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Improving the Fairness and the Response Time of
TCP-Vegas

Abstract— Unfairness of the Internet has galvanized nu-
merous studies toward fair allocation of bandwidth. Study
of TCP-Vegas is one of them. TCP-Vegas, although not
perfect, at least enables bandwidth allocation independent
of propagation delay, which is radically different behavior
from that of current Internet. In the current Internet, a
long-delay connection usually receives less throughput than
short-delay connections.

Until now, two necessary conditions have been identified
to make TCP-Vegas achieve fair allocation of bandwidth:
correct estimation of propagation delay and finer control of
window by adopting single threshold rather than two.

In this paper, we propose three more fixes to achieve fair
bandwidth allocation. First, we provide a fix for packet size
independence. Second, we provide a fix regarding the refer-
ence value in the control. Third, we provide a fix for reduc-
ing both the oscillation and the convergence delay. We argue
that fixes of ours and those of previous researchers consti-
tute the necessary and sufficient condition for fair allocation
of bandwidth.

Keywords—TCP, congestion control, TCP-Vegas, fairness,
packet size.

I. INTRODUCTION

TCP is one of the most widespread protocols in the
Internet. TCP is a connection-oriented transport proto-
col that provides reliable delivery service using unreliable
IP network. There are several versions of TCP such as
Tahoe, Reno, and Vegas. Every TCP version except TCP-
Vegas adopts congestion avoidance scheme described in
[1] whose basic idea is slowly increasing the number of
packets in the network until loss occurs and halving it
down when loss occurs. Each version improves perfor-
mance of previous ones by revising behavior during loss
recovery. In contrast, TCP-Vegas tries to gain performance
improvement more fundamentally in that it does not incur
loss because it does not wait for loss in reducing the num-
ber of packets in the network.

The principle of TCP-Vegas is to have per-connection
queue length constant. This allows fair bandwidth alloca-
tion as well as loss prevention. It is well known that con-
nections get the same throughput if all the connection have
the same per-connection queue length.1 Loss is prevented

�
This is the single bottleneck case. For the multiple bottleneck case,

this type of allocation can provide a proportional fairness, instead of
max-min fairness.

with a finite amount of buffer if the number of connection
is bounded. If the connections are too many or the buffer
is not large enough, TCP-Vegas resorts to TCP-Reno-like
lossy behavior, hence TCP-Vegas is always no worse than
TCP-Reno.

We focus on the fairness of TCP-Vegas because its fair-
ness is superior to that of Tahoe and Reno. Tahoe and Reno
are versions of TCP currently dominating the Internet. Un-
der TCP-Reno or Tahoe, a long-delay connection usually
receives less throughput than short-delay connections.

However, even TCP-Vegas has been known to be un-
fair for two reasons [13][11]. First reason is that TCP-
Vegas relies on correct measurement of propagation delay,
which is usually not met. A connection that incorrectly
measures the propagation delay steals more bandwidth. A
connection gets the less correct measurement of propaga-
tion delay as it shares the link with the more other connec-
tions. There has been no effective way2 to enforce correct
measurement of propagation delay. In this paper, we as-
sume that every connection has correct propagation delay
measurement. This may be implemented by giving SYN
packets higher queueing priority than other types of TCP
packets.

Second reason is that TCP-Vegas actually does not try
to make per-connection queue length constant. Instead, it
tries to bound per-connection queue length within a region
marked by two thresholds, � and

�
, which are usually set

as 1 packet and 3 packets respectively. The known solution
of this artifact is to have both thresholds have the same
value, which is adopted in this paper.

This paper shows that Vegas is still unfair even when
the above two problems are solved, because of its depen-
dence on packet size3. In the current Vegas, the connection
with bigger packet gets more bandwidth. We propose three
fixes as a solution.

First, we propose to redefine the thresholds, � and
�

,
which are set equal to each other in this paper, as a byte

�
[11] argued that using single threshold instead of two may solve this

problem by incurring oscillation, which is later disproved by [13]. [9]
mentioned the possibility of expiring fixed-delay measurement without
any further development.�

Precisely, we mean Path MTU(Maximum Transmission Unit) size
when speaking of packet size. MTU is the largest allowable payload
size for link level frame. Path MTU is the least MTU along the forward
path. MTU ranges from 296B of SLIP to 65536B of Hyperchannel.
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count instead of as a packet count. We call the byte count
threshold as the reference. This fix constitutes the core
of our solution. The remaining fixes deal with the perfor-
mance of this first fix.

