Multi-Protocol Lambda Switching for Packet, Lambda, and Fiber Network

Jun Kyun Choi

jkchoi@icu.ac.kr
Tel) (042) 866-6122
Contents

- Backgrounds for Optical Network
 - Review of SONET/SDH Technologies
 - Motivations for IP over WDM
 - Physical Limitation for Optical Internet
- Optical Switching Technologies
- Protocol Reference Model for Optical Internet
- Architectural Model for Optical Network
- Control Plane for Optical Networking
- IP-based Optical Control Plane Issues
- Generalized MPLS & Optical User Network Interface Signaling
- Conclusions
Backgrounds for Optical Network - 1

- Transform functionality of SONET/SDH to optical layer
- Dynamic allocation for DWDM network capacity
- Just-in-time provisioning for Dynamic Re-configurable Optical Network
- Innovation and advances in optical components and transport technologies
 - Optical technology changing rapidly
 - Optical device latency and synchronization
 - Increased focus between electrical and optical devices
- Optical Multiplexing Schemes
 - WDM, OTDM, Optical CDMA
 - Underline frame structure (PDH, SDH, Digital Wrapper, MPLS, GbE etc.)
Backgrounds for Optical Network - 2

- Re-evaluation of traditional network platforms and cost structures
 - Service delivery requirements changing
 - (e.g., 50 ms restoration time, reliability, etc.)
 - Growing demand on OC-48c/OC-192c routers

- Limitations of existing architecture
 - Existing SONET/SDH ring-based architecture failing
 - Optimized for voice, Can’t scale enough for data

jkchoi@icu.ac.kr
Motivation for Optical Networking

- **Cost and Efficiencies**
 - Waves cheaper than switching packets
 - Eliminates costly O/E/O conversions and equipments

- **Flexibility and Management**
 - Just-in-time service provisioning?
 - Traffic engineering at the wave level?

- **Revenue Opportunities**
 - Fast provisioned wave services
 - Bursty IP services through backbone network
Reviews of SONET/SDH Technologies

- Mature Technology \rightarrow Too expensive, Over estimated, not proper more than 2.5 Gbps, scalability problem
- Multiplexing, Switching and Grooming \rightarrow useful for existing digital hierarchy
- Self-Healing Capability \rightarrow less effective
- High Availability and Extensive Management Capability \rightarrow No effective compared with others

- Limitations of SONET/SDH Ring
 - Rings inefficient for large pipes
 - End-to-end provisioning, management, and protection
 - Meshes are more efficient
Motivations for IP over WDM

- **Tremendous growth in data traffic**
 - Router interfaces for OC-48c and OC-192c

- **Elimination of SONET/SDH equipments**

- **Pros and Cons of IP over WDM**

 - **Pros**
 - Protocol Independent, Efficiency-Overhead
 - Suitable for Applications with Large Volumes

 - **Cons**
 - Not Suitable for High Error Environments
 - Unable to Guaranteed Performance
 - No Gain of Bandwidth Efficiency for Bursty Traffic
 - Not Suitable for Low Speed Links
On-going Issues for IP over WDM

- Restoration and protection
- Performance monitoring
- Fault isolation
- Network engineering and bandwidth distribution
- Wavelength management
- Network scalability
- Adopting new transmission technologies
Physical Limitation for Optical Internet - 1

- **Limitations of Optical Devices**
 - No optical buffering (not a delay line)
 - No optical processing

- **Limitations of Optical WDM**
 - Large bandwidth on single wavelength
 - Long latency time for Wavelength tuning and conversion

- **Limitations of Optical Switch**
 - Large bandwidth on single fiber
 - Relative small size of optical switch (e.g. 256 x 256)
 - Long latency time for Switching-over
Optical Switching Technologies - 1

- Possible Architectures
 - Lambda Switching with dynamic Re-configuration
 - Optical Burst Switching
 - Optical Tag or Packet Switching

<table>
<thead>
<tr>
<th>Classifications</th>
<th>Off-Line Control</th>
<th>On-Line Control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In-band Signalling</td>
</tr>
<tr>
<td>Virtual Level</td>
<td>VP-XC</td>
<td>MPLS Switch</td>
</tr>
<tr>
<td>Path Level</td>
<td>SDH-XC</td>
<td>Optical Tag Switch</td>
</tr>
<tr>
<td>Lambda Level</td>
<td>Lambda-XC</td>
<td>Optical Packet Switch</td>
</tr>
</tbody>
</table>
Optical Switching Technologies - 2

