local IP address
 - Host required to sense wireless on a new interface and move sessions to the interface
Thank you!