This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

A Hybrid Query Tree Protocol for Tag Collision
Arbitration in RFID systems

Jiho Ryu, Hojin Lee, Yongho Seok, Taekyoung Kwon and Yanghee Choi
School of Computer Science and Engineering
Seoul National University, Seoul, Korea
Email: {jhryu, lumiere, yhseok, tk, yhchoi} @mmlab.snu.ac.kr

Abstract—In this paper, we propose a hybrid query tree
protocol that combines a tree based query protocol with a slotted
backoff mechanism. The proposed protocol decreases the average
identification delay by reducing collisions and idle time. To reduce
collisions, we use a 4-ary query tree instead of a binary query tree.
To reduce idle time, we introduce a slotted backoff mechanism
to reduce the number of unnecessary query commands. For
static scenarios of tags, we extended the proposed protocol by
adopting two phases. First, in leaf query phase for existing tags,
the interrogator queries leaf-nodes directly to reuse query strings
in the previous session. Second, in root query phase for new
arriving tags, the interrogator starts the query process from the
root-node. Simulation reveals that the proposed protocol achieves
lower identification delay than existing tag collision arbitration
protocols regardless of whether tags are mobile or not.

I. INTRODUCTION

The Radio Frequency IDentification (RFID) system is a new
emerging technology to identify a label which is attached to
a product. To make RFID systems practical, the cost of RFID
tag is very important. And, an interrogator should identify a
number of tags in the reading range in a short time. The RFID
tags can be classified as Passive, Semi-passive, and Active tags.
Among them, a passive tag is charged by the interrogator’s
electromagnetic waves, instead of using an internal power
supply. Thus, the passive tag is the cheapest solution for RFID
systems and we focus on passive tags in this paper. In the
following, we just use a fag instead of a passive tag.

The most important role of an interrogator is identifying
tags (or reading IDs of tags) in its reading range. After that,
the interrogator can instruct tags to carry out such as a read
or write command. And a tag is able to perform reading
or writing when the interrogator sends the command. Since
the tag has no carrier sense ability, tags’ responses can be
collided. Depending on the number of tags respond to the
interrogator, there are three cases at communication between
tag and interrogator.

e Collision cycle: Number of tags that respond to the
interrogator is more than one. The interrogator cannot
identify the ID of tags.

o Idle cycle: No response. It is a waste that should be
reduced.

o Success cycle : Exactly one tag responds to the interroga-
tor. The interrogator can identify the ID of the tag.

The performance of RFID system depends on the speed
of identifying a number of tags. For this purpose, many 7ag

Anti-Collision protocols [1], [2], [3], [4], [5], [6], [7] are
proposed to reduce the number of tag collisions. For reducing
the implementation cost of tags, a carrier sensing mechanism
such as CSMA/CA protocol cannot be used in tags. At large,
there are two types of tag anti-collision protocols, ALOHA-
[8] and Tree-based protocols. ALOHA-based protocols can
reduce the collision probability, but they have the tag starvation
problem that a particular tag may not be identified for a long
time. Tree-based protocols do not cause the tag starvation
problem, but they have relatively long identification delay.
Therefore, we consider tree-based protocols and seek to reduce
the identification delay. Collision resolution algorithms of tree-
based protocols are very similar to the binary search algorithm.
After each collision, they split the set of tags into two subsets
and attempt to recognize the subsets one by one. Binary tree
splitting (BTS) protocol [1] and query tree (QT) protocol [2]
are the most popular algorithms in the tree-based approach.
In the BTS protocol, each tag needs a random generation
function to get a random binary number and maintains a
counter to arbitrate the schedule of transmission of tags.
Thus, the BTS protocol minimizes the number of messages
sent by an interrogator compared to the QT protocol but its
implementation has more complexity. Hence, we propose to
extend the QT protocol by reducing idle and collision cycles.
The QT protocol is the most early and representative tag
collision arbitration protocol. In this protocol, each tag corre-
sponds to the leaf-node of a full binary-tree and each node
of the tree matches a query command of an interrogator. The
interrogator starts a query process with an initial string O or
1. Assume that the query always investigates O first. When
the interrogator sends a query with a string, p, if responses
of tags (whose IDs from the most significant bit match p)
are collided, the interrogator sends query again with a 1-bit
longer string, p0, in next cycles. After all the tags with pO
prefixes are recognized, the interrogator will send query with
string pl. Thus, internal-nodes of the full binary-tree will be
collision cycles and leaf-nodes will be idle or success cycles.
This QT protocol, to our best knowledge, is the very first tag
collision arbitration scheme based on tree structure. It does
not need any memory at tags, and its operation is simple.
This paper proposes a hybrid tag anti-collision protocol
that is extended from the QT protocol. The proposed hybrid
query tree (HQT) protocol has two features: a 4-ary search
tree mechanism and a slotted backoff mechanism. First, the

