Cloud-Based Actor Identification With Batch-Orthogonal Local-Sensitive Hashing and Sparse Representation

Guangyu Gao, Member, IEEE, Chi Harold Liu, Senior Member, IEEE, Min Chen, Senior Member, IEEE, Song Guo, Member, IEEE, and Kin K. Leung, Fellow, IEEE

Abstract—Recognizing and retrieving multimedia content with movie/TV series actors, especially querying actor-specific videos in large scale video datasets, has attracted much attention in both the video processing and computer vision research field. However, many existing methods have low efficiency both in training and testing processes and also a less than satisfactory performance. Considering these challenges, in this paper, we propose an efficient cloud-based actor identification approach with batch-orthogonal local-sensitive hashing (BOLSH) and multi-task joint sparse representation classification. Our approach is featured by the following: 1) videos from movie/TV series are segmented into shots with the cloud-based shot boundary detection; 2) while faces in each shot are detected and tracked, the cloud-based BOLSH is then implemented on these faces for feature description; 3) the sparse representation is then adopted for actor identification in each shot; and 4) finally, a simple application, actor-specific shots retrieval is realized to verify our approach. We conduct extensive experiments and empirical evaluations on a large scale dataset, to demonstrate the satisfying performance of our approach considering both accuracy and efficiency.

Index Terms—Actor identification, cloud computing, locality-sensitive hashing, shot boundary detection, sparse representation.

I. INTRODUCTION

W

ith rapid advances in digital technologies, there has been profound development in videos, especially the feature movies and TV series. Moreover, the new generation cellular networks with high transmission rate and energy efficiency provide a new approach for multimedia wireless communications, which combine the digital technologies and wireless communications to satisfy the requirement of QoS [1]. In order to feasibly browse and retrieval these videos, it is very crucial and urgent to provide efficient and effective techniques for video analyzing and understanding. Firstly, there are several works focused on video analyzing in surveillance video, i.e., Ma et al. [2] built an efficient system for robust and fast people counting under occlusion through multiple cameras. Meanwhile, automatic actor identification is one of the most important techniques for video analyzing in broadcast videos, since actor identification is to label actor in videos with their corresponding names. In a movie/TV series, the actors are often the most important contents to be indexed, thus actor identification becomes a critical step in video semantic analysis (Video always refers to movie and TV series in this paper unless otherwise specified.), i.e., semantic movie index and retrieval, summarization. As mentioned in [3], [4], recently, multimedia content providers have started to offer information on cast and characters for TV series and movies during playback.

Actually, the face recognition is the most common way used for actor identification. Sang et al. [5] proposed the problem of faceted subtopic retrieval, which focus on more complex queries concerning political and social events or issues. Meanwhile, some of the researchers proposed to share aligned faces in a carefully crafted benchmark face recognition dataset such as the Labeled Face in the Wild. By automatically detecting faces throughout the video, extracting facial features and then using these features in a supervised or unsupervised clustering process, actors can be identified and labeled. Therefore, the actor identification is generally divided into several steps: video segmentation, face detection and tracking, face and actor recognition, and actor-specific retrieval.

As has been noted in [6], although it is very intuitive to humans, automatic actor identification is still tremendously challenging due to: 1) the lack and ambiguity of available annotations; 2) many other factors, like pose, light and expression, etc., influent the way a face appeared in a frame; and 3) when there are many uncontrolled data quality factors, such as low resolution, occlusion, nonrigid deformation, large motion and complex background, which make the results of face detection and tracking unreliable; 4) the efficiency is always a concern for video processing and analysis, and it is still an unresolved issue.

Manuscript received January 12, 2016; revised April 12, 2016; accepted May 25, 2016. Date of publication June 09, 2016; date of current version August 12, 2016. This work was supported by the National Natural Science Foundation of China under Grant 61572220, Grant 61401023, and Grant 61300179, and also by the Fundamental Research Funds for the Central Universities under HUST: 2016YXMS070. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Honggang Wang. (Corresponding author: Chi Harold Liu.)

G. Gao is with the School of Software, Beijing Institute of Technology, Beijing 10081, China (e-mail: guangyugao@bit.edu.cn).

C. H. Liu is with the School of Software, Beijing Institute of Technology, Beijing 10081, China, and also with the Department of Computer Information and Security, Sejong University, Seoul 143-747, South Korea (e-mail: chliu@bit.edu.cn).

M. Chen is with the School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China (e-mail: minchen2012@hust.edu.cn).

S. Guo is with the School of Computer Science and Engineering, The University of Aizu, Fukushima 965-8580, Japan (e-mail: sguo@u-aizu.ac.jp).

K. K. Leung is with the EEE and Computing Departments, Imperial College, London SW7 2BT, U.K. (e-mail: kin.leung@imperial.ac.uk).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2016.2579305
problem that how to balance the efficiency and accuracy of actor identification in videos.

In order to deal with these challenges, in this work, we present a novel cloud-based actor identification approach with Batch-Orthogonal Local-Sensitive Hashing (BOLSH) [7] and sparse representation. Firstly, since there are full of various images as well as video clips in the Internet for actors, we propose to do a matching between the faces detected from the video and the exemplar faces in the gallery set, which have been searched from the Web. For the second and third challenge, when each face is detected and tracked, we use the BOLSH method to provide multi batch features, and then we used the Multi-Task Joint Sparse Representation and Classification (MTJSRC) [8] to accurately recognize face tracks. Since the batches is the key concept in our approach, we renamed the used sparse representation algorithm as Multi-Batches Joint Sparse Representation and Classification (MBJSRC) in this paper. And also, the kernel view of that even achieved more robust performance.

In order to deal with the fourth challenge, we introduce the Apache Spark\(^2\) based cloud computing both for pre-processing of video segmentation and BOLSH hashing on massive face images. The cloud-based way can offer high efficiency but also maintain satisfactory identification performance. Finally, based on the results of actor identification, face tracks in each shot will be assigned with actor names, and further application of actor-specific shots retrieval is also presented.

All in all, compared with previous studies on such topic, the main contributions of this paper include:

1) The cloud based Spark framework is introduced to accelerate the shot boundary detection by distributing processes on all pixels into a parallel environment.

2) The BOLSH method is used for feature description which not only reduce the feature dimension but also maintain the similarity between instances.

3) With BOLSH, we need to hash thousands or more faces into hash values, which will result in very low efficiency. However, the batch concept in BOLSH make it easy to do hashing in parallel with the cloud computing ideas, and the Spark framework is used to assign the hash processes into different virtual machines.

4) The MTJSRC algorithm is a robust way for face recognition, and the batches in BOLSH is exactly satisfies the tasks in MTJSRC. Thus, the Multi-Batches Sparse Representation and Classification (MBJSRC) is constructed for actor identification on face recognition.

II. RELATED WORK

The task of actor identification in a movie/TV-series is typically accomplished by combining multiple sources of information, e.g., image, video and text, under little or even no manual intervention. However, in movies/TV-series, the names of actors are not always available, and the appearances of actors vary in different conditions, which makes it hard to detect, track and recognize these actors.

Over the past two decades, extensive research efforts have been actively concentrated on this task [6], [9], which detect actor faces in photos or movies and associates them with corresponding names. Besides, there are also several methods using audio clues or both audio and vision clues, such as [10]. Meanwhile, in our previous work [11], we also proposed a semi-supervised learning strategy to address celebrity identification with collected celebrity data. More recently, Tapaswi et al. [10] presented a probabilistic method for identifying actors in movies/TV-series, and Bojanowski et al. [12] learned a joint model of actors and actions in movies using weak supervision provided scripts.

However, actor identification in video still faced a series of challenges, i.e., many factors, like pose, light and expression, etc., influence the way a face appears. Meanwhile, many controlled data quality factors, such as low resolution, occlusion, nonrigid deformation, large motion and complex background, also make the results of actor identification unreliable for most image based recognition, and the situation is even worse in movies.