- **Pros/Cons**
 - Large BW with loose control capabilities
 - Suitable for large volume traffic with traffic aggregation
 - No traffic engineering in Lambda level → Single QoS for a lambda, No flow control and No contention resolution

- **Supports migration to mesh networks**
 - Virtual level protection
 - Scaled services: protected, unprotected, ...
Optical Switching Technologies - 3

 Vision for Optical XC
Protocol Reference Model for Optical Internet

Telecommunication Management Network
Routing and Signalling Network

- **C-plane**
 - IP Layer
 - WDM Layer
 - Optical Layer
 - IP Signalling (SIP, etc)
 - MPLS Signalling
 - RWA Signalling

- **M-plane**
 - IP Layer
 - WDM Layer
 - Optical Layer
 - IP Signalling (SIP, etc)
 - MPLS Signalling
 - RWA Signalling

- **U-plane**
 - Core Router
 - Edge Router
 - Optical Link Management
 - WDM Management
 - Traffic, Flow QoS Management
 - IP Routing

Annotations

- **Core Router**
- **Edge Router**

Contact
jkchoi@icu.ac.kr
Architectural Model for Optical Network

- **Overlay Model**
 - Separate the control plane between Optical Transport Network (OTN) domains and IP domains

- **Integrated (or Peer) Model**
 - Same control plane in the OTN and IP domains
Evolution Model for Optical Internet - 1
Evolution Model for Optical Internet - 2
Evolution Stage - 1

- **1st Stage (IP over static WDM)**
 - Utilize Large Bandwidth of Optical Device by Traffic Aggregation
 - Utilize Controllability and Manageability of Electronic IP Domain
 - Examples
 - User interface: IP over static WDM
 - Access and Core: WDM-XC and Optical Fiber Switch by configuration at set-up time

- **2nd Stage (IP over Dynamic WDM, Dynamic WDM-XC)**
 - Reduce latency of wavelength tuning and conversion time
 - Reduce latency of Switching Over time
 - Examples
 - User interface: IP over static or dynamic WDM
 - Access and Core: WDM-XC and Optical Fiber Switch by dynamic reconfiguration
Evolution Stage - 2

- **3rd Stage (Optical Tag Switch or Optical Burst Switch)**
 - Limited Optical Header Processing for framing and switching
 - Optical Switch tightly coupled with electric control logic
 - Examples
 - User interface: IP over dynamic WDM with variable-size message flow
 - Access and Core: WDM-XC and Optical Fiber Switch by on-line and on-demand control

 (note) on-line control is classified into in-band and out-of-band signalling
 (note) Optical Burst Switching is out-of-band signalling without header processing.
 Instead, it utilizes electric control signals to synchronize optical signals for switching

- **4th Stage (Optical Packet Switch)**
 - Optical Header Processing with small latency time
 - Examples
 - User interface: IP over dynamic WDM with fixed-size packet
 - Access and Core: Optical Packet Switch by on-line and on-demand control
Control Plane for Optical Networking - 1

- **Control Requirements**
 - Cost-effective OAM
 - Fault isolation and performance monitoring
 - Protection and restoration
 - Rapid service provisioning for negotiated bandwidth and QoS
 - Scalability on bandwidth provisioning
 - Grooming of sub-rate circuits
 - Dynamic Optical VPN according to SLA
 - Automatic configuration and topology auto-discovery

- **Intelligence of Optical Networking**
 - Done by controllability
 - Traffic control, Resource Control (Bandwidth, Lambda, Buffer), QoS, Signalling, VPN, etc.
 - Node, Link and Path protection mechanism
Control Plane for Optical Networking - 2

- **Dynamic Reconfiguration of Optical Network**
 - Link Protection, Capacity Planning, Load distribution, etc.

- **Integrated L1, L2 and L3 forwarding Engine**
 - Switching/Routing, class (e.g., FEC), priority, etc.

