가 **DiffServ CDMA Network** jchkim@mmlab.snu.ac.kr⁰, yhchoi@snu.ac.kr Performance Evaluation of CDMA Network with DiffServ Jae-Cheol Kim⁰ Yang-Hee Choi Seoul National University Circuit Switching Fully Packet Switching Channel Utilization Model 가 . DiffServ Simulation 1. Introduction **2.1 CDMA** CDMA (Mobile Communication) , 2.5 Communication Termianl ΙP Node All IP Environment 2 All IP 가 Circuit Switching **CDMA** Forward Channel Reverse Channel 가 , 가 2.2 Forward Channel Forward Channel (Base station) (Mobile All IP , CDMA Network Station) Channel Channel IP Packet Voice Channel Data Channel Packet Data • Pilot Channel(1): Packet Voice . W0 Pilot Channel Channel DiffServ • Sync Channel(1): W32 1 DiffServ Network Infrastructure Paging channel • Paging Channel(7): 가

100%

2. CDMA Network Channel

Utilization Model

가 .

가

• Traffic Channel (55):

2.3 Reverse Channel

Reverse Channel
Channel
,
Access Channel:
,
,
,
,
,
4.8Kbps

Traffic Channel:
7
7
7

3. Simulation Model

Edge Router가 Base Station Wired CDMA Network Core Router Diffserv , Router RED 10mbps . Wired Router 5ms link latency 2mbps 5ms link latency . Packet Size Voice 50 byte 1000byte

1 Simulation Topology with Diffserv

ns-2 , ns-2
Differentiated Services Mobile Network
. DiffServ
Packet Drop Ratio Jitter .

3.1 Model Without Diffsery

CDMA Network Circuit
Switching 7 , Voice Channel Data Channel
Voice Quality
Model Voice Quality
Link Bandwidth 8:2(Voice:Data)

3.2 With Diffserv

Bandwidth Voice, Data Diffserv Bandwidth Traffic 8:2(Voice:Data) . Diffserv Service 4 (DS Code : 10, 11, 20, 21) Level . Overloaded Traffic 가 . Normal Operation Quality CDMA Network . Link Latency **CDMA** Channel Modelling 가

4. Evaluation of Simulation

4.1 Packet Drop Ratio

Packet Drop Ratio . Voice Packet

Quality Packet Drop Ratio

Total Packets	Dropped Packets	Drop Ratio
79989	20321	28.9 %

Drop Ratio Diffserv 9.5 %
, Edge Router