In order to maintain the intra-class similarity and differentiate the inter-class samples, a possible and effective way is to use the hashing methods. In the meantime, face or actor features always have very high dimensions and also the number of samples is still very large. Thus, the hash projection can not only maintain characteristics for classification and recognition, but also reduce feature dimensions for more efficient processing. Considering the characteristics of ‘batch’ ideas in our previous work [7] for hash projection, we combined the batch-orthogonalized random projection to generated tasks for MTJSRC [8].

In addition, Sang et al. [13] presented two schemes of global face-name matching based frameworks for robust character identification. Their experimental results shown that their approach is useful to improve results for clustering and identification of the face tracks extracted from uncontrolled movie videos. However, they only used 15 feature-length movies, in which, the training set has 1327 face tracks, and the testing set has 5012 tracks. Therefore, Zhang et al. [14] have constructed a “Celebrities on the Web” dataset which contains 2.45 million distinct images of 421 436 celebrities and is orders of magnitude larger than previous datasets. Consequently, with the large-scale of the massive face or actor-based video data, the efficiency became a more and more crucial problem. Often, the problems with facial recognition based actor identification are rooted in the need for greater processing power, human and machine. Furthermore, the efficiency problems are common issues in the computer vision and pattern recognition areas. In the same time, cloud computing as a model for enabling ubiquitous network access to a shared pool of configurable computing resources, has been enjoying its flourishing.

Cloud-based methods or applications always archive more efficient performance [15]–[18]. For example, Gao et al. [15] proposed a new framework of providing Handwritten Character Recognition as a Service based on cloud computing technology. Wang et al. creatively proposed a cloud-based approach to protect user’s data, enhance media quality and reduce transmission overhead [19]. A cloud based food recognition

platform, in which an improved 2DPCA algorithm is used for object recognition, and a Hadoop based cloud server is built for this platform [16]. In [20], Shamim and Ghulam, proposed a cloud-supported framework, where speech and faces images are extracted from health monitoring purposes. Zhang et al. proposed a cloud-assisted drug recommendation services to provide significantly more available, reliable and efficient performance [21]. Lai et al. realized a network and device aware QoS approach for cloud-based mobile streaming, which effectively solves the limited bandwidth problem available for mobile streaming and different device requirements [22]. Suzuki et al. [17] utilized the cloud system to maintain large-scale database which includes learning key-points. We further note that in [23], Lin et al. proposed a green video transmission algorithm in the mobile cloud networks. Their work utilized video clustering and channel assignment to achieve high quality video transmission.

Video analysis is usually considered as one of the most important applications for the Internet of Things (IoT), and Ma et al. have comprehensively addressed its objectives and scientific challenges in [24]–[26]. Sheng et al. in [27] extensively studied the energy-efficient device-to-device (D2D) communication scheme by cooperative relaying in wireless multimedia networks. Liu et al. in [28]–[30] presented a novel resource negotiation scheme bridging between dynamic sensing tasks and heterogeneous sensors. Liu et al. in [31]–[33] proposed a novel framework and subsequent participant selection and incentive mechanism for participatory crowdsourcing including the smart device users, central platform and multiple task publishers. In [34], existing incentive mechanism are extensively surveyed and future research directions are clearly given. Liu et al. [35] extensively analyzed the relationship between energy consumption and smart device user behaviors, and then proposed a novel approach to select the optimal amount of participant while considering possible user rejections. Song et al. [36] introduced an energy consumption index to quantify the average degree of how participants feels disturbed by the energy cost, and proposed a suboptimal approach for participant selection under the multi-task sensing environment. Liu et al. [37] presented a quite novel family-based healthcare monitoring system for long-term chronic disease caring. Event detection systems and energy efficient approaches are given in [38], [39] including both centralized optimal approach and fully distributed suboptimal solutions by participatory sensing. Furthermore, Zhang et al. [40] focused on privacy leakage issues of participatory sensing and presented a participant coordination based architecture and flow to successfully protect user privacy. Finally, Yurur et al. in [41] presented a few posture detections schemes by using the sensor equipped smart devices.

Nevertheless, Apache Spark is a fast and general-purpose cluster computing framework for cloud computing. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. Therefore, we used the cloud ideas of Spark framework to fast the shot boundary detection and feature hashing processing, which cost most of the time and result in low efficiency in the whole framework.

Network transmission and energy consumption is also a big issue for cloud computing. Liu et al. [42] presented a novel concept of quality of service (QoS) index to integrate the multidimensional QoS requirements to ensure the degree of QoS satisfactions. In [43], the authors proposed a novel MIMO routing scheme to ensure QoS. Liu et al. [44] proposed a novel localization-oriented sensing model and a new notion of coverage. Localization-oriented coverage (L-coverage for short), by using Bayesian estimation theory. Yu et al. [45] proposed a stochastic load balancing scheme, and finally provide probabilistic guarantee against the resource overloading with virtual machine migration, while minimizing the total migration overhead. Yu et al. [46] considered the problem of scaling up a virtual network abstraction with bandwidth guarantee in Cloud datacenters. The authors in [47] efficiently optimized the trade-off between the energy consumption of wireless camera sensor networks and the quality of target localization.

III. OVERVIEW OF CLOUD-BASED ACTOR-SPECIFIC SHOTS RETRIEVAL

As shown in Fig. 1, our actor identification framework mainly includes four parts: cloud-based video segmentation, face tracks generation, cloud-based feature representation, and MBJSRC for recognition. Besides, we propose a actor-specific shots retrieval application based on these four parts. For the first part, namely, video segmentation, we revised an accelerating shot boundary detection in our previous work [48] by adding the parallel computing with Spark for massive pixels processing. Then, the face tracks are generated with efficient face detection and tracking methods. After, in feature representation, the SIFT features in face tracks are hashed in to new feature space with BOLSH, and also the feature hashing and dimension reducing is realized by cloud-based hashing with Spark. Finally, ideas of ‘batch’ in BOLSH is mapped into ‘task’ in the multi-task joint sparse representation algorithm, to form our classification algorithm named MBJSRC.

Hitherto, with the proposed framework, each face track has been assigned with a actor name. Based on the results of actor identification, there are many applications, such as actor/ character-specific movie retrieval, personalized video summarization, intelligent playback and video semantic mining, etc. Meanwhile, with the cloud-based shot boundary detection, each video has been segmented into several shots. Actually, there are always several face tracks in each video shot, and each shot can be assigned with several actor names, which is the key word for actor-specific shots retrieval. More specifically, a cloud-based shot boundary detection method is applied to divide the movie into several shots at first. Secondly, the face detection and tracking processing are applied, and after the identification of all the detected face tracks in these shots, each shot will been labeled as several actor names. Finally, by using the character name or actor name as the query entry, the corresponding actor’s spotlights shots are presented to the user.

IV. CLOUD-BASED SHOT BOUNDARY DETECTION

Here, the shot changes are automatically detected using the cloud version of our previous accelerating shot boundary detection method.
A. Accelerating Shot Boundary Detection

At first, we described the original accelerating shot boundary detection as:

1) We accelerate the shot boundary detection process in spatial domain in two aspects: one, by processing only the pixels in Focus Regions.

 Specifically, a video has thousands of frames, and each frame has thousands of pixels. These vast frames and pixels make the computation complexity very high, which is the main reason that many shot boundary detection methods or systems have low efficiency. Although spatial sub-sampling of frames has been suggested to improve video processing efficiency, it still depends on the choice of the spatial window. Smaller window size is sensitive to object and camera motions, while arbitrary window size could not make the remaining pixels represent the frame well.