- **Traffic control and Traffic aggregation**
 - Based on application, flow, class, lambda

- **Optical VPN for multicast and security**

- **Multiple Access scheme for shared media (PON, etc)**

- **Naming and addressing both for Optical switching and IP routing**
Control Plane for Optical Networking - 3

- **Generic Requirements for OXC Control Plane**
 - Establish optical channel trails expeditiously
 - Support traffic engineering functions
 - Support various protection and restoration schemes

- **MPLS Traffic Engineering Control Plane**
 - Resource discovery
 - State information dissemination
 - Path selection and Path management
IP-based Optical Control Plane Issues - 1

- **Addressing**
 - Identifiable entity
 - OXC, optical link, optical channel, sub-channel
 - SRLG (Shared Risk Link Group)
 - An identifier assigned to a group of optical links that share a physical resource
IP-based Optical Control Plane Issues - 2

- Neighbor Discovery
 - Discovery of local link status
 - NDP (Neighbor Discovery Protocol)
 - Determine the parameters between adjacent OXCs
 - Up/down status of each optical link
 - Bandwidth and other parameters of the link
 - Identity of the remote link (e.g., remote port number)
 - Link management and fault isolation
 - Require in-band communication on the bearer channels
 - Determine local connectivity and link status
IP-based Optical Control Plane Issues - 3

- Topology Discovery
 - Procedure of determination the topology and resource state of all the links in a sub network
 - Using a link state routing protocol or management protocol
 - In optical links,
 - Link state information
 - May consist of link bundles, Each link bundle is an abstract link in the network topology
 - Capture restoration-related parameters for optical links
 - Maintenance a single routing adjacency between neighbors
 - Flexibly updates link state owing to dynamic change of link availability information
IP-based Optical Control Plane Issues - 4

- **Restoration Models**
 - Local mechanism
 - Select an alternate link between two adjacent OXCs when a failure affects the primary link
 - End-to-end mechanism
 - Pre-computed alternate paths
 - “1+1” protection
 - Establish a back-up path for the protected primary path along a physically diverse route. Both paths are active.
 - The failure along the primary path \(\rightarrow \) immediate switch-over to the back-up path
 - Shared protection
 - Back-up paths share the same network resources
 - When a failure affects a primary path, the same failure don’t affect the other paths whose back-ups share resources.
IP-based Optical Control Plane Issues - 5

- **Signaling Issues**
 - Bi-directional Light path Establishment
 - Output port for the forward direction at an OXC = input port for the reverse direction of the path
 - Collision detection
 - The involved paths may be torn down and re-established.
 - Or, collisions may be avoided altogether.
 - Failure Recovery
 - When failures occur, a backup processor or a backup control channel will be activated.
 - During failure recovery, desirable to recover local state at the concerned OXC with least disruption to existing optical paths.
IP-based Optical Control Plane Issues - 6

- Optical Internetworking
 - Should dynamically provision and restore light paths across optical sub-networks
 - Requirements
 - Uniquely identify light path end-points in different sub-network
 - Protocol for determining reachability of end-points across sub-nets
 - Signaling protocol for provisioning light paths across sub-nets
 - Procedure for the restoration of light paths across sub-nets.
Generalized MPLS & Optical User Network Interface Signaling

Generalized MPLS - Signaling Functional Description
<draft-ietf-mpls-generalized-signaling-00.txt>

Signaling Requirements at the Optical UNI
<draft-bala-mpls-optical-uni-signaling-01.txt>
Network Service Model

- **Domain Service Model**
 - Services defined by layered domain
 - Client/Server domain relationship
 - IP is a client of the optical domain
 - Optical layer provides point-to-point channels for clients

- **Unified Service Model**
 - A single integrated control plane structure
 - single signaling and routing protocol
 - MPLS-based optical network
 - IP signaling and routing protocols need to be modified to support optical characteristics
MPLS-Based Approach for Optical Internet – 1

- **IP-based approaches for rapid provisioning**
 - Re-use existing signaling framework
 - Less standardization, faster vendor interoperability
 - No addressing concerns arise (use IP addresses)

- **Key MPLS features exploited**
 - Hierarchical LSP tunneling (label stacking/swapping)
 - Explicit routing capabilities
 - LSP survivability capabilities
 - Constraint-based routing
MPLS-Based Approach for Optical Internet – 2

