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Abstract— Due to the explosive popularity of peer-to-
peer (P2P) file-sharing services, there have been remark-
able research efforts on the P2P live streaming services.
P2P systems are cost-effective and can be easily deployed
only by leveraging the participating peer’s resources (i.e.,
upload link bandwidth) to distribute contents. In this
paper, we proposeClimber, an incentive-based resilient
P2P system for live streaming services. Climber encour-
ages each peer to provide more upload link bandwidth
to the system, and embodies an incentive mechanism
that improves resilience under high churning rate. The
structure of Climber is a hybrid of a tree and a mesh,
which self-improves and adapts to network churning rate.
Simulation results are given to evaluate the performance
of the proposed protocol.

I. I NTRODUCTION

Recently, live streaming services over the Internet
for entertainment (e.g., sports game, music concert) are
becoming popular. For example, Akamai [1] provides
an infrastructure support for these services, and AOL
broadcast [2] and MSN [3] serve as streaming por-
tals. These services leverage infrastructures (i.e., server-
farm based solutions or content distribution networks)
where contents are replicated on a number of servers
to improve the speed of content delivery. However,
infrastructure-based live streaming has some drawbacks
in cost, scalability, and deployment. Live Earth con-
cert in July 2007 on MSN broadcast service rated 15
million streams, with 237,000 simultaneous viewers at
the peak [3]. Akamai also reports an aggregate traffic
of 200Gbps during peak traffic periods through 20,000
servers in 71 countries [1]. Unlike these services, which
requires costly infrastructures, peer-to-peer (P2P) live
streaming is gaining much attention in the literature
([9] [10] [15] [6] [14]) because of its scalability, low
cost, and tactical deployment. In P2P live streaming, all
peers participate in distribution of contents by sharing

their resources (i.e., upload link bandwidth).
P2P live streaming solutions can be classified into

two categories: tree-based and mesh-based approaches.
The tree-based approach implements a single or multiple
distribution trees, rooted at the source of the stream. In a
tree, each node always receives streaming packets from
a parent and hands down to its child nodes. Due to the
well-defined “parent-child” relationships, the signaling
overhead is marginal. However, its performance can
be severely degraded as the churning rate increases.
Narada [9] is one of the first protocols targeting end-
system streaming applications. Narada builds a source-
rooted minimum-delay tree on top of a mesh topology
that connects the participating peers. It is used in End
System Multicast [13], which is a on-line service for P2P
live streaming. SplitStream [10] operates by striping the
stream intok stripes and forwards each stripe via one
of separatek trees built using Scribe [11]. By maintain-
ing multiple distribution trees, SplitStream reduces the
impact of node failure on the rest of the system.

On the other hand, in the mesh-based approach, a
peer has direct connectivity to neighbor peers. Each peer
pulls a number of chunks from a subset of the neighbor.
Control messages are exchanged among the peers in
order to locate and pull the chunks throughout the mesh.
Since each peer relies on a subset of the neighbor
peers to receive streaming packets, this approach offers
better resilience to membership dynamics than the tree-
based approach. However timely delivery to all the peers
and efficient management of large buffers are difficult
tasks since the stream packets are generated by a live
source at short intervals. Peers in Coolstreaming [15]
and Chainsaw [14] maintain a list of neighbors, and
periodically exchange data availability information with
the neighbors. Each peer notifies neighbors of data
arrivals and employs a pulling mechanism to receive
chunks.



We focus on two challenging issues in P2P live
streaming for both approaches. First of all, the way to
encourage peers to contribute their resources for data
distribution should be devised in order to improve live
streaming services in terms of delay and resilience.
The other issue is dynamic membership, i.e., each peer
dynamically joins or leaves (peers easily fail or leave
at will) a P2P network for live streaming. Therefore,
resilience to churning rate should be considered.

In this paper, we propose a novel P2P live streaming
system, Climber, whose structure is a hybrid of a
tree and a mesh. That is, a single tree is constructed
for streaming; however, random edges between peers
(not between parent and child) are added to the tree
for redundant connectivity. In addition, the level of
resilience provided to a peer is proportional to its
contribution in data distribution. The contribution of a
peer is defined as the number of outdegree of the peer,
which is typically proportional to the link bandwidth
allowed. This incentive mechanism encourages nodes1

to assign more bandwidth for data distribution, which
leads to better (system-wide) performance. To tackle the
membership dynamics, Climber simply attaches a new
joining node to the tree as a leaf node. When a non-leaf
node leaves or fails, Climber minimizes the effect of
peer departure by gracefully relocating its descendants
to other positions of the tree.