1-4244-0353-7/07/$25.00 ©2007 IEEE
5981

Authorized licensed use limited to: Seoul National University. Downloaded on February 10, 2009 at 23:44 from IEEE Xplore. Restrictions apply.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

interrogator carries out the 4-ary search tree mechanism. In the
4-ary search tree mechanism, a collided query string next time
will be extended by 2-bits unlike of 1-bit in the QT protocol.
In this way, we can reduce a number of collisions substantially
[9]; that is, more efficient query is possible. Likewise, if we
extend the collided query string 3- or 4-bits (8- or 16-ary tree,
respectively) instead of 2-bits (4-ary tree), we can reduce even
more collisions, but at the same time idle cycles will be also
increased. In the literature [10], the authors showed that a 3-
ary tree is optimal and in a g-ary tree, if q is greater than 3, the
performance (tag reading rate) is decreased as q is increased.
Thus, we select a 4-ary tree since a 3-ary tree is impossible
in the query tree protocol.

Second, a tag carries out the slotted backoff mechanism
before replying to an interrogator. When the 4-ary search
tree mechanism is used, the number of collisions will be
reduced but the idle cycles will be increased. Thus, we propose
to reduce idle cycles by incorporating the slotted backoff
mechanism. When a tag responds to an interrogator, it sets
its backoff timer using a part of its ID. If there is a collision
(multiple tags respond), the interrogator can partially deduce
how the IDs of the tags are distributed and potentially reduce
unnecessary queries.

Lastly, we also consider the static scenarios of tags. The
static scenario means there are two types of tags: new arriving
tags in an interrogator’s reading range and existing tags which
have stayed in the reading range. Adaptive Query Splitting
(AQS) [3] is the most recent study on the tag collision arbitra-
tion mechanism based on the QT protocol. If the interrogator
already knows the IDs of tags (or query strings of tags)
which are obtained by the previous queries, it will be stored
in a candidate queue and this information can be used to
efficiently schedule the next queries. So the more efficient
query process is possible with the static scenarios. But, to
guarantee the recognition of all tags (including new arriving
tags), it needs to query for many idle cycles even though
there are no new arriving tags. Thus, we extend the AQS
protocol and propose a Leaf-Root Query mechanism. In the
leaf-root query mechanism, we divide the query process into
two phases: leaf query phase and root query phase. In the leaf
query phase, we directly query tags using the history of query
strings. Here, we does not query for idle cycles but only for
success cycles. In the root query phase, we query new arriving
tags separately from existing tags which has not moved out
the reading range of the interrogator.

This paper is organized as follows. First, we explain the
proposed hybrid query tree protocol in Section II. For mobile
RFID systems, we extend the hybrid query tree protocol in
Section III. Finally, in Section IV, we evaluate our proposed
protocol by using NS-2 simulator, and then concluding re-
marks will be given in Section V.

II. HYBRID QUERY TREE PROTOCOL

In this section, we introduce our query tree based protocol
with the slotted backoff based response technique. The HQT
protocol can decrease the number of collisions using a 4-ary

search tree mechanism. However, the drawback of the 4-ary
search tree mechanism is the increasing number of idle cycles.
We need to reduce the number of idle cycles and for this
purpose, we introduce the slotted backoff mechanism.

@ @@@@Q

0010 0111

@@@@d@

0010 OTT1 1000 1010

1010 T641

Q

(not a query)

1000 1010

Success cyele
(2) (b)

® Collision cycle

Fig. 1. (a) Query tree protocol (binary search tree), (b) 4-ary search tree
algorithm. Using the 4-ary search tree algorithm, collision cycles will be
decreased but idle cycles will be increased.

A. 4-ary Search Tree Mechanism

The QT protocol splits the tags into two groups when
a collision happens. It expands a collided query string by
appending a single bit (0 or 1) at the end of the string, and
sends a query command again with the new string. Figure 1
(a) illustrates how the QT protocol operates.