 Generally, the most essential information in a frame is always concentrated around the center of a frame, and the more the pixels are close to the frame center, the more important the pixels are. In order to reduce the processing time, redundant pixels should be removed and only informative pixels are kept for processing. To accomplish this, a Focus Region is defined for each frame. The Focus Region of a $P \times Q$ sized frame is extracted in the following steps.

 a) Each image is divided into non-overlapping sub-regions of size $(P/p) \times (Q/q)$ to get $p \times q$ number of sub-regions.

 b) The most external surrounding sub-regions (Colored with red in Fig. 2) are defined as the non-focus region.

 c) The outer-most external surrounding sub-regions (Yellow sub-regions) are defined as second focus region.

 d) Remaining sub-regions around the center are defined as focus region.

 To get an informative while compact representation of a frame, the non-focus region is discarded, the second focus region is down-sampled by keeping only pixels with odd x-coordinates. The focus region is fully kept.

2) We accelerate the shot boundary detection process in temporal domain by skipping frames adaptively. Instead of degrading the accuracy, almost all boundaries could be detected including gradual transitions which are hard to be detected. In order to efficiently reduce the number of processed frames and also not to drop any boundaries between two shots, we set the initial skipping interval as d_1. Then, the following skipping intervals are updated adaptively based on the similarity of frames. As shown in Fig. 3, $\{d_1, d_2, \ldots\}$ denotes the sequential skipping intervals, and $\{D_1, D_2, \ldots\}$ is the serial frame number in the
original video corresponding to all skipping intervals. \(D_k \) is defined as

\[
D_k = \sum_{m=1}^{k} d_m. \tag{1}
\]

When \(\alpha_{x,y} \) is the similarity ratio between the \(x_{th} \) and \(y_{th} \) frame, we update the skipping interval \(d_j \) as follows:

\[
d_j = \sum_{k=1}^{j-1} \frac{1}{j-1} \alpha_{D_{d,-1},D_i} d_k \tag{6}.
\]

That is, the greater \(\alpha \) is, the larger of the skipping interval is. These updated intervals are reasonable. Because a great \(\alpha \) in current skipping interval means the skipped frames are very similar, we can boldly skip more frames. But if \(\alpha \) is small, it implies there are many changes in the skipped frames and we need to cautiously skip frames, so as to avoid classifying a motion as a shot boundary and also avoid missing shots with less frames. Generally, human visual reaction time is about 1–2 seconds. Suppose the video frame rate is about 20–25 frames, then a shot that can cause visual reaction need last for 20–50 frames at least. Therefore, the initial skipping interval \(d_1 \) is set to 40.

After, given the current processed frame \(F_i \), if \(\alpha_{i,i+d_j} > T_c \) (the threshold assigned in experiment), we can assert that \(F_i \) is similar to \(F_{i+d_j} \), and skip to process the next \(d_{j+1} \) frames. Otherwise it means that there is a shot boundary existing between \(F_i \) and \(F_{i+d_j} \). Thereby, we use a bisection search to find a refined boundary in this range. First, we compute \(\alpha_{i,i+d_j/2} \) and \(\alpha_{i+d_j/2,i+d_j} \). If \(\alpha_{i+d_j/2,i+d_j} > T_c \), boundary lies in the first half of \(F_i \) to \(F_{i+d_j} \), otherwise in the second half. Then, the same process is carried out in the first half or second half of \(F_i \) to \(F_{i+d_j} \) to refine the boundary position until half of the range is only one frame.

Evidently accelerated the shot boundary detection process and detect gradual transitions more robustly, no matter if the gradual transition is fade in/out, dissolve or wipe. Moreover, it requires to compute mutual information for \(n - 1 \) times on a video sequence of \(n \) frames by using traditional frame by frame searching process, but in our approach, we just need to compute it for \(\log n \) times.

3) A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighborhood of the point. The corner distribution is the distribution of all detected corners scattered in a image. Thus, the corner distribution of frames near candidate shot boundaries is adopted to remove most of the false boundaries and to find the precise interval of the true boundary. So far, it nearly detected all the boundaries. However, camera or object motion could also lead to significant change of frame content when we skip frames aggressively. Thus, several false shot boundaries are caused by camera or object motion, which are the main false boundaries. In order to remove these false boundaries, we used the corner distribution analysis. More specifically, 1) in abrupt transitions, a frame abruptly changes into a totally different one; 2) changes in gradual transitions always last about 5–20 frames, which couldn’t be felt by audience; 3) changes in false boundaries always last more than 100 frames. Actually, corner distribution of frames in true boundary (abrupt and gradual transitions) is very different from its forward and backward frames, but it is more stable and consistent in camera and object motion caused false alarms.

\begin{itemize}
 \item \textbf{B. Cloud-Based Mutual Information Calculation}
 \item Although our original shot boundary detection really accelerated the shot boundary detection, it still cost unacceptable time for massive videos. More specifically, we found that most of the time is cost for entropy and \textit{mutual information} calculation in and between frames. In fact, in the mutual information calculation on the Focus Regions, the gray value of each pixel is summarized and then the portion of each gray value (0 to 255) is calculated. After, these portion is looked as distribution probability to generate the entropy with Shannon Theory. By analyzing the whole flowchart of \textit{mutual information} as well as frame similarity calculation, an intuitive idea is that a data-parallel programming model for clusters of commodity machine can handle this issue well. Thus, we used the Spark framework for \textit{mutual information} calculation.
 \item Specifically, entropy measures the information content or “uncertainty” of \(X \) and is given by
 \[
 H(X) = -\sum p_X(x) \log p_X(x). \tag{3}
 \]
 \item The joint entropy of \(X,Y \) is defined as
 \[
 H(X,Y) = -\sum p_{X,Y}(x,y) \log p_{X,Y}(x,y). \tag{4}
 \]
 \item The \textit{mutual information} between the random variables \(X \) and \(Y \) is defined as
 \[
 I(X,Y) = H(X) + H(Y) - H(X,Y). \tag{5}
 \]
 \item Let \(V = \{F_1, F_2, \ldots, F_N \} \) denotes the frames of a video clip \(V \). For two frames (i.e., \(F_x \) and \(F_y \)), we first compute their own entropies (i.e., \(H_x, H_y \)) and their joint entropy (i.e., \(H_{x,y} \)). The \textit{mutual information} between them is given by (5). If \(I^R_{x,y}, I^G_{x,y}, I^B_{x,y} \) respectively represent the \textit{mutual information} of each \textit{RGB} component, we set \(I_{x,y} = I^R_{x,y} + I^G_{x,y} + I^B_{x,y} \) as the \textit{mutual information} between frame \(F_x \) and \(F_y \).
\end{itemize}
Generally, Spark provides the Resilient Distributed Dataset (RDD) abstraction through a language integrated API in Scala. In the cloud version of the shot boundary detection, we calculate the entropy and mutual information with Spark programming. In fact, we used several basic functions in Spark, i.e., map(), reduce() etc. Analyzing (3), the following pseudo-program implements the entropy calculation processes.

1) val points = sc.parallelize(list(pixels in a image))
2) val p = points.map((x => (x, 1))).reduceByKey((x, y) => x + y).collect
3) var sq = width * height
4) p = p.mapValues(_.sq)
5) p = p.mapValues(x => (-x * log x))
6) var ha = p.reduce((x, y) => x + y)

We start by defining a RDD called points as which refer to all the pixels in an image. Actually, the calculation of joint entropy is with the same code to realized (4), and we can get the mutual information between two frames with (5).

With the above pseudo-program, a series of processes for all the pixels are distributed into different virtual machines in parallel. After, the whole calculation efficiency has been improved obviously, which will been shown in the experimental results.