Our contributions in this paper are summarized as
follows: 1) we propose a simple and resilient P2P
live streaming protocol, which is self-improvable and
adaptive to network conditions with reasonably low
protocol overhead; 2) the proposed protocol embodies
an incentive mechanism that enhances resilience despite
churning rate. To the best of our knowledge, this is the
first work considering incentives to construct resilient
P2P networks.

The rest of this paper is organized as follows. Design
concepts and the operations of Climber are introduced in
Section II. Section III gives simulation results, followed
by concluding remarks in Section IV.

II. CLIMBER

Climber has the following design concepts.

• Incentive: Climber gives more incentive to a peer
of more contribution. Approximately the number of
potential data delivery paths from a source to a peer
is determined in proportion to the outdegree of the
peer. Hence, a peer will experience more resilient

1We use the term “node” when a peer joins a system and has
parent/child relationship. However, the term “node” and “peer” may
be used interchangeably.

service as the peer forwards packets to more other
peers.

• Resilience: Since each peer may potentially fail,
Climber utilizes a randomized forwarding tech-
nique motivated from [4] to augment the tree
structure. Climber not only uses the randomized
forwarding for seamless streaming, but also uses
a randomized pulling technique to improve the
system resilience.

• Self improvement, adaptation: When a peer finds
an alternative path that is faster than the current
delivery path from the root, the peer switches its
link to the parent to the alternative path. Each peer
keeps trying to find a better path. This switching
process incrementally improves the overall root-to-
peer delay of the system. Also, Climber adaptively
changes its topology according to the current net-
work condition to maintain a predefined level of
resilience.

A. System Model

The structure of Climber is based on a single-tree,
rooted at the source, but more than one data delivery
path for each peer may exist. We focus on P2P live
internet broadcasting applications where 10 or 20 sec-
onds of delay is tolerable, which is normally assumed
in the literature ([5], [6]). Climber does not give any
solution for packet losses. Redundancy (e.g., Forward
Error Correction) or retransmission technique can be
added to the stream in order to recover the missing
packets.

Peeri hasOi (Oi ≥ 0) outdegree, which means peeri
currently forwards packets toOi peers. We assume that
a peer’s incoming link bandwidth (used by its parent
to send packets to the peer) is always enough and the
bottleneck resource is the outgoing link bandwidth in
P2P streaming.Omax

i (Omax
i ≥ 1) is the maximum

outgoing edges permitted to use by the peer. A peer can
adjust the maximum possible amount of contribution to
the system by setting/updatingOmax

i .
A root node generates a series of streaming packets

and tags each packet with a sequence number in an
incremental order. Therefore, we can assume a packet
with a higher sequence number is the packet generated
more recently.Seqi is the sequence number of an
arriving streaming packet from a node’s parent nodei.
In Climber, parent and child nodes exchange heartbeat
messages at relatively long intervals to detect a path
failure. The heartbeat message contains the number
of descendants and therefore a root node can roughly
estimate the total number of nodes in the system by the
message.



B. Topology Construction

To join Climber, a peer sends a Join message to
the root. If nodei (including the root) receives a Join
message and the node has a remaining outdegree (Oi <
Omax

i ), it takes the new peer as a child node by the
probability 1−Oi/Omax

i . Otherwise, the Join message
is randomly forwarded to one of its child nodes. If a
leaf node receives the Join message, it should take the
node as a child node sinceOi = 0 andOmax

i ≥ 1.
After receiving streaming packets, a node randomly

selects a number of other participating peers (selected
peers are called “prospective child nodes”) to establish
random edges. The random edges are constructed as
follows. For each available outdegree (Omax

i −Oi), node
i makes a decision whether to make a random edge or
not with probabilityλt at timet. The target node of the
random edge is randomly selected from all the partici-
pants. As nodei just joined,Oi is 0. λt is sent from the
root node piggybacked in the streaming packets. After
then, the node forwards only the sequence numbers of
the streaming packets to its selected prospective child
nodes as soon as it receives stream from its parent. A
root node keeps a list of recently joining nodes and
each node obtains the list from the root node when it
joins. When a random edge is established, the lists are
exchanged so as to maintain the up-to-date list. How the
root node determinesλt will be elaborated in Section II-
D.

C. Handling Churn

When a nodei has a parent nodej and a random
incoming edge from noder (r is called a “prospective
parent”), it comparesSeqj and Seqr. If the sequence
number from its parent is lower than the one through
the random edge (Seqj < Seqr) 2, it indicates that the
current delivery path is slower than the path via the
random edge. Then nodei changes its parent from node
j into noder, and hence old parent-child link is broken.
Furthermore, ifOi < Omax

i , node i immediately sets
up an outgoing random edge to its old parentj. If the
sequence number from the parent is higher than the one
from the prospective parent, no actions are taken. To
adapt to membership dynamics and internet topology
changes, each peer reestablishes the random edge(s)
periodically to other nodes.