- Traffic Engineering in Optical Network
 - Optical network load balancing
 - Performance optimization
 - Resource utilization optimization

- Requires Dynamic Control Mechanism
 - Network state monitoring
 - Feedback control
 - Routing parameters, Resource parameters, Traffic management parameters, etc.
Extensions to MPLS signaling

- Encompass time-division (e.g. SONET ADMs), wavelength (optical lambdas) and spatial switching (e.g. incoming port or fiber to outgoing port or fiber)
- Label is encoded as a time slot, wavelength, or a position in the physical space
- Bandwidth allocation performed in discrete units.
Integrated Control Plane for Optical Internet - 2

- **Supports Multiple Types of Switching**
 - Support for TDM, lambda, and fiber (port) switching
 - OXC (Optical Cross-Connect) can switch an optical data stream on an input port to a output port
 - A control-plane processor that implements signaling and routing protocol

- **Optical Mesh Sub-Network**
 - A net. of OXCs that supports end-to-end networking
 - Provide functionality like routing, monitoring, grooming and protection and restoration of optical channels
Forwarding Interface of GMPLS

- **Packet-Switch Capable (PSC)**
 - Recognize packet/cell boundaries and forward data based on header.

- **Time-Division Multiplex Capable (TDM)**
 - Forward data based on the data’s time slot in a repeating cycle.

- **Lambda Switch Capable (LSC)**
 - Forward data based on the wavelength

- **Fiber-Switch Capable (FSC)**
 - Forward data based on a position of the data in the real physical spaces.

Allow the system to scale by building a forwarding Hierarchy
Client – Optical Interface Model - 1

- **Direct Interface**
 - IPCC (IP control channel)
 - exchanging signaling and routing messages between the router and the OXC
 - Edge router and the OXC are peers in the control plane
 - Example routing protocol - OSPF/ISIS or BGP
 - Example signaling protocol - RSVP-TE or CR-LDP
Client – Optical Interface Model - 2

- **Indirect Interface**
 - Out-of-band IP control channel
 - Between the client and optical network elements, in case that the OXCs and/or clients don’t support a direct interface

- **Provisioned Interface**
 - Manually provisioned by Network Operator
 - No control interfaces between edge router and the optical network
Generalized Label Request

- Generalized label contains information to program cross connect
- Supports communication of characteristic to support the LSP
- Include link protection, LSP encoding, and LSP payload
 - LSP Encoding Type indicates the encoding of the LSP
 - Link Protection Flags indicates the desired protection level
 - Generalized PID is the identifier of the payload carried by an LSP.

- LSR must verify that the request parameters can be satisfied
- If node cannot support, the node must generate a Notification message
 - “Routing problem/Unsupported Encoding”
 - “Routing problem/Unsupported Link Protection”
 - “Routing problem/Unsupported G-PID”
Generalized Label

- **Carry a label that represents**
 - A single fiber in a bundle
 - A single waveband within fiber
 - A single wavelength within a waveband
 - A set of time-slots within a wavelength

- Label : Variable (depends on the type of the link)
Suggested Label

- Used to provide a downstream node with the upstream node’s preference
- Upstream node configures its hardware with the proposed label before the label is received by the downstream node
- Reduce setup latency

- CR-LDP
 - Label Request
 - Label
 - Suggested Label
 - Label Request
 - Label
 - Suggested Label
 - Label Request
 - Label
 - Suggested Label

- With extensions
 - Label Request
 - Label
 - Suggested Label
 - Label Request
 - Label
 - Suggested Label
 - Label Request
 - Label
 - Suggested Label

- Downstream LSR can ignore label suggestion

Source: Chromisys

jkchoi@icu.ac.kr
Bi-directional LSP establishment

- Reduces trail establishment latency
- Increases success probability

- **LDP**

 - Label Request → Label → Label Request
 - Label Request → Label → Label Request
 - Label Request → Label → Label Request

- **With extensions**

 - Upstream Label, Suggested Label → Label → Label → Label → Upstream Label, Suggested Label
 - Upstream Label, Suggested Label → Label → Label → Label → Upstream Label, Suggested Label
 - Upstream Label, Suggested Label → Label → Label → Label → Upstream Label, Suggested Label

