모바일 애드 혹은 네트워크에서의 동적 다중전송속도 경로 배정 알고리즘

KCC 2006

2006. 06. 22

서울대학교 전기컴퓨터공학부
류지호
jhryu@snu.ac.kr
Outline

- Background
- Multi-rate Aware Sub-layer (MAS)
- Link status management
- Discussion
- Analysis on Tx time
- D-MAS
- Performance evaluation
- Conclusion
Mobile ad hoc networks
- Autonomous
 - Infrastructure-less network
 - STA: Terminal + Router
- Mobile
 - Wireless environment
 - Network topology varies over time
- Multi-hop communication

Multi-rate data transmission
- IEEE 802.11 standard
 - Provides various data rates at PHY
 - E.g., 1, 2, 5.5, 11 Mbps in IEEE 802.11b
- Multi-rate can be exploited to enhance the performance
rDCF

[Hao Zhu, et al., Infocom 2005]
- Utilizes multi-rate capability in WLAN environment
- Up to 2-hop relay only

\[
\frac{1}{\text{DataRate}(\text{src} \to \text{relay})} + \frac{1}{\text{DataRate}(\text{relay} \to \text{dst})} < \frac{1}{\text{DataRate}(\text{src} \to \text{dst})},
\]

s.t. relay \(\in\) neighbor _set(src)
MAS (Multi-rate Aware Sub-layer)

- Seeks for the path with **shortest Tx time**

- Changes the next-hop node

\[
\frac{1}{\text{DataRate} (\text{src} \rightarrow \text{relay})} + \frac{1}{\text{DataRate} (\text{relay} \rightarrow \text{dst})} < \frac{1}{\text{DataRate} (\text{src} \rightarrow \text{dst})},
\]

s.t. \(relay \in \text{neighbor} _ \text{set} (\text{src}) \)
MAS protocol

- Located between MAC and Network layers

MAS protocol stack

<table>
<thead>
<tr>
<th>Transport Layer (TCP, UDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Layer (AODV, DSR)</td>
</tr>
<tr>
<td>Multi-rate Aware Sub Layer</td>
</tr>
<tr>
<td>MAC Layer (IEEE 802.11b)</td>
</tr>
<tr>
<td>Physical Layer</td>
</tr>
</tbody>
</table>

MAS header format

<table>
<thead>
<tr>
<th>MAC Header</th>
<th>MAS Header</th>
<th>IP Header</th>
<th>Payload</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTL</td>
<td></td>
<td>Next-hop IP Address</td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>7 8</td>
<td>39</td>
<td></td>
</tr>
</tbody>
</table>

0: MAS Valid Bit
Link status management

Neighbor table
- Maintains link status of up to 2-hop neighbors
 - Link status: \{src, dst, data rate, lifetime\}
 - The link turns invalid after the lifetime

1) **Neighbor discovery msg**
 - Periodically broadcasted to 1-hop neighbors

2) **Neighbor reply msg**
 - In response to the neighbor discovery msg
 - Contains the data rate of the link
 - Assuming the link is symmetric
 - Gives each link entry a lifetime
 - e.g., 2 times the neighbor notify period

3) **Neighbor notify msg**
 - Periodically broadcasted
 - Contains its 1-hop link table
 - Each STA can know its 2-hop link status
Overheads

- Backoff overhead
 - Idle slots due to backoff process
- Collision overhead
 - Wasted slots due to collision

Thus,

- In some cases, the metric below may not work
 - 2-hop relay may not take shorter time

\[
\frac{1}{\text{DataRate}(\text{src} \to \text{relay})} + \frac{1}{\text{DataRate}(\text{relay} \to \text{dst})} < \frac{1}{\text{DataRate}(\text{src} \to \text{dst})},
\]

s.t. \(\text{relay} \in \text{neighbor}_{\text{set}}(\text{src}) \)

- Should take the overheads into consideration
- Beneficial particularly in,
 - TCP ACK segment
 - Control frames
 - E.g., AODV RREQ, RREP packets
Analysis on transmission time

- **1-hop Tx time, \(T \)**
 \[
 T = T_s + N_{cum} T_c + O_{bo}
 \]

- **Time for successful Tx, \(T_s \)**
 \[
 T_s = \frac{H_{phy} + ACK}{BasicRate} + SIFS + DIFS + \frac{H_{mac} + E[P]}{DataRate} + 2\delta
 \]

- **Time for collision, \(T_c \)**
 \[
 T_c = \frac{H_{phy}}{BasicRate} + SIFS + DIFS + \frac{H_{mac} + E[P^*]}{DataRate} + \delta
 \]

- **Collision probability, \(P_c \)**
 \[
 P_c = 1 - (1 - \tau)^{n-1}, \quad \tau = \frac{1}{n\sqrt{T_c / 2\sigma}}
 \]

- **Number of collisions, \(N_{cum} \)**
 \[
 N_{cum} = \sum_{i=1}^{i=m} (i)(P_c)^i (1 - P_c), \quad m = \log_2\left(\frac{CW_{max}}{CW_{min}}\right)
 \]

- **Backoff overhead, \(O_{bo} \)**
 \[
 O_{bo} = \sum_{i=0}^{i=m} (P_c)^i (1 - P_c) \times 2^i \frac{CW_{min}}{2\sigma}
 \]

Ref: G. Bianchi [IEEE JSAC, 2000]

- **\(T \): 1-hop Tx time**
- **\(T_s \): time for successful Tx**
- **\(T_c \): time for collision**
- **\(N_{cum} \): number of collisions**
- **\(O_{bo} \): backoff overhead**
- **\(P_c \): collision probability**
- **\(n \): number of STA**
- **\(\sigma \): slot time**
- **\(\delta \): propagation delay**
- **\(E[P] \): avg packet size**
- **\(H_{phy} \): PHY header size**
- **\(H_{mac} \): MAC header size**
• Dynamically determines whether to relay or not
• New metric
 ▪ Assuming **saturated** network
 ▪ Considers both **data rate** and **overheads**
 • Can be calculated in the constant time
 \[T_{\text{src} \rightarrow \text{dest}} > T_{\text{src} \rightarrow \text{relay}} + T_{\text{relay} \rightarrow \text{dest}} \]

• **Relay-preferable frame size**
Performance evaluation (1/2)

- Simulation environment
 - NS-2
 - IEEE 802.11b, AODV
 - TCP traffic
 - Parameters
 - \{DIFS, SIFS, σ, δ\} : \{50, 20, 10, 1\} μs
 - \{CW_{\text{min}}, CW_{\text{max}}\} : \{32, 1024\}

- Simulation topology
Performance evaluation (2/2)

- TCP goodput w.r.t. packet size
 - Basic: basic route
Conclusion

❖ **Summary**
 - Exploit **Multi-rate** in MANET environment
 - Consider backoff and collision **overheads**
 - **Independent** of the existing Routing, MAC protocols

❖ **Future work**
 - Estimation of the network status
 - More than 2-hop relay
 - Extensive simulations
Thank you

Q&A