Figure 1 shows how a node “climbs” a tree by a
random edge. Let us assume node1 is the source and
the network around node3 is congested. (a) When node
2 establishes a random edger2 (shown as a dotted line)

2In our simulations, we useSeqj + α < Seqr, where α is a
predefined threshold to avoid oscillation, instead ofSeqj < Seqr.

to node7, node7 comparesSeq6 from its parent node
6 and Seq2 from node2. (b) If Seq6 < Seq2, which
means the current delivery path (1−3−6−7) is slower
than the path (1 − 2 − 7), node 7 changes its parent
from node6 into node2. SupposeO7 < Omax

7 , node
7 sets up a random edger7 to node6. (c) Node6 also
detectsSeq3 < Seq7 and switches its parent into node7
and establishesr6 to node3. If Seq1 > Seq6, no further
action is taken. We call our system “climber” since node
7 climbs the tree by being a child of node2.

The random forwarding technique greatly simplifies
the recovery procedure caused by node departures or
failures. We do not need a fast failure detection mecha-
nism (usually done with heavy signaling overhead [6])
or a failure recovery (proactive [16] or reactive [10])
method additionally. Instead, parent and child nodes
need to exchange heartbeat messages at relatively long
intervals. Actually, Climber does not distinguish node
departure or failure from node congestion. Again, Fig-
ure 1 successfully describes the recovery procedure of
Climber. (a) When node3 fails, its descendent nodes
6, 7, 8 (node3’s subtree) notice the current delivery path
is congested. (b) At that moment, if there exists at least
one random edge (r2) established from the outside of
the subtree to the inside of the subtree, node7 with the
random incoming edge switches its parent to node2.
Then node7 forwards the stream to all the remaining
edges including parent6 (through a newly established
random edger7) and child nodes as it has available
outdegree. (c) Finally, the failed node3 is placed at the
end of delivery path (1 − 3) and deemed as it left the
tree eventually.

If a node has no incoming random edges and its parent
fails, then the node detects there is no parent alive by
heartbeat messages. We say the node isinterrupted,
and the node sends a Rejoin message to the root node,
which is the same as the joining process. The number
of Rejoin messages is limited by the number of current
outdegree of the failed node since only the direct child
nodes send Rejoin messages to the root node.

This periodicalclimbing technique also keeps im-
proving the performance of the structure even the system
experiences the high churning rate. For the nodes who
do not have random incoming edges, Climber provides
randomized pulling to request a randomly selected node
to setup a random edge to the requesting node. Then
the selected node establishes a random edge to the
requesting node by the same procedure described in
Section II-B.
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Fig. 1. Tree reconstruction steps using random edge. Node7 climbs the tree by being a child of node2.

D. Adaptation

Climber provides fine-grained control over the tree,
i.e., λt indicates the level of structural resilience at time
t of the system operation. To make a protocol more
agile to live streaming, the service provider should have
a way to adjust the level of QoS, e.g., the interruption
rate (the proportion of interrupted nodes in the system)
γ of the stream. In Climber, a source node compares
a predefined interruption rateγ and γt, the latter of
which is the number of received Rejoin messages out
of the total number of nodes in the system at timet.
If the churning rate increasesγt will exceedγ. Then,
the source node increasesλt+1 to enhance the resilience
of the tree. Otherwise, the source node decreasesλt+1

to save network bandwidth by reducing the number of
random edges. In Climber, a source node measuresγt

every 10 seconds andλt+1 is derived as follows.

If γ ≥ γt, thenλt+1 = max(λt − 0.01, 0.01)

Else if γ < γt, thenλt+1 = min(λt + 0.01, 1) (1)

Equation (1) is an example to adjustλt+1. Other solu-
tions (e.g., linear increase and multiple decrease of TCP
window) may be used depending on the characteristics
of the service or streaming content.

E. Giving Incentives

Climber gives more incentive to a highly contributing
peer in the sense that a peer that makes higher contri-
bution will have more descendants, which implies more
incoming random edges probabilistically. The level of
contribution of a peer is defined as the current number
of outgoing links. Note that time during which the node
has been participating in the tree also affects the level of
contribution. The number of descendants of a node tends

to increase with the node’s outdegree and participating
time since more attempts to make prospective child
nodes have been made via outgoing random edges by the
node and its descendants. Since Climber is designed to
recover from failures by using random edges, a node
with a larger number of descendants will experience
less streaming interruptions. Through this mechanism,
Climber encourages nodes to use more upload link
bandwidth to its child nodes and prospective child nodes,
which leads to better performance of the P2P streaming
service.