In HQT, we suggest a 4-ary search tree mechanism instead
of binary search. In this mechanism, if a collision happens
in query process, the collided query string will be expanded
2-bits instead of 1-bit. Figure 1 (b) shows the 4-ary search
tree mechanism. Using the 4-ary search tree mechanism, the
number of collision cycles will be decreased but the number
of idle cycles will be increased as a side-effect. Note that the
internal-nodes in the query-tree correspond to collision cycles.
Let us assume there are n tags to recognize, then a full m-ary
query tree (m is 2 or 4) will be created for n tags. According
to [9], the number of internal-nodes (the number of collision
cycles) is calculated by:

« binary search tree algorithm : n + kg — 1
e 4-ary search tree algorithm : %

Here, k,, is the number of idle cycles in a full m-ary tree,
and is decided by the distribution of tag IDs. The k,, is
increased as m is increased. At best, the number of collisions
for the 4-ary search tree mechanism can be decreased to almost
one third of that of the binary search tree algorithm. But, it
completely depends on the distribution of tag IDs.

B. Slotted Backoff Tag Response Mechanism

In this section, we explain the proposed tag response
mechanism based on the slotted backoff mechanism. In the
QT protocol, if a query string from the interrogator matches
the prefix of the tag ID, then the tag immediately responds to
an interrogator. However, in the HQT protocol, the tag should

5982

Authorized licensed use limited to: Seoul National University. Downloaded on February 10, 2009 at 23:44 from IEEE Xplore. Restrictions apply.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

A\ 4

£—Channel busy duration—>
@ Query: 0101 ‘ ‘ ‘
1 slot (20us) é———
Interrggator
@ Response
Tag 2910100

. 1]
a&QO

Response
Tag : 010110

v

v

\

1T

‘ ‘ Response
\

Fig. 2. Operation of the proposed slotted backoff mechanism

—
o

A\ 4

defer its response by a backoff time. The backoff time of each
tag is determined from the 2-bits which follow the prefix of
tag ID identical to the query string. For example, tags do not
defer their response if it is ‘00’. If it is ‘01°, tags will defer 1
backoff time slot until they respond to the interrogator. In other
words, when the tags respond to the interrogator, they should
set the backoff timer using the very next 2-bits of the prefix
of the tag ID which are match the query string. For example,
Figure 2, the interrogator sends a query with string ‘0101,
and suppose that there are 3 tags which have following tag ID:
‘010100, ‘010101°, and ‘010110°. In this case, each tag sets
its backoff time to 0, 1, or 2 and responds to the interrogator
when their backoff time expires. For the implementation, a tag
needs only one timer. The reason why we apply the slotted
backoff scheme in the tag response mechanism is to reduce
the unnecessary idle cycles which in turn reduces the number
of query messages.

C. Query Reducing Mechanism

How can we reduce the number of the idle cycles? When
a collision occurs with the slotted backoff tag response
mechanism, an interrogator can partially detect to which sub-
trees tags belong. We assume that interrogators figure out the
transmission time of a response from the knowledge of the bit
rate, length of tag’s response (length of tag ID), and parameters
of the RFID system.

After an interrogator sends the query command, it senses
a channel in order to know whether the collision happens or
not. If the collision happens, the interrogator can know a busy
duration which will be used to figure out the range of bits
that tags used for their backoff process. Let us look again
the above example in Figure 2. In this case, each tag sets
their backoff time to 0, 1, and 2, respectively and responds to
the interrogator. The interrogator needs to obtain two values
to infer the range of backoff time, a busy duration and a
busy starting time. With these two values, the interrogator
can estimate the minimum backoff time and the maximum
backoff time of the collided tags. Therefore, the interrogator
does not need to send corresponding to the bits of non-existing
tags. Again, in the above example, the interrogator can detect
there are one or more tags which have ‘00’ bits because it
detects that the channel becomes immediately busy. After that,
it also senses the channel to be busy during 2 slot times
+ (length of tag’s response/bit rate). Here, we can ignore
the propagation time because it is very short time. Thus, the

interrogator figures out the last response tags use ‘10’ bits
for their backoff time. In this way, the interrogator chooses
its new query strings as ‘010100°, ‘010101°’, and ‘010110’
after ‘0101°. The interrogator does not send the ‘010111’
query string (unnecessary idle cycle is removed) and hence
the number of queries is decreased than the QT protocol. Note
that this scheme cannot detect all idle cycles. For example, in
Figure 2, if there are no tags of ID ‘010101, the interrogator
still sends a query with string ‘010101°.