Our second fix is about choosing the value of the ref-
erence. The first fix alone exhibits a significant depar-
ture from the perfect fairness, if the reference is not large
enough. We show that a higher reference improves the fair-
ness. We can always make the bandwidth allocation fairer
by increasing the reference. However, this comes at the
price of an increase in both the convergence delay and the
buffer requirement.

Our third fix is to reduce the needed reference value
in achieving the same level of fairness. Specifically, we
propose to upgrade the congestion detection formula by
adding a half packet. This improves the fairness when used
under the same reference value, in that it eliminates the
preference of larger-packet connections in the above two
fixes.

Our last fix is to reduce the convergence delay when the
reference value is high. This is a departure from the tra-
ditional window control in that the window change speed
is not necessarily one packet a round. The window may
change either by multiple packets a round or by less than
one packet a round. We argue that this does not cause any
harm on the stability of the congestion control, by provid-
ing a proof.

The rest of this paper is organized as follows. We de-
scribe the problem in Section II. We describe the main fix
in Section III. We show the effect of the value of the ref-
erence in Section IV. We show how to fully eliminate the
packet size dependence by upgrading the congestion de-
tection formula in Section V. In Section VI, we present
a faster window control, which shortens the transient state
without losing the stability. A summary of our work and
future plans is given in Section VII.

II. VEGAS THROUGHPUT IS DEPENDENT ON PACKET

SIZE

We show that TCP-Vegas is unfair because connections
with different packet sizes receive different throughput in
the steady state.

Fig. 2 shows that connection with bigger packet gets
more bandwidth. There are two connections sharing a bot-
tleneck link under the topology of Fig. 1. One connec-
tion has Path MTU of 1500B(limited by Ethernet or PPP),
while the other has Path MTU of 296B(limited by SLIP).
For many graphs in this paper, the legend of the graph
means the packet size, and the vertical axis has no unit
because it is a ratio of two values of the same dimension.

To show the effect of the current subject, we eliminated
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Fig. 1. Simulation Topology
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Fig. 2. Bigger Packet gets More Bandwidth

all the known causes of unfairness. We have made them
know their correct propagation delay. We set two thresh-
olds, � and

�
, equal to two packets.

III. PACKET SIZE INDEPENDENCE

We can obtain much improved fairness by changing the
semantic of the threshold from a packet count to a byte
count. Fig. 3 is when the reference byte count is set to
3kB, which is chosen to be twice as high as the largest
MTU in this simulation setting.

However, this improvement is still not perfect. We
can observe that connection with bigger packet still gets
slightly more bandwidth. We conducted a simulation of
two connections, the Path MTU of one of them being
changed, while that of the other having 296B Path MTU.
The reference byte count was 3000 bytes. Figure 4 shows
that the error is too high to be ignored and is increasing as
the difference in packet size widens.

IV. REDUCING THE ERROR BY RAISING THE

THRESHOLDS

In general, the fairness can be made better by raising the
threshold.

When the reference byte count is raised to 131070 B,
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Fig. 3. Equalizing the Formula in Byte
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Fig. 4. Connection with Larger Packet Gets More Throughput
When Competing with Connection with 296B Packet

which is chosen to be twice as the largest possible MTU,
varying the difference in packet size does not cause differ-
ence of more than six percent in throughput.

However, there are two problems remaining in raising
the reference.

The first problem is that the better treatment to connec-
tions with the larger MTU is all the same, though some-
what mitigated.

The second problem is that raising the reference count
increases both the buffer requirement and the convergence
delay. The increase in queue length is inferred by consid-
ering the reference byte count as the mean queue length.
The increase in the convergence delay is shown in Fig. 6,
where the steady state is reached only after 420 seconds.

The first problem is dealt with in the next section, and
the second problem is dealt with in the section after the
next one.
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Fig. 5. Raising the Reference Byte Count Improves the Fairness
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Fig. 6. Reference Byte Count Raised

V. MAKING THE ERROR INDEPENDENT OF PACKET

SIZE

The results of the previous two sections suggest that the
traditional interpretation of the congestion detection for-
mula may be incorrect. The congestion detection formula
has been known to mean the per-connection queue length.
If the per-connection queue length is all the same through-
out the connections, the connections should receive the
same throughput. However, this is inconsistent with what
the previous two sections have shown.