III. S IMULATION RESULTS

To evaluate the performance of Climber, we have
developed an event-driven simulator. The network topol-
ogy is generated by the GT-ITM [7] topology generator
that includes 2000 peers and 600 routers, using the
Transit-Stub graph model. The topology consists of
3 transit domains with 8 transit routers each. There
are an average of 3 stub domains per transit router,
and an average of 8 stub routers per stub domain
(3x8x(1+3x8)=600). Peers are randomly connected to
the 576 stub routers. Link delays for the simulation is
derived from [8]. We use link delays ranging from 1
to 55 ms for transit-transit or transit-stub links and 1
to 10 ms delay for a link within a stub. Each link is a
symmetric link without packet loss. Only peers join and
leave the system and every peer departure is regarded
as a node failure. When a peer leaves the system, the
peer joins the system (at a different position in the
tree) immediately again so the number of peers in the
system remains unchanged. The maximum outdegree
Omax

i of peer i is randomly chosen between 1 to 10
(1 ≤ Omax

i ≤ 10). Peers reestablish their random edges
in every 10 seconds.
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Fig. 2. Climber successfully adapts network condition byλt

A. Adaptation

To make a protocol more agile to live streaming,
Climber provides a way for the service provider to adjust
the level of QoS, e.g., the interruption rateγ of the
stream. Climber periodically checksγt, the currently
measured interruption rate at timet, and adaptively
changes the random edge probabilityλt by Equation (1)
in Section II-D. Figure 2 shows the adaptation behavior
of Climber. The simulation is run over 4000 seconds and
λt is recalculated every 10 seconds. In this scenario,γ
is set to 0.03 which indicates less than 60 interrupted
nodes out of 2000 nodes within 10 seconds would be
acceptable. Churning rateθ is defined as the proportion
of failed nodes out of the total number of nodes in the
system. We intentionally vary the churning rateθ, i.e.,
the proportion of failed nodes in the system within the
last 10 seconds between 0 and 0.2 (400 nodes fail in
10 seconds) as the simulation time goes by. To meet the
constraintγ = 0.03, Climber enforces nodes to establish
more random edges untilλt becomes almost 0.4 when
network condition gets worse (around 1000sec in the
figure).γt spikes more sharply asλt decreases because
the number of generated random edges declines asλt

decreases.

B. Incentive

Climber provides more resilient streaming service to
the nodes of higher contribution, i.e., a node that main-
tains more descendant nodes. Figure 3 shows the impact
of our incentive mechanism. The figure is derived from
the same experiment of Section III-A. LetInter(O = i)
denote the number of interruption a node experiences
when its current outdegree isi (0 ≤ i ≤ 10). Then
relative interruption rate of a node of outdegreei is
defined as Inter(O=i)∑10

j=0
Inter(O=j)

. Leaf nodes (without a child)
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experience 70% of the total interruption events while
nodes with more than 3 child nodes rarely experience
interruption. This is because the average number of de-
scendants of a node increases exponentially as outdegree
increases and hence the node is likely to get over the
failure/departure of its ancestor more seamlessly as the
number of descendants increases. Thus Climber strongly
stimulates nodes to dedicate more upload link bandwidth
to the system.

C. Overhead

Climber provides resilience at the cost of adding
random edges. Figure 4 showsλt required to satisfy
the level of QoS (γ) depending on differentθ values.
When the target resilience (γ) is 0.04 and 8% of nodes
fail per time unit of 10 seconds, each node should
dedicate 10% of its residual outdegree (Omax

i − Oi in
node i) to establish random edges. In high churning
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state (θ = 0.18), λt increases up to 75% to maintain
interruption rate under 1%.

D. Delay

Figure 5 is a cumulative distribution function of the
delay from a root node to a non-root node. We fixed
the value ofλt = 0.04 to see the delay characteristics
of Climber. Whenθ = 0.02, 97% of streaming packets
are delivered within 10 seconds. Asθ increases, i.e.,
churning rate increases, the average delay from the root
becomes longer. Only 80% of the nodes receive packets
within 11 seconds whenθ = 0.16. In this case, we
should increaseλt to enhance resilience, which in turn
improves the delay.

IV. CONCLUSION AND FUTURE WORK

This paper introduces Climber, an incentive-based re-
silient P2P system for live streaming services. It focuses
on two challenging issues in P2P live streaming, namely,
incentive and resilience. It is demonstrated that Climber

gives more incentive to a highly contributing peer in the
sense that a peer which makes higher contribution will
experience more resilient streaming service. Moreover,
Climber adapts successfully to a predefined level of
resilience in the presence of high churn. Consequently,
Climber is a viable solution for P2P streaming service
providers who want to adjust the QoS level. As future
work, we will investigate a relation between the pro-
portion of received Rejoin messages out of the total
number of nodes in the system (γt) and random edge
probability (λt) in a systematic fashion. Furthermore,
we are planning to implement Climber and carry out
experiments on PlanetLab.
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