Table I and II compare operations of the QT protocol and
proposed HQT protocol for the example in Figure 1. As you
can see, our proposed protocol reduces the number of query
commands as well as the number of collisions. More extensive
evaluations will be discussed in Section IV.

TABLE I
PROCESS OF QUERY TREE PROTOCOL

Step | Query string | Query result | Query queue
1 0 collision 1,00,01
2 1 collision 00,01,10,11
3 00 success 01,10,11
4 01 success 10,11
5 10 collision 11,100,101
6 11 idle 100,101
7 100 success 101
8 101 success empty
TABLE II

PROCESS OF PROPOSED HYBRID QUERY TREE PROTOCOL

Step | Query string | Query result | Query queue
1 empty string collision 00,01,10
2 00 success 01,10
3 01 success 10
4 10 collision 1000,1001,1010
5 1000 success 1001,1010
6 1001 idle 1010
7 1010 success empty

I1I.

In this section, we present our extended hybrid query tree
protocol that considers static scenarios of tags. When the tags
have a very low mobility, i.e, their location is rarely changed,
an interrogator may identify almost the same set of tags after
the first query process. Thus, if the interrogator keeps the list
of the query strings corresponding to success cycles, it can
be used to fasten the next query process. This idea is already
introduced in the AQS protocol, but in AQS, every leaf-node
of the tree (idle cycles are also included) will be queried. It
will waste resources when there are no new arriving tags.

In our proposed protocol, the query process is divided into
two phases, for already existing tags and for new arriving ones.
First, in leaf query phase for existing tags, the interrogator
queries leaf-nodes directly to use keeping query strings except
idle cycles. Second, in root query phase for new arriving tags,
the interrogator starts query process from the root-node. Thus
we call our extended scheme as Leaf-Root Query (LRQ).

EXTENDED HYBRID QUERY TREE PROTOCOL

A. Leaf-Root Query Mechanism

Figure 3 shows the AQS protocol and the HQT + LRQ
protocol. The basic idea is similar to the AQS protocol, but
our scheme does not store query strings corresponding to idle

5983

Authorized licensed use limited to: Seoul National University. Downloaded on February 10, 2009 at 23:44 from IEEE Xplore. Restrictions apply.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Total 4 queries + O e eyele
Toot query

(®)

Fig. 3. (a) AQS and (b) HQT + Leaf-Root Query. The unnecessary idle
cycles are reduced by introducing two query phases: leaf query phase and
root query phase. In our protocol, new arriving tags are recognized in root
query phase by using LPM mechanism.

cycles. Only the leaf-nodes corresponding to success cycles
will be directly queried (leaf query phase). As you see in
Figure 3, HQT + LRQ sends fewer query messages than
AQS. If some existing tags move out of the reading range,
some idle cycles will happen. For new arriving tags, the query
command is initiated and sent again from the root-node (root
query phase). In this way, we make only the new arriving tags
contend for responding to interrogator.

Note that even if we apply the current LRQ mechanism
to the HQT protocol, the collision may occur between new
arriving tags and already existing ones, since new tags’ IDs
may be located as a sub-tree of a leaf-node (success cycle).
To avoid this problem, we also introduce a Longest Prefix
Matching (LPM) algorithm in the LRQ mechanism.

B. Longest Prefix Matching Algorithm

The key idea of LRQ is that the tags which are already
queried in leaf query phase do not respond at root query
phase to decrease the total identification delay by reducing
collisions. For this purpose, each tag maintains the longest
length of matching string (Is), i.e, the longest length of the
query string that matched the prefix of ID so far. The initial
value of Is is 0. Whenever the tag receives a query command,
it compares Is to the length of the current query string. If Is is
longer than the length of query string then the tag ignores this
query command. If Is is 2-bits shorter (Since the query string
is always increased by 2-bits whenever collision occurs.) than
or equal to the length of the current query string, then tag
checks if its prefix of the ID matches the query string. Thus,
tags which responded at leaf query phase will not respond to
the interrogator at root query phase because, in general, Is of
tags in leaf query phase may be much longer than the length of
query strings in root query phase. And new arriving tags will
not respond to the interrogator at leaf query phase, because
they will initialize their Is value when an interrogator’s ID in
the query command is different from the old one.