Source: Chromisys

jkchoi@icu.ac.kr
Physical Control Structure of O-UNI

- **Direct Interface**

- **Indirect Interface**: Client to Optical Network Management Agent

- **Indirect Interface**: Client Agent to ONE

- **Indirect Interface**: Client Agent to Optical Network Management

ONE: Optical Network Element
ISI: Internal Signaling Interface
ND: UNI neighbor discovery
UNI Signaling Message

- Lightpath Create Request
- Lightpath Create Response
- Lightpath Delete Request
- Lightpath Delete Response
- Lightpath Modification Request
- Lightpath Modification Response
- Lightpath Status Enquiry
- Lightpath Status Response
- Notification
- Address Query
UNI Message Parameter (1/2)

- **Identification**
 - Lightpath ID: A network unique identifier for a lightpath
 - Contact ID: A carrier-assigned identification to identify the service contract
 - Source/destination client point of attachment: Optical network administered IP address and logical port information
 - User group ID: VPN identifier
 - UNI-C ID: IP address of the UNI-C entity

- **Service-Related**
 - Directionality: Uni-directional or bi-directional
 - Framing type: Format of the signal to be transported across the UNI
 - Overhead termination type: Specifies to what degree the framing overhead bytes are terminated for SONET and SDH framing.
 - Bandwidth: The bandwidth of the service.
 - Propagation delay: Maximum acceptable propagation delay.
 - Service level: An integer specifying the service level requested for the lightpath
UNI Message Parameter (2/2)

- **Routing-related**
 - Diversity: A list of \(n \) lightpaths from which the present lightpath must be physically diverse in the network.

- **Miscellaneous**
 - Result Code: Indicates success or failure of certain operation
 - Status: Indicates the status of a lightpath

- **Security-related**

- **Policy, accounting and authorization related**
LDP Extensions for O-UNI signaling

- Applying LDP at the O-UNI allows for:
 - The reuse of already defined LDP message and message formats
 - The reuse of LDP session management and control procedures
 - Additions to the already specified procedures for notification of errors
 - The reuse of the LDP security mechanism

- The addition of new TLVs to support the attributes required for lightpath establishment at the O-UNI

- Two new LDP messages to allow for the exchange of lightpath status information across the UNI
O-UNI Session Management and Control

- **Hello Message**
 - Use the format and the procedures of the LDP Hello Message

- **KeepAlive Message**
 - Use the format and the procedures of the LDP KeepAlive Message

- **Initialization Message**
 - The Label Advertisement Discipline is always set at 1 to indicate Downstream on Demand label distribution mode.
 - Loop Detection is always disable, D = 0.
Use of LDP Messages for O-UNI (1/2)

- **Lightpath Create Action**
 - **Lightpath Create Request**: achieved by the LDP Label Request Message and Generalized Label Request TLV
 - **Lightpath Create Response**: achieved by the LDP Label Mapping Message and Generalized label

- **Lightpath Delete Action**
 - **Lightpath Delete Request**: achieved by the LDP Label Release Request Message.
 - **Lightpath Delete Response**: achieved by the LDP Label Withdraw Message
Use of LDP Messages for O-UNI (2/2)

- **Lightpath Modify Action**
 - After a lightpath is setup, some of its attributes may need to be changed by the network operator
 - Does not require the definition of new LDP message
 - Use the Action Flag (ActFlg) field in the Lightpath Id TLV in the Lightpath Create Request Message.

- **Lightpath Status Action**
 - **Lightpath Status Enquiry Message**: solicit a Status Response Message from its peer.
 - **Lightpath Status Response Message**: The Status TLV carries information that describes the current status of lightpath.

- **Notification Action**
 - The LDP Notification message is used across the O-UNI
Conclusions

- **Architectural Evolution for Optical Network**
 - Single Control Plane Both for IP domain and Optical Domain
 - IP-centric control mechanisms are being used for optical layer control

- **MPλS Technologies**
 - Extends MPLS to encompass time-division, wavelength and spatial switching
 - Adapt IP Traffics to Physical limitations of Optical Technologies
 - Generalized MPLS is used both for Unified Service Model and Domain Service Model
References

- Osama S. Aboul-Magd et. al. “Signaling Requirement at the Optical UNI”, <draft-bala-mpls-optical-uni-sigaling-01.txt>, October, 2000