V. FACES DETECTION AND TRACKING IN SHOTS

The OKAO face detector, is used to detect frontal faces and profile faces with 30° towards left or right in frame. Actually, a typical movie contains tens of thousands of detected faces. However, these faces merely arise from a few hundred “tracks” of a particular actors. Therefore it is feasible to discover the correspondences between faces and reduce the volume of the data that needs to be processed. Furthermore, stronger appearance models can be built for each actor since a face track provides multiple examples of the actor’s appearance. To obtain face tracks, a robust foreground correspondence tracker [49] is applied for each shot. In practice, the face detection algorithm will be tried in the first few frames of a shot, and it will go with tracking only if face is detected. And if the faces of a actor are occluded in the beginning of a shot, that actor can not be detected and identified.

Using the tracking algorithm in [49], with the assumption that the target face region can be represented by a set of superpixels without significantly destroying the boundaries between target and background, we model the prior knowledge regarding the target and the background appearance by

$$y(t, r) = \begin{cases} 1, & \text{if } sp(t, r) \in \text{target} \\ -1, & \text{if } sp(t, r) \in \text{background} \end{cases}$$

Here $sp(t, r)$ denotes the r_{th} superpixel in the t_{th} frame, and $y(t, r)$ denotes its corresponding label. A robust superpixel-based discriminative appearance model is generated based on four factors: cluster confidences, cluster centers, cluster radius and cluster members. This discriminative appearance model facilitates a tracker to discriminate the face region and the background with mid-level cues. After, the target-background confidence map is used to formulate the tracking task, and the best candidate is obtained by the maximum a posterior estimates. With the superpixels tracking, we collect faces belonging to tracks efficiently and accurately, and more details about the tracking algorithm can be seen in [49]. However, short tracks which are often introduced by false positive detections are discarded, and an example of the final face tracks is shown in Fig. 4.

To extract face features and construct the representations, a part-based descriptor extracted around local facial features [6], [9] is utilized. Here we first use a generative model [6] to locate the nine facial keypoints in the detected face region, including the left and right corners of each eye, the two nostrils and the tip of the nose and the left and right corners of the mouth. Then we extract the 128-dim SIFT descriptor from each keypoint and directly concatenate them together to form our final face descriptor with dimensionality 1152. Fig. 5 illustrates some selected faces with facial feature points marked in our approach.

VI. CLOUD-BASED BOLSH

In order to make large-scale image or video processing practical, Locality-Sensitive Hashing is one of the way. Because it reduces the dimensionality of high-dimensional data, namely, it hashes input items so that similar items map to the same buckets with high probability. That is, Locality Sensitive Hashing can not only maintain the similarity between items, but also reduce the feature dimensions.

Sign-Random-Projection Locality-Sensitive Hashing (SRP-LSH) is a widely used hashing method, which provides an unbiased estimate of pairwise angular similarity, yet may suffer from its large estimation variance. We propose the BOLSH, as a significant improvement of SRP-LSH [7]. The proposed BOLSH not only has the properties of Locality-Sensitive Hashing on maintaining item similarity and reduce dimensions, but also easy to applied to the cloud computing framework with several independent batches.

A. BOLSH

Locality-sensitive hashing aims to hash similar data samples to the same hash code with high probability. Based on the locality-sensitive property, a fundamental usage of locality-sensitive hashing is to generate sketches, or signatures, or fingerprints, for reducing storage space while approximately preserving the pairwise similarity. These sketches or signatures can be used for higher-level applications, e.g., clustering, near-duplicate detection. Moreover, locality-sensitive hashing can further be used for efficient approximate nearest neighbor (NN) search, which is one of its most important applications. We can index the hash code in an efficient way, i.e., in hash tables, to enable efficient search for similar data samples to a query.

SRP-LSH is an important binary locality-sensitive hashing method, which is widely used and extensively studied. The Hamming distance between two codes of SRP-LSH provides an unbiased estimate of the pairwise angular similarity. Although SRP-LSH is widely used, it may suffer from the large variance of its estimation. In our previous work [7], we proposed

Batch-Orthogonal Locality-Sensitive Hashing (BOLSH), as an improvement over SRP-LSH. Instead of independent random projections, BOLSH makes use of batch-orthogonalized random projection vectors, as illustrated in Fig. 6. It is proven in [7] that BOLSH also provides an unbiased estimate of pairwise angular similarity, and has a smaller variance than SRP-LSH when the angle to estimate is in $(0, \pi/2]$.

The proposed BOLSH method is closely related to many recently proposed principal component analysis-style learning-based hashing methods, which learn orthogonal projections. Although BOLSH is purely probabilistic and data-independent, the model of orthogonal random projection together with its theoretical justifications can help gain more insights and a better understanding of these learning-based hashing methods. Furthermore, since theoretical analysis and experiments both show that BOLSH approximates the angle between two vectors more accurately, BOLSH, in replace of SRP-LSH, can be used in various applications requiring massive angle-related computations, e.g., dot product, angular similarity, cosine similarity, Euclidean distance.
SRP-LSH [7] is a widely used locality-sensitive hashing method for angular similarity, which embeds real vectors into Hamming space. Angular similarity is defined as follows:

$$\text{sim}(a, b) = 1 - \theta_{a, b}/\pi$$

(7)

where $$\theta_{a, b} = \arccos \left(\frac{a \cdot b}{||a|| ||b||} \right) \in [0, \pi]$$ is the angle between vector $$a$$ and $$b$$, and $$\langle a, b \rangle$$ means the inner product.

Meanwhile, a SRP-LSH function is defined as:

$$h_v(x) = \text{sgn}(v^T x)$$

(8)

where $$v$$ refers to a random vector sampled from the normal distribution $$\mathcal{N}(0, I_d)$$ and

$$\text{sgn}(z) = \begin{cases} 1, & z \geq 0 \\ 0, & z < 0. \end{cases}$$

(9)

Given two data samples $$a$$ and $$b$$, the locality-sensitive is that

$$\Pr(h_v(a) \neq h_v(b)) = \frac{\theta_{a, b}}{\pi}. \quad (10)$$

By independently sampling $$K$$ $$d$$-dimensional vectors $$v_1, \ldots, v_K$$ from the normal distribution $$\mathcal{N}(0, I_d)$$, a binary-vector-valued function $$h(x) = (h_{v_1}, h_{v_2}, \ldots, h_{v_K})$$, which concatenates $$K$$ SRP-LSH functions, thus produces K-bit codes. Then by the locality-sensitive property, it is easy to prove that

$$\mathbb{E}[d_{\text{Hamming}}(h(a), h(b))] = \frac{K \theta_{a, b}}{\pi} = C \theta_{a, b}$$

(11)

where $$C = K/\pi$$.

Based on the SRP-LSH, the ideas of BOLSH is just to orthogonalize $$N(1 \leq N \leq \min(K, d)) = K, 1 < K \leq d$$ of the random vectors sampled from the normal distribution $$\mathcal{N}(0, I_d)$$, where $$d$$ is the dimension of data space. With orthogonalization, the resulting $$N$$ vectors are no longer independently sampled, thus we group their corresponding bits together as a $$N$$-batch, and $$N$$ is called the batch size. Formally, assuming that $$K = N \times L$$ and $$1 \leq N \leq d$$, $$K$$ random vectors $$v_1, v_2, \ldots, v_K$$ are independently sampled from the normal distribution $$\mathcal{N}(0, I_d)$$, and then are divided into $$L$$ batches with $$N$$ vectors each. The QR decomposition is processed to these $$L$$ batches of $$N$$ vectors respectively. After, we get $$K = N \times L$$ projection vectors $$w_1, w_2, \ldots, w_K$$. This results in $$K$$ BOLSH functions $$(h_{w_1}, h_{w_2}, \ldots, h_{w_K})$$, where $$h_{w_i}$$ is defined as

$$h_{w_i}(x) = \text{sgn}(w_i^T x).$$

(12)

In conclusion, with the BOLSH algorithm, each data sample with $$d$$ dimensions is transferred into a $$K$$ dimensions vector with $$N$$ batches ($$K = N \times L$$, each batch have $$L$$ dimensions). Actually, the batch in BOLSH exactly matches the element of task in the following used MTJSRC algorithm for video face recognition.