Table III and IV compare operations of the AQS protocol
and extended HQT protocol for the example in Figure 3. As
you see, the proposed protocol reduces the number of query
commands because idle cycles are decreased.

TABLE III
PROCESS OF THE AQS PROTOCOL
Step | Query string | Query result | Query queue
1 00 idle 010,011,10,1100,1101,111
2 010 success 011,10,1100,1101,111
3 011 success 10,1100,1101,111
4 10 idle 1100,1101,111
. 5 1100 success 1101,111
‘T 6 1101 success 111
N 7 111 idle 00,010,011,10,1100,1101,111
(7 Removed e eyt TABLE IV
g PROCESS OF EXTENDED HQT PROTOCOL
Step | Query string Query result | Query queue
1 0101 success 0110, 1100, 1101
2 0110 success 1100, 1101
3 1100 success 1101
4 1101 success empty
5 empty (root query) idle 0101, 0110, 1100, 1101

IV. PERFORMANCE EVALUATION

We use the NS-2 simulator to evaluate our proposed proto-
col. We also evaluate the QT protocol and the AQS protocol
for comparison purposes. The RFID system network in this
simulation consists of one interrogator and n tags to recognize;
n varies from 25 to 200. Each tag has a unique ID of 128
bits long, and we assume all tags are in the reading range of
the interrogator when tags without mobility scenario (static
scenario). Mobility scenario will be described later. The size
of a query command and responses of tags are 128 bits each.
Both the query and tag’s responses are transmitted by the same
transmission rate, 128Kbps [11]. One backoff time slot is set
to 20us and the idle cycle is set to 80us (20us + maximum
time slot(3)) + query transmission time [11] in our protocol
and 20us + query transmission time in others. We do not
consider frame errors due to the link condition. We compare
three performance metrics in 2 different scenarios: average
identification delay, number of collision cycles, and number
of idle cycles.

A. Scenario 1: First query process - without mobility

In this scenario, there are no information of query strings in
the interrogator and we assume there are no new arriving tags
within this query process. The interrogator should identify all
tags starting with the initial query string (0 or 1 in QT and
empty in HQT) and expanding the query string step by step.

TABLE V
RESULTS OF EACH PROTOCOL WITH 200 TAGS IN SCENARIO 1
Identification Number of Number of
Protocol delay collision cycles | idle cycles | Efficiency
binary QT 1.06 sec 288.1 90.1 -
4-ary QT 0.92 sec 143.9 235.1 13.1%
HQT 0.77 sec 144.9 62.8 27.6%

We compare binary QT protocol, 4-ary QT protocol, and
HQT protocol. Each simulation is repeated 20 times for each
number of tags: 25, 50, 75, 100, 125, 150, 175, and 200. Figure
4(c) shows the number of collision cycles of each protocol.
Both the 4-ary QT protocol and HQT reduce the number of
collision cycles since both of them use the 4-ary tree algorithm
instead of binary tree algorithm. Average identification delays,

5984

Authorized licensed use limited to: Seoul National University. Downloaded on February 10, 2009 at 23:44 from IEEE Xplore. Restrictions apply.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

1.6 e ! 600
binary QT ——

1.4} 4-ary QT = B 550 -

HQT 500

450
400
350
300

Average identification delay
o
®

Average number of idle cycles

350

T T T
binary QT —+—
4-ary QT —=—

300 HOT e]

‘ binar‘y QT A
4-ary QT -——s— 7]
HQT e

25 50 75 100 125 150 175 200
Number of Tags

(a) Identification delay

Fig. 4.
graphs form a linear line.

in Figure 4(a), of both the 4-ary QT and the HQT protocols are
lower than that of binary QT. But, the number of idle cycles,
in Figure 4(b), of the 4-ary QT protocol is much larger than
that of binary QT protocol even though the HQT protocol
reduces the number of idle cycles less than that of binary QT
protocol. Hence, the identification delay of the HQT protocol
is the lowest in this scenario.