In this section, we show that the known interpretation of
the congestion detection formula is indeed incorrect. Our
proposed fix is simple and is shown to improve the fair-
ness under the same reference byte count and to eliminate
the preference of larger-packet connections, thus possibly
enabling lowered byte reference count for the same level
of fairness.

The fix is to add one half packet to the congestion detec-
tion formula. We argue that the resulting value means the
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Fig. 7. Failure of Per-connection Queue Length Computation

per-connection queue length. This is because the packet
arriving at the bottleneck queue fails to count itself when
measuring queueing delay.

Figure 7 depicts this phenomenon when per-connection
queue length is two. Just before a packet arrives, an-
other packet of the same connection departs the bottleneck
queue. So every packet sees only one packet in the queue
ahead of itself, although there are always two packets in
the queue.

There is yet another aspect remaining to be clarified: the
figure says that we should add one packet, whereas our fix
is to add a half packet. In fact, as shown by the proof in
the appendix, the ideal fix is to add 	 
 , where � denotes
the packet size, and � is the number of connections. The
reason for not using this ideal fix is that it requires know-
ing the number of connections. Choosing a fixed � results
in both the preference of small-packet connections when
more than � connections share the bottleneck link and the
preference of large-packet connections when less than �
connections share it. We chose ��
�� because of the fol-
lowing two reasons: we want to make it impossible for the
larger-packet connection to get more throughput; we want
to make the queue length error as small as possible. The
first reason suggests using either 1 or 2 as � , and the sec-
ond reason dictates that ��
�� makes the error too large
when the number of connections is large.

Fig. 8 shows that we can improve the fairness from Fig.
3 by adding a half packet even when using a low reference
of 3kB.

This fix can also improve the fairness when using a
higher reference count of 131kB, as shown in Fig. 9. This
figure clearly shows that the fix makes the dependency on
the packet size unobservable when the number of connec-
tions is two.

However, there is a shortcoming in this fix. It requires
the reference count to be greater than half the largest pos-
sible MTU. Otherwise, the connection with the packet
greater than twice the reference count would receive poor
bandwidth, because adding a half packet would always re-
sult in a value above the reference, which in turn forces to
decrease the window.
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Fig. 8. Equalizing the Formula Plus One Half Packet
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Fig. 9. Fairness Improvement by Adding a Half Packet(The
Reference Count is 131kB)

VI. REDUCING BOTH THE OSCILLATION AND THE

CONVERGENCE DELAY

In this section, we present a fast window control scheme
designed to solve the problem of long convergence delay,
which is a consequence of raising the byte reference count.

Our fast window control is to make the rate of window
change proportional to the error, which is defined as the
difference between the reference and the estimate of the
per-connection queue length. The normal Vegas also com-
pares the estimate of the per-connection queue length with
the reference. However, this is only used in determining
the direction of change, and has no influence in the rate
of the window change. The rate of the window change of
the normal Vegas can assume one of the following three:
plus one packet a round, minus one packet a round, or no
window change during a round.

Our fast window control is sometimes slower than the
normal Vegas, thus eliminating the oscillation.
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Fig. 10. After Using the Fast Control from Fig. 6
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Fig. 11. The Fast Control Reduces the Convergence Delay

Figure 10 shows the application of our fast control on
Fig. 6. The fast control reduces the convergence delay
from 390 seconds to 30 seconds.

Figure 11 shows how much the convergence delay is
reduced by our fast control. The simulation was carried
out with two connections, where a connection with a con-
trolled packet size competes with the other whose packet
size is 65535B. The result indicates that, without fast con-
trol, the convergence delay is indirectly proportional to the
smallest MTU, and that the fast control makes the conver-
gence delay almost independent of the MTU size.

We argue that our fast control scheme is stable, based
on the following argument: the fast control is stable if
the normal Vegas is stable regardless of the MTU size.
A small-packet connection changing multiple packets of
window a round is not different from a large-packet con-
nection changing one packet a round.

VII. CONCLUSIONS

Vegas shows much improved fairness than Reno or
Tahoe. Its bandwidth allocation is independent of the prop-
agation delay, whereas Reno or Tahoe give less throughput
to long delay connections.

