A Scalable Rate Adaptation Mechanism for IEEE 802.11e Wireless LANs

6th December 2007

Hakyung Jung, Y. Seok, T. Kwon and Y. Choi
Seoul National University, Korea
Table of Contents

• Introduction
• Background
 – IEEE 802.11e EDCA
 – Related work
• ARF (Auto Rate Fallback) over 802.11e
• S-ARF (Scalable-ARF)
• Performance Evaluation
• Conclusion
Introduction

• ARF has been the most widely deployed rate adaptation scheme on 802.11 WLAN market

• ARF can malfunction when it is used over IEEE 802.11e EDCA

• This paper design and evaluate a new rate adaptation scheme, called Scalable Auto Rate Fallback (S-ARF)
Background:

IEEE 802.11e EDCA

- EDCA is designed to provide *prioritized services* by differentiating the parameter values of each access category (AC)

<table>
<thead>
<tr>
<th>Access category</th>
<th>CWmin</th>
<th>CWmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC_BK</td>
<td>aCWmin</td>
<td>aCWmax</td>
</tr>
<tr>
<td>AC_BE</td>
<td>aCWmin</td>
<td>aCWmax</td>
</tr>
<tr>
<td>AC_VI</td>
<td>aCWmin/2</td>
<td>aCWmin</td>
</tr>
<tr>
<td>AC_VO</td>
<td>aCWmin/4</td>
<td>aCWmin/2</td>
</tr>
</tbody>
</table>

- The shortened range of CW for voice AC may increase a frame collision probability
Background:
Related work

• ARF
 – Perform at next lower rate when two consecutive ACKs are missed
 – Perform at next higher rate when ten consecutive ACKs are received

• Due to shortened CW range for voice AC,
 – TX failures are to be due to *collisions*, not due to bad channel condition → unnecessary fallback
 – *Increased collision* makes ten consecutive ACKs a *rare* event → hard to recover
Background: Related work

• CARA & RRAA
 – Use RTS/CTS exchange to distinguish collisions from frame errors
 – Exchanging RTS/CTS before transmitting DATA reduces collisions
 • RTS/CTS frame is much smaller than DATA frame

• In case of VoIP
 – The size of VoIP frame is comparable to that of RTS/CTS frame
 – RTS/CTS exchange cannot be the solution
ARF over 802.11e

- Two-dimensional discrete Markov chain
- State \(\{r, s\} \)
 - \(r \): TX rate
 - \(s \): consecutive successful TX count
- \(S_{r,s} \): Stationary distribution
- Average TX rate:
 \[
 E[r] = \sum_{\forall r, s} S_{r,s} \times r
 \]
ARF over 802.11e (cont.)

• Average TX PHY rate chosen by ARF as number of contenders increases
• Voice category chooses lower TX PHY rates
 – Due to increased collisions
• Erroneous decision even when only two stations exist

![Graph showing the average transmission rate (Mbps) against the number of stations.](image)
Scalable-ARF

• Goal
 – Overcome the malfunction of ARF without using RTS/CTS exchange

• Operation
 – To determine frame error cautiously
 • Increase C_{err} when C_{fail} reaches T_{limit}
 • Lower TX-rate when $C_{\text{err}} \geq F_{\text{TH}}$
 – To recover responsively
 • Reset C_{succ} only if C_{err} was added
 • C_{succ} is increased by $(C_{\text{fail}} + 1)$
Performance Evaluation

Simulation Setup

• NS2 simulator with TKN EDCA module
• 802.11b PHY in indoor environment
 – Empirical BER-SNR curves by Intersil
 – Shadowing model with path loss exponent 4
• Star topology with saturated traffic
• Comparisons in terms of TX rate and aggregate throughput
 – ARF scheme
 – S-ARF(2): $T_{\text{limit}} = 2$, $F_{th} = 4$
 – S-ARF(4): $T_{\text{limit}} = 4$, $F_{th} = 8$
Performance Evaluation

Result (1/2)

• Average TX rate w.r.t. number of contenders

• ARF cannot choose high TX rate even when contenders are small
 – Analogous to ARF analysis

• S-ARF can select high TX rate up to a moderate number of stations
Performance Evaluation

Result (2/2)

- Aggregate throughput of voice flows w.r.t. number of voice flows
 - 4 background video flows

- S-ARF shows much scalable performance than ARF
Conclusions

- **Contributions**
 - Reveal the malfunction of ARF over 802.11e
 - Using analytical model
 - Design new rate adaptation scheme
 - Performs consistently well compared to ARF

- **Future work**
 - Optimization/adaptation of operational parameters