Table V shows average value of output of 20 simulations
only with 200 tags due to space limit. Here, efficiency means
how faster identification is possible compared to the binary QT
protocol. You can expect the other cases because the results
show linear performance according to Figure 4. Since HQT
starts a query process with empty string, there are just one
more collision cycle compared to 4-ary QT !. In the case of
the 4-ary QT protocol, it decreases the number of collision
cycles to 50% of binary QT protocol. But, the number of
idle cycles is increased by 150% than that of the binary QT
protocol. But in the HQT protocol case, the number of idle
cycles is also decreased to 68% of binary QT protocol, thus
the HQT protocol can reduce the overall identification delay
by 27.6%.

B. Scenario 2: Mobility scenario - Static tags with new tags

In this scenario, there are some moving tags, thus idle cycles
are increased and collision cycles will occur more because
some tags are moved into the interrogator’s reading range. We
setup the scenario that 10% and 50% of tags moved out and
moved in this interrogator’s reading range. The number of tags
to recognize is not changed since we make the the number
of tags moved in equal to the number of tags moved out.
We compare binary QT protocol, AQS protocol, and extended
HQT protocol. Each simulation is also repeated 20 times for
each number of tags.

Figures 5 and 6 show 3 measurement results of each
protocol with 10% and 50% mobility respectively. In case

The reason why HQT starts the query process with empty string is that
it can be useful when there are no new tags (save 3 idle cycles). Even when
there are new tags; the first query with empty string may make collision,
HQT may be able to reduce unnecessary queries due to the slotted backoff
mechanism.

Number of Tags

(b) Number of idle cycles

Average number of collision cycles

25 50 75 100 125 150 175 200
Number of Tags

(c) Number of collision cycles

Scenario 1: Static tags only. There are 3 metrics, identification delay, idle cycles, and collision cycles with 3 different protocols. As you see, all

of binary QT protocol, mobility of tags does not influence
performances since the QT protocol does not use query string
obtained by prior query process, thus mobility of tags is
insignificant to the QT protocol. Hence, its results are similar
to those of scenario 1 in both 10% and 50% mobility. But in
the case of the AQS protocol, mobility of tags has a substantial
influence. Similar to Figures 5(b) and 6(b), the number of idle
cycles are increased substantially as mobility of tags increased.
Thus, as Figure 6(a) shows, there is little difference between
the AQS protocol and the QT protocol in terms of average
identification delay with 50% mobility.

TABLE VI
RESULTS OF EACH PROTOCOL WITH 200 TAGS IN SCENARIO 2(50%)
Identification Number of Number of
Protocol delay collision cycles | idle cycles | Efficiency
AQS 1.05 sec 54.9 532.8 -
HQT 0.74 sec 83.5 120.4 29.5%

As Figures 5(a) and 6(a) show, the extended HQT protocol
achieves less identification delay than the QT protocol and the
AQS protocol. In Figures 5(c) and 6(c), the number of collision
cycles of extended HQT is increased as the mobility of tags
increased even faster than that of the AQS protocol. But the
extended HQT protocol reduces many idle cycles significantly,
compared to the AQS protocol in Figures 5(b) and 6(b), the
overall identification delay is lower than that of both the QT
and the AQS protocols. Results of 50% mobility with 200
tags are summarized in Table VI. The extended HQT protocol
makes more collisions than the AQS protocol. Because if there
are new arriving tags, it starts the query process from the
root-node thus; more collisions are possible since the AQS
protocol starts query process from the internal-node. However,
the extended HQT protocol obtains almost 30% performance
improvement over the AQS protocol because there are too
many idle cycles at the AQS protocol.

V. CONCLUSION

In this work, we propose a new tag collision arbitration
protocol, hybrid query tree (HQT), that combines the query
tree based protocol with a slotted backoff mechanism. We
use a 4-ary query tree instead of a binary query tree for

5985

Authorized licensed use limited to: Seoul National University. Downloaded on February 10, 2009 at 23:44 from IEEE Xplore. Restrictions apply.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

n
1.6 : : : — : w 600 : : : — : S 350 : : : — :

% binary QT —— o binary QT —— (; binary QT ——
B AQS ~e- o %80T 2Qs e | [BQS e
% : extended HQT - S« 500 F extended HQT -2 5 300 | extended HQT -2]
g 1.2 450 o
S et @ 250 f

T 400 [
3 w 350 9 200
H o o.8 . 300¢ -
g 0 © 150t
] 2 250
,g 0.6 £ E
- 3 200 —
il 151 ,.g

o 100

v 0.4 o 150 f e 3
g 3 o =

o 100 r -
§ o0.2f & e & 0L

o L o
> 9 s0p - ©
< 14 = — I 2 - [R P S S

0 0 : n . . g e # ; i . A
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200 < 25 50 75 100 125 150 175 200

Number of Tags

(a) Identification delay

Fig. 5.