B. BOLSH by Cloud Computing

With input: Data space dimension $$d$$, batch size $$1 \leq N \leq d$$, the number of batches $$L \geq 1$$, resulting code length $$K = N \times L$$, the BOLSH will generate a random matrix $$H = [v_1, v_2, \ldots, v_K]$$ with each element being sampled independently from the normal distribution $$\mathcal{N}(0, 1)$$. After the orthogonalization, we get the output projection matrix $$\hat{H} = [\omega_1, \omega_2, \ldots, \omega_K]$$. In fact, while we extracted a 1152 dimensions feature for each face, we set $$K = 400, N = 80, L = 5$$ in our experiment.

With the projection matrix of BOLSH, all faces detected and tracked from the video need to be projected into the hash space. Nevertheless, a video always has a large number of frames, and also each frame contains several faces. That is, there will be massive faces to be projected, and this will result in very low efficiency. In fact, when the projection matrix is acquired, all the face images are dealt with a series of the same pixel value wise calculations. Intuitively, the BOLSH projection can be done by map/reduce processes in a cloud computing framework.

More specifically, the map/reduce functions in the Spark computing framework are used to do the BOLSH projection for all face images in parallel. Actually, the following pseudo-program implements the BOLSH projection for all face images in parallel.

1) val faces = sc.parallelize(list(faces detected and tracked in the video))

2) val f = f.mapValues(x => (H dot x))

where $$H$$ is the projection vector for BOLSH. Actually, these vectors are generated randomly, and also been grouped and orthogonalized.

VII. KERNEL-VIEW MULTI-BATCH JOINT SPARSE REPRESENTATION AND CLASSIFICATION

Given a set of retrieved gallery face images and the extracted probe face tracks, we present in this section a simple yet efficient algorithm for face track identification. Each unlabeled face track is simply represented as a set of BOLSH projection features by image feature vectors extracted from all images in the track. One simple method for identification is to directly calculate the feature distances between a probe face track and the labeled exemplar faces, and then assign the probe face track to the nearest neighborhood. Another feasible method is to classify each image in the track independently via, e.g., sparse representation classification, and then assign the face track to the subject that achieves the highest frequency.

In this work, by viewing the identification of each image in a probe face track as a task, the face track identification can be naturally casted to a multi-task face recognition problem. This motivates us to apply the multi-task joint sparse representation model [8] for face track classification. The key advantage of multi-task learning lies in that it can efficiently make use of complementary information contained in different sub-tasks. In addition, we also extend the multi-task learning into kernel-view, which is more competitive than the state-of-the-art multiple kernel learning methods for face tracks recognition.

A. Multi-Batch Joint Sparse Representation Based Recognition

Suppose we have a set of exemplar faces with $$M$$ subjects. Here, a subject means a person, which refers to a set of the
same person’s faces. Denote $X^l = [X^l_1, \ldots, X^l_M]$ as the training feature matrix, and $X^l_m \in \mathbb{R}^{d_l \times p_m}$ is associated with the m_{th} subject, where d_l is the dimensionality of the l_{th} batch of the BOLSH hash value, and $p = \sum_{m=1}^{M} p_m$ means the total number of training samples. Here, we consider a supervised L-batch (task) linear representation problem as follows:

$$y^l = \sum_{m=1}^{M} X^l_m \omega^l_m + \varepsilon^l, l = 1, \ldots, L$$ \hspace{1cm} (13)

where $y = y^l$ means one face of a face track and y^l as a batch (task) is the l_{th} batch of each face image’s BOLSH hash value in this track. Meanwhile, $\omega^l_m \in \mathbb{R}^{p_m}$ is a reconstruction coefficient vector associated with the m_{th} subject, and ε^l is as the residual term. Denote $\omega^l = [\omega^l_1, \ldots, \omega^l_M]^T$ as the representation coefficients in batch l, and $w_m = [\omega^l_1, \ldots, \omega^l_M]$ the representation coefficients from the m_{th} subject across different batches (tasks). Furthermore, we denote $W = [w_m]_{m,l}$. Therefore, our proposed multi-task joint sparse representation model is formulated as the solution to the following problem of multi-task least square regressions with $\ell_{1,2}$ mixed-norm regularization

$$\min_W F(W) = \frac{1}{2} \sum_{l=1}^{L} \| y^l - \sum_{m=1}^{M} X^l_m \omega^l_m \|^2_2 + \lambda \sum_{m=1}^{M} \| \omega_m \|^2_2.$$ \hspace{1cm} (14)

Here, to optimize the model, the accelerated proximal gradient [8] is adopted to solve the (14) with fast convergence rate guaranteed. The accelerated proximal gradient is composed by a weight matrix sequence $W^l = [w_m^l]_{m,l} \geq 1$, and an aggregation matrix sequence $\hat{W}^l = [\hat{w}_m^l]_{m,l} \geq 1$. The W^{l+1} is updated according to the result

$$\hat{\omega}^{l+1}_m = \hat{\omega}^{l}_m - \eta \nabla \hat{\omega}^{l}_m, l = 1, \ldots, L$$ \hspace{1cm} (15)

$$\omega^l_m = \frac{1}{\alpha} \omega^l_m + \frac{\lambda \eta}{\| \nabla \hat{\omega}^{l+1}_m \|^2_2} \omega^{l+1}_m, m = 1, \ldots, M.$$ \hspace{1cm} (16)

Here $\nabla \hat{\omega}^{l}_m = -(X^l)^T y^l + (X^l)^T X^l \hat{\omega}^{l}_m$, η is the step size parameter, and $[\bullet]_+$ = max(\bullet, 0). In addition

$$\hat{W}^{l+1} = \hat{W}^{l+1} + \frac{\alpha_{l+1}(1 - \alpha_l)}{\alpha_l} (\hat{W}^{l+1} - \hat{W}^{l+1})$$ \hspace{1cm} (17)

where α_l is directly set as $2/(t + 2)$ [8] in our approach.

With the accelerated proximal gradient algorithm, we obtained the optimal $\hat{W} = [\hat{\omega}^l_m]$, where $\hat{\omega}^l_m$ associated with the l_{th} task (batch) in the m_{th} subject. The l_{th} batch y^l of each face image f_j in a face track can be approximated as $y^l = X^l_m \hat{\omega}^l_m$. For classification and recognition, the decision is ruled in favor of the subject with the lowest total reconstruction error accumulated over all the L batches

$$m^* = \arg \max_m \sum_{l=1}^{L} \theta^l \| y^l - X^l_m \hat{\omega}^l_m \|^2_2.$$ \hspace{1cm} (18)

where $\theta^l_{l=1} \sum_{l=1}^{L} \theta^l = 1$ are the weights that measure the confidence of different batches in final decision.

There are tens of faces in each face track, and each of the face have assigned a subject label with (18). After, the whole face track is recognized with an subject by

$$m^* = \arg \max_m \sum_{j=1}^{J} [m^*_j == m].$$ \hspace{1cm} (19)

We call the model (14) along with classification rule (18 and 19) as the MBJSRC in this paper.

B. The Kernel View Extensions Recognition

Heretofore, the face track identification is feasibly realized by the MBJSRC algorithm for sparse representation and classification. In order to combine multiple feature kernels for face track recognition, we extend the MBJSRC algorithm to the kernel version as described in [8].