This improved fairness results from its principle of con-
gestion control: it tries to keep constant number of packets
in the bottleneck queue. In theory, this principle implies
the perfect fairness in throughput.

However, Vegas does not show perfect fairness, because
of some implementation problems. Two such problems
have been identified by previous studies: it does not always
obtain correct measurement of the propagation delay; it
does not actually equate the per-connection queue length
among all the connections.

This paper explains another problem resulting from dif-
ferent path MTU sizes among connections. To solve this
problem, this paper proposed one main fix and three sub-
sidiary fixes. The main fix is that the Vegas should try to
keep constant number of bytes, rather than packets, in the
bottleneck queue. The subsidiary fixes answer the follow-
ing three questions: how many bytes should be kept in the
bottleneck queue; whether the main fix is sufficient; what
the side effect is and how to solve it.

In doing this, we found that the Vegas implementation
has yet another discrepancy from its principle, in an aspect
other than the data unit being packet or byte. We found
that the measurement of the per-connection queue length
is incorrect.

We also proposed an improved window control, which
allows the rate of the window change to be much faster
or much slower than the conventional rate of one packet
a round. A formal proof and a thorough validation on its
stability is our future work.
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APPENDIX

I. THE CONGESTION DETECTION FORMULA DOES

NOT MEAN THE PER-CONNECTION QUEUE

LENGTH

In this section, we explain why the sender under-
estimates its per-connection queue length, and the moti-
vation of our solution. The reason of the under-estimation
is that the queueing delay measurement is under-estimated
and that the queue length is only inferred by the measured
queueing delay.

First, we need to show how the per-connection queue
length is inferred from the queueing delay. This is done
by the Vegas congestion detection formula. Suppose

� 
 is
the beginning of the n-th round. At time

� 
 , the congestion
detection formula is defined as follows:

���������
	���
����
(1)

where the queueing delay is
	������������ � 
������! �"$# �����%�

and the throughput is
�&� ')( *,+.-/1020 ( *,+.- � W(t) is window size

at time t, and �! �"$# ����� is the least of Round-Trip Times
(RTT) until then. We assume �! �"$# ����� 
 	

, where
	

is
the round-trip propagation delay.

������� � 
�� is the average
of the round-trip times experienced by the acknowledg-
ments received during 3 � 
54�6 � � 
2� . The unit of queue length
is that of window used in this formula.

Second, we show a formal argument about the inevitable
under-estimation of the queueing delay. We have already
tried to give an intuitive explanation of this phenomenon,
in Fig. 7. However, readers may not feel assured. This
is driven by the steady-state assumption. Under steady-
state, the aggregate queue length is the same and the per-

connection queue length is the same. Thus if a packet of
size � arrives, a packet of the same size must have left
just before. Hence the larger the packet, the less bytes of
queue are ahead of it in the queue. From this reason, we
can say that the queueing delay is more under-estimated
with larger packet size. Formally, the measured queue-
ing delay is a decreasing function of the connection

�
’s

packet size �87 : 9�: 4 	<;= , where the aggregate queue length
is >@? �BA >C7 , >C7 is the actual per-connection queue
length of connection

�
, and the bottleneck bandwidth isD

. Thus, the per-connection queue length of connection
�

is under-estimated by E= �F7 � if we combine this and the last
paragraphs. If the bandwidth is fairly allocated and there
are � connections, this amount equals 	<;
 � because

� 
 =

HG

Using the above argument, we can infer that each con-
nection should consider its amount of under-estimation in
choosing the target per-connection queue length, in order
to have the same per-connection queue length for every
connection. When the per-connection queue lengths are
actually the same, it is natural that the connection with
bigger packet sees lower estimated queue length. How-
ever, the current Vegas implementation tries to equate
the estimated queue length rather than the actual queue
length. Our proposal is that a connection with bigger
packet should set its target queue length lower. More
specifically, when there are � connections, connection

�
should set its target as  JI KML2 N� 	<;
OG However, the number
of connections � is not available, thus a conservative ap-
proach is to set the target as  JI KML2 P� 	<;Q G With this scheme,
no connection with bigger packet can steal the bandwidth.

This phenomenon is problematic when the packet size
is heterogeneous. Note that our proposed scheme does not
cause any harm when every packet size is the same.