Average identification delay
o
®

' binar‘y QT LA
AQS e |
extended HQT -

25 50 75
Number of Tags

(a) Identification delay

Average number of idle cycles

Number of Tags

(b) Number of idle cycles

' binafy QT A
AQS e
extended HQT 4"

Number of Tags

(b) Number of idle cycles

Average number of collision cycles

Number of Tags

(c) Number of collision cycles

Scenario 2: 10% mobility. As you see, performance of the QT protocol is similar to that of scenario 1.

' binar‘y QT A
AQS e
extended HQT -~ }

Number of Tags

(c) Number of collision cycles

Fig. 6.
performance in this scenario compared to the QT protocol.

reducing the number of collisions between tags. To decrease
an additional idle cycles, the slotted backoff mechanism is also
introduced. For static scenarios of tags, we extended the HQT
protocol by the leaf-root query and the longest prefix matching
algorithm. Separating a query process of new arriving tags
from a query process of existing tags, we allow an interrogator
to store much less query strings than the AQS protocol and
can save the overall identification delay. In our extended HQT
protocol, each tag should maintain the backoff timer, the
longest length of the query string that matches the prefix of ID,
and the interrogator’s ID and defer its response until its backoff
timer expires. This complexity overhead would be comparable
to that of the BTS protocol. Simulation results show that the
proposed protocol achieves less identification delay than both
the QT protocol and the AQS protocol. Our future work will
include an analysis of the HQT protocol and consider other
application scenarios of RFID systems.

VI. ACKNOWLEDGMENT

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

Scenario 2: 50% mobility. The HQT protocol surpasses performance of the both QT and AQS protocols. The AQS protocol does not show good

REFERENCES

J. 1. Capetanakis, “Tree algorithms for packet broadcast channels,” in
IEEE Trans. Inform. Theory, vol. 25, no. 4, pp. 505-515, September
1979.

C. Law, K. Lee, and K.-Y. Siu, “Efficient Memoryless Protocol for Tag
Identification.” in International Workshop on Discrete Algorithms and
Methods for Mobile Computing and Communications, August 2000.

J. Myung and W. LEE, “Adaptive Splitting Protocols for RFID Tag
Collision Arbitration.” in ACM Mobihoc, May 2006.

H. Vogt, “Efficient object identification with passive RFID tags,” in
International Conference on Pervasive Computing, April 2002.

S. Lee, S.D. Joo, and C.W. Lee, “An enhanced dynamic framed slotted
aloha algorithm for RFID tag identification,” in ACM Mobiquitos, July
2005.

Maurizio A. Bonuccelli, Francesca Lonetti, and Francesca Martelli,
“Tree Slotted Aloha: a New Protocol for Tag Identification in RFID
Networks,” in IEEE WoWMoM, June 2006.

F. Zhou, C. Chen, D. Jin, C. Huang, and H. Min, “Evaluating and opti-
mizing power consumption of anti-collision protocols for applications in
RFID systems,” in International Symposium on Low Power Electronics
and Design, August 2004.

N. Abramson, “The Aloha system - another alternative for computer
communications,” in AFIPS Conference Proceedings, vol. 36, pp. 295-
298, 1970.

K. Rosen, “Discrete Mathematics and Its Applications,” 5th edition,
McGraw-Hill.

PMathys and PFlajolet, “Q-ary collision resolution algorithms in
random-access systems with free or blocked channel access,” in IEEE
Trans. Inform. Theory, vol. 31, no. 4, pp. 217-243, March 1985.
“EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF
RFID Protocol for Communications at §60MHz-960MHz Version 1.0.9,”

[10]
This work was supported in part by the Brain Korea 21
project of the Ministry of Education, 2006, Korea. The ICT at [1q;
Seoul National University provides research facilities for this
study. EPCglobal, January 2005.
5986

Authorized licensed use limited to: Seoul National University. Downloaded on February 10, 2009 at 23:44 from IEEE Xplore. Restrictions apply.