For a Reproducing Kernel Hilbert Space, the kernel trick is to use a non-linear function $\phi(x) = \phi(x_1, x_2)$ for some given kernel function g^l. Let $G^l = \phi(X^l)^T \phi(X^l)$ be the training kernel matrix associated with the l_{th} modality of the feature, and $h^l = \phi(X^l)^T \phi(y^l)$ be the test kernel vector associated with the l_{th} modality. In our approach, the simple and available kernel matrix is constructed by directly using vector h^l and the column of each kernel matrix G^l as the extracted new features. In this new space, the original multi-task least square regressions with $\ell_{1,2}$ mixed-norm regularization problem can be written as

$$\min_W F(W) = \frac{1}{2} \sum_{l=1}^{L} \| h^l - \sum_{m=1}^{M} G^l_m \omega^l_m \|^2_2 + \lambda \sum_{m=1}^{M} \| \omega^l_m \|^2_2.$$ \hspace{1cm} (20)

Actually, in the experiment, the kernel matrices are computed as $\exp(-\chi^2(x, x')/\mu)$, and μ is set to be the mean value of the pairwise χ^2 distance on the training set.

VIII. EXPERIMENTAL RESULTS

We conduct extensive experiments to evaluate the efficiency and effectiveness of the proposed cloud-based actor identification with BOLSH and sparse representation. This section is organized as follows: Section VIII-A introduces the details of construction of the used dataset. Section VIII-B demonstrates the efficiency of cloud-based shot boundary detection and the cloud-based BOLSH. VIII-C details the effectiveness of our approach with different settings in BOLSH. Meanwhile, Section VIII-D shows a naive approach of the Sparse Representation (SR) classifier, and also we demonstrate the performance comparison among our approach, the NN and the SR classifier as well as the SVM classifier.

A. Dataset Construction

Since we mainly test our approach on a movies (“Titanic” (1997)) and a TV series of The Big Bang Theory, episode 1-5 from season 2, we constructed our dataset from image data and video data as follows.

1) Gallery Dataset: We select eight actors who are the main actors in our selected movie and TV series, namely,
characters of Rose, Jack, Caledon, Leonard, Sheldon, Penny, Howard and Rajesh. For character of each actor, we first retrieve related face images from Google Image and Bing Image respectively using the names of actors as query. Then, the above mentioned OKAO face detector are applied on the images returned by the research engine. And, totally 100 face images are added to the Gallery Dataset with the name of the actors as the label. Actually, the 100 face images means the first 50 faces from both the query results from Google Image and Bing Image respectively. Therefore, finally, there are 8×100 face images in our Gallery Dataset.

2) Video Data: A video corpus consisting of one movie and five episodes of TV series is downloaded from the Internet. The resolution of these videos are 1280×720, and also the frame rate is about 25 fps.

Meanwhile, by only considering the detected tracks, the volume of frames that need to be processed can be largely reduced to accelerate the classification process. With the cloud-based shot boundary detection, each video is segmented into several shots, as shown in Table I (The Bigbang 1–5 refer to episode 1–5 of The Big Bang Theory, season 2).

After the video is segmented into shots, the tracking process takes the results of OKAO face detection as input, and generates several face tracks using the tracking algorithm in [49]. Then, a nine-point SIFT feature is used in the experiments, namely, to extract face features from the exemplar faces and face tracks. Referring to the work of Everingham et al. [9], a generative model is adopted to locate the nine facial key-points in the detected face region, including the left and right corners of each eye, the two nostrils and the tip of the nose and the left and right corners of the mouth followed by 128-dim SIFT feature extraction process.

B. Efficiency of Cloud-Based Approaches

In this section, we illustrate the efficiency of two cloud-based processes, namely, the cloud-based shot boundary detection and the cloud-based BOLSH. The hardware environment of the system includes the video storage and processing center: Intel Core 2 Quad Q9550 CPU, 2.83 GHz (4-kernel) frequency, 12G memory. For the cloud-based shot boundary detection as well as the cloud-BOLSH hashing, we used totally 4 nodes, including one physical machine and 3 virtual machines, and each machine has 2G memory. Firstly, we do efficiency comparison with the approach with cloud computing ideas, and the accelerating shot boundary detection methods in [48], which is shown in Table II.

In addition, in order to analyze the efficiency of our cloud-based BOLSH hash method, we manually chose 149 face tracks with 11692 face images in the movie “Titanic” and 254 face tracks with 20311 face images in the TV series of “The Big Bang Theory”. Meanwhile, we extracted a 1152 dimensions feature vector for each face. That is, we evaluate our cloud-based approach on totally 32003 face images. Using the projection matrix \tilde{H} generated in VI-A, we project the sample matrix $X \in \mathcal{R}^{1152 \times 32003}$ into a hashing matrix $X_h \in \mathcal{R}^{100 \times 32003}$ with $K = 400$, $N = 80$, $L = 5$.

Since all these faces can be hashed with the same processes, we used the cloud-based framework to assign the data in HDF5 database and also the projection processes into different computing nodes. With the cloud computing ideas, all the face images will be projected in parallel. Since all the projection tasks are distributed to different virtual machines, our cloud-based BOLSH hashing has obviously achieved more high efficiency compare to the original BOLSH.

C. Recognition Performance of BOLSH Combined With MBJSRC

While we combined the characteristic of ‘batch’ in BOLSH with the ideas of ‘task’ in MTJSRC, our approach achieved more satisfactory performance in the recognition effectiveness and accuracy. As shown in Table III, we evaluate the recognition accuracy of BOLSH combined with MTJSRC with different setting of K, L and N in BOLSH.

Table I: Summary of Test Movies

<table>
<thead>
<tr>
<th>Movies</th>
<th>Duration(min)</th>
<th>Resolution</th>
<th>#Shot</th>
<th>Genres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanic</td>
<td>195</td>
<td>1080 x 720</td>
<td>1550</td>
<td>Drama & Romance</td>
</tr>
<tr>
<td>The Bigbang 1</td>
<td>22.3</td>
<td>1080 x 720</td>
<td>374</td>
<td>Comedy</td>
</tr>
<tr>
<td>The Bigbang 2</td>
<td>21.8</td>
<td>1080 x 720</td>
<td>387</td>
<td>Comedy</td>
</tr>
<tr>
<td>The Bigbang 3</td>
<td>22.1</td>
<td>1080 x 720</td>
<td>380</td>
<td>Comedy</td>
</tr>
<tr>
<td>The Bigbang 4</td>
<td>22.5</td>
<td>1080 x 720</td>
<td>368</td>
<td>Comedy</td>
</tr>
<tr>
<td>The Bigbang 5</td>
<td>21.8</td>
<td>1080 x 720</td>
<td>394</td>
<td>Comedy</td>
</tr>
</tbody>
</table>

Table II: Efficiency of Cloud-Based Approach

<table>
<thead>
<tr>
<th>Videos</th>
<th>#Shot</th>
<th>Cost Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanic</td>
<td>1550</td>
<td>372</td>
</tr>
<tr>
<td>The Bigbang 1</td>
<td>374</td>
<td>1151</td>
</tr>
<tr>
<td>The Bigbang 2</td>
<td>387</td>
<td>1214</td>
</tr>
<tr>
<td>The Bigbang 3</td>
<td>447</td>
<td>1098</td>
</tr>
<tr>
<td>The Bigbang 4</td>
<td>398</td>
<td>1133</td>
</tr>
<tr>
<td>The Bigbang 5</td>
<td>426</td>
<td>1208</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Our Approach</th>
<th>Method [48]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanic</td>
<td>1153</td>
</tr>
<tr>
<td>The Bigbang 1</td>
<td>372</td>
</tr>
<tr>
<td>The Bigbang 2</td>
<td>501</td>
</tr>
<tr>
<td>The Bigbang 3</td>
<td>447</td>
</tr>
<tr>
<td>The Bigbang 4</td>
<td>398</td>
</tr>
<tr>
<td>The Bigbang 5</td>
<td>426</td>
</tr>
</tbody>
</table>

Table III: Recognition Performance of BOLSH Combined With MBJSRC

<table>
<thead>
<tr>
<th>Videos</th>
<th>#FaceTracks</th>
<th>N=1152, L=1</th>
<th>N=80, L=5</th>
<th>N=100, L=8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanic</td>
<td>170</td>
<td>80.6%</td>
<td>83.5%</td>
<td>78.2%</td>
</tr>
<tr>
<td>The Bigbang 1</td>
<td>84</td>
<td>90.5%</td>
<td>92.9%</td>
<td>88.2%</td>
</tr>
<tr>
<td>The Bigbang 2</td>
<td>71</td>
<td>87.3%</td>
<td>87.3%</td>
<td>85.9%</td>
</tr>
<tr>
<td>The Bigbang 3</td>
<td>80</td>
<td>91.2%</td>
<td>93.7%</td>
<td>88.7%</td>
</tr>
<tr>
<td>The Bigbang 4</td>
<td>97</td>
<td>88.6%</td>
<td>90.7%</td>
<td>88.7%</td>
</tr>
<tr>
<td>The Bigbang 5</td>
<td>75</td>
<td>88.0%</td>
<td>93.3%</td>
<td>88.0%</td>
</tr>
</tbody>
</table>

\[\alpha = \arg \min_{\alpha} \| X \alpha + e \|_2^2 + \lambda \| \alpha \|_1 \].

This problem can be solved in polynomial time by standard linear programming methods [51]. After, we classify \(y_k \) to the subject class that minimizes the residual between \(y_k \) and \(X \alpha_m \):

\[c_k = \arg \min_m \| y_k - X_m \alpha_m \|_2. \]

By using the accelerated proximal gradient algorithm, our model convergences at roughly 10–20 rounds of iterations. The average running time is 0.31 s per probe face track. The parameter \(\lambda \) in (5) is set to 0.1 throughout our experiments.

D. Performance Comparisons With Different Approaches

Three baseline methods are employed for comparison: i) the NN classifier used in [9] which directly calculates the feature distances between a probe face track and the labeled exemplar faces, and then assigns the probe face track to the nearest neighborhood; 2) the sparse representation (SR) classifier [50]; and 3) the SVM classifier. For the SR and SVM methods, they classify each image in the track independently and then assign the face track to the subject that most frequently occurs in this track. In addition, for SR algorithm in [50], we give some details about how to use it in our track level face recognition.

Suppose the matrix \(X = \{ X_m \} \) for the entire gallery set is the concatenation of the \(p = \sum_{i=1}^{i} p_m \) training samples of all \(M \) subject classes. Denote \(X_m = [v_{m,1}, v_{m,2}, \ldots, v_{m,p_m}] \in \mathbb{R}^{d \times p_m} \) as the \(m \)th subject samples. For a new (test) face track \(y \) with \(K \) face images, we first classify the \(k \)th face into the class \(c_k \in \{1, \ldots, M\} \), and also define \(C = [c_1, \ldots, c_K] \) as the class vector for the test face track. Then, we assign \(c = \arg \max_m \| C - m \|_0 \), which means the most frequently occurred subject class, as the final subject class for the test track. Meanwhile, the class label \(c_k \) of the \(k \)th face in the track is obtained as follows:

\[y_k = X \alpha + e \]

where \(\alpha \in \mathbb{R}^p \) is the coefficient vector. Then, to get the informative vector \(\alpha = [\alpha_1^T, \ldots, \alpha_M^T]^T \) is equivalent to the solution of the following \(\ell_1 \)-minimization problem:

\[\alpha_1 = \arg \min_{\alpha} \| \alpha \|_1 \quad \text{subject to} \quad y_k = X \alpha + e. \]

That is, to solve the following problem:

\[\min_{\alpha} F(\alpha) = \frac{1}{2} \| y_k - X \alpha \|_2^2 + \lambda \| \alpha \|_1. \]

With explosive development of social network and video sharing websites, an efficient and accurate way to index and organize videos according to the identities of the involved persons becomes heavily demanded. Meanwhile, querying actor-specific video clips in large scale video dataset has attracted much attentions in both video processing and computer vision research field. Nevertheless, both the effectiveness and efficiency of many existing methods are not so satisfactory. Therefore, in this paper, we propose an efficient cloud-based actor identification approach with BOLSH and MTJSRC algorithm. More specifically, videos are segmented into shots with the cloud-based shot boundary detection, and also the cloud-based BOLSH is implemented on video faces for feature description. Then, the batches in BOLSH are used as tasks for the MTJSRC algorithm for actor identification in each face track. Extensive experiments are implemented to demonstrate the satisfying performance of our approach considering both accuracy and efficiency.

Besides, the accelerated proximal gradient algorithm in MTJSRC is a machine learning algorithm which run iterative optimization procedures, to minimize a target function. Therefore, in future, with the Spark programming, it can run much faster by keeping their data in memory. Therefore, as the typical example for Spark programming for logistic regression [52], we can parse the accelerated proximal gradient algorithm into fine processes, and assign all these processes into different Spark nodes. Furthermore, with faster processing, we can test more parameters combination to get the most excellent model and parameters.

TABLE IV RECOGNITION PERFORMANCE OF DIFFERENT APPROACHES

<table>
<thead>
<tr>
<th>Videos</th>
<th>#Face Tracks</th>
<th>Our Approach</th>
<th>SR Method</th>
<th>NN Method</th>
<th>SVM Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titanic</td>
<td>170</td>
<td>83.5%</td>
<td>81.7%</td>
<td>78.2%</td>
<td>69.5%</td>
</tr>
<tr>
<td>The Bigbang 1</td>
<td>84</td>
<td>87.3%</td>
<td>86.0%</td>
<td>75.3%</td>
<td>67.5%</td>
</tr>
<tr>
<td>The Bigbang 2</td>
<td>71</td>
<td>87.3%</td>
<td>84.0%</td>
<td>75.3%</td>
<td>68.5%</td>
</tr>
<tr>
<td>The Bigbang 3</td>
<td>89</td>
<td>84.0%</td>
<td>83.3%</td>
<td>73.0%</td>
<td>62.5%</td>
</tr>
<tr>
<td>The Bigbang 4</td>
<td>97</td>
<td>90.7%</td>
<td>89.0%</td>
<td>75.3%</td>
<td>81.7%</td>
</tr>
<tr>
<td>The Bigbang 5</td>
<td>75</td>
<td>93.3%</td>
<td>86.7%</td>
<td>86.7%</td>
<td>84.2%</td>
</tr>
</tbody>
</table>

IX. Conclusion

With explosive development of social network and video sharing websites, an efficient and accurate way to index and organize videos according to the identities of the involved persons becomes heavily demanded. Meanwhile, querying actor-specific video clips in large scale video dataset has attracted much attentions in both video processing and computer vision research field. Nevertheless, both the effectiveness and efficiency of many existing methods are not so satisfactory. Therefore, in this paper, we propose an efficient cloud-based actor identification approach with BOLSH and MTJSRC algorithm. More specifically, videos are segmented into shots with the cloud-based shot boundary detection, and also the cloud-based BOLSH is implemented on video faces for feature description. Then, the batches in BOLSH are used as tasks for the MTJSRC algorithm for actor identification in each face track. Extensive experiments are implemented to demonstrate the satisfying performance of our approach considering both accuracy and efficiency.

Besides, the accelerated proximal gradient algorithm in MTJSRC is a machine learning algorithm which run iterative optimization procedures, to minimize a target function. Therefore, in future, with the Spark programming, it can run much faster by keeping their data in memory. Therefore, as the typical example for Spark programming for logistic regression [52], we can parse the accelerated proximal gradient algorithm into fine processes, and assign all these processes into different Spark nodes. Furthermore, with faster processing, we can test more parameters combination to get the most excellent model and parameters.

REFERENCES

Guangyu Gao (M’15) received the M.S. degree in computer science and technology from Zhengzhou University, Zhengzhou, China, in 2007, and the Ph.D. degree in computer science and technology from the Beijing University of Posts and Telecommunications, Beijing, China, in 2013. He was with the National University of Singapore, Singapore, as a government-sponsored joint Ph.D. student from July 2012 to April 2013. He is currently an Assistant Professor with the School of Software, Beijing Institute of Technology, Beijing, China. His current research interests include multimedia, computer vision, video analysis, machine learning, and big data.
Chi Harold Liu (M’10–SM’15) received the B.Eng. degree in electronic and information engineering from Tsinghua University, Beijing, China, in 2006, and the Ph.D. degree in electronic engineering from Imperial College, London, U.K., in 2010.

He is currently a Full Professor and the Vice Dean of the School of Software, Beijing Institute of Technology, Beijing, China. From 2014, he was the Director of the Data Science Institute, Beijing, China, the Director of the IBM Mainframe Excellence Center, Beijing, China, the Director of the IBM Beijing Data and Analysis Technology Center, Beijing, China, and the Director of the National Laboratory of Data Intelligence for China Light Industry, Beijing, China. Before moving to academia, he worked with the IBM T. J. Watson Research Center Hawthorne, NY, USA, and IBM Research—China, Beijing, China as a Staff Researcher and Project Manager from 2010 to 2013, and was a Postdoctoral Researcher with Deutsche Telekom Laboratories, Berlin, Germany, in 2010. He has authored or co-authored more than 80 prestigious conference and journal papers and owned more than 10 EU/US/China patents. His current research interests include the Internet of Things, big data analytics, mobile computing, and wireless ad hoc, sensor, and mesh networks.

Prof. Liu is a Senior Member of the Chinese Institute of Electronics and a Member of ACM. He was elected into the “High-Level Overseas Talents Return Home Program” by the Ministry of Human Resource and Social Security, China, in 2015, was the recipient of the Distinguished Young Scholar Award from the Beijing Institute of Technology in 2013, was the recipient of the IBM First Plateau Invention Achievement Award in 2012, was the recipient of the IBM First Patent Application Award in 2011, and was interviewed by EEWeb.com as the Featured Engineer in 2011. He serves as the Editor for KSIS Transactions on Internet and Information Systems from 2013, and the book editor for six books published by the Taylor & Francis Group and Wiley. He also has served as the General Chair of the IEEE SEICON’13 workshop on IoT Networking and Control, the IEEE WCNC’12 Workshop on IoT Enabling Technologies, and the ACM Ubicomp’11 Workshop on Networking and Object Memories for IoT. He served as the Consultant to the Asian Development Bank, Bain & Company, and KPMG, and the Peer Reviewer for the Qatar National Research Foundation and the National Science Foundation. He also serves as the Lead Guest Editor for the IEEE SENSORS Journal Special Issue on Software Defined Wireless Sensor Networks, and Guest Editor for the IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING Special Issue on Sensor Data Computing as a Service in Internet of Things.

Min Chen (M’08–SM’09) is a Professor with the School of Computer Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China. He was an Assistant Professor with the School of Computer Science and Engineering, Seoul National University (SNU), Seoul, South Korea, from September 2009 to February 2012. He previously worked as a Post-Doctoral Fellow with the Department of Electrical and Computer Engineering, University of British Columbia (UBC), Vancouver, BC, Canada. Before joining UBC, he was a Post-Doctoral Fellow with SNU. He has more than 260 paper publications, including over 120 SCI papers, over 50 IEEE transaction/journal papers, eight ISI highly cited papers, and one hot paper. He authored OPNET IoT Simulation (HUST Press, 2015), Big Data Inspiration (HUST Press, 2015) and Big Data Related Technologies (Springer, 2014). His Google Scholar Citations reached 6200+ with an h-index of 38. His top paper was cited over 740 times, while his top book was cited 480 times as of June 2016. His research interests include cyber-physical systems, IoT sensing, 5G networks, mobile cloud computing, SDN, healthcare big data, medical cloud privacy and security, body area networks, and emotion communications and robotics.

Prof. Chen serves as Editor or Associate Editor for Information Sciences, Wireless Communications and Mobile Computing, IET Communications, IET Networks, the Wiley International Journal of Security and Communication Networks, the Journal of Internet Technology, KSII Transactions on Internet and Information Systems, and the International Journal on Recent Trends in Engineering and Technology. He is Managing Editor for IAACS and IJART. He is a Guest Editor for the IEEE Network and the IEEE Wireless Communications Magazine. He is Chair of the IEEE Computer Society Special Technical Communities on Big Data. He is Co-Chair of the IEEE ICC 2012 Communications Theory Symposium and the IEEE ICC 2013 Wireless Networks Symposium. He is General Co-Chair for the 12th IEEE International Conference on Computer and Information Technology (IEEE CIT-2012) and Motobimdia 2015. He is General Vice Chair for Tridemcom 2014. He is Keynote Speaker for CyberC 2012, Mobioutous 2012, and Cloudcomp 2015. He was the recipient of the Best Paper Award from IEEE ICC 2012, and the Best Paper Runner-Up Award from QShine 2008.

Song Guo (S’02–M’05) received the Ph.D. degree in computer science from the University of Ottawa, Ottawa, ON, Canada.

He is currently a Full Professor at the University of Aizu, Aizu-Wakamatsu, Japan. He has authored or edited 7 books and more than 300 papers in refereed journals and conferences. His research interests include the areas of wireless network, cloud computing, big data, and cyber-physical system.

Prof Guo is a Senior Member of ACM. He is an IEEE Communications Society Distinguished Lecturer. He serves/served on the editorial boards of the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, the IEEE Communications Magazine, Wireless Networks, Wireless Communications and Mobile Computing, and many other major journals. He has been the General or Program Chair or in organizing committees of numerous international conferences.

Kin K. Leung (S’78–M’86–SM’93–F’01) received the B.S. degree from the Chinese University of Hong Kong, Hong Kong, China, in 1980, and the M.S. and Ph.D. degrees from the University of California at Los Angeles, Los Angeles, CA, USA, in 1982 and 1985, respectively.

He joined AT&T Bell Labs, Holmdel, NJ, USA, in 1986, and worked at its successor companies, AT&T Labs and Bell Labs of Lucent Technologies, until 2004. Since then, he has been the Tanaka Chair Professor with the Electrical and Electronic Engineering (EEE), and Computing Departments, Imperial College London, London, U.K. He serves as the Head of the Communications and Signal Processing Group, EEE Department, Imperial College. His research interests include networking, protocols, optimization and modeling issues of wireless broadband, sensor and ad-hoc networks. He also works on multi-antenna and cross-layer designs for the physical layer of these networks.

Prof. Leung serves as a Member (2009–2011) and the Chairman (2012–2015) of the IEEE Fellow Evaluation Committee for Communications Society. He became a Member of Academia Europaea in 2012. He was a Guest Editor for the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (JSAC), the IEEE WIRELESS COMMUNICATIONS, and Mobile Networks and Applications, and as an Editor for the IEEE Journal on Selected Areas in Communications Wireless Series, the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, and the IEEE TRANSACTIONS ON COMMUNICATIONS. He is currently an Editor for the ACM Computing Survey and International Journal on Sensor Networks. He has actively served on many conference committees. He was the recipient of the Distinguished Member of Technical Staff Award from AT&T Bell Labs in 1994, and was a co-recipient of the 1997 Lanchester Prize Honorable Mention Award. He was the recipient of the Royal Society Wolfson Research Merits Award from 2004 to 2009. Along with his coauthors, he was also a recipient of several Best Paper Awards at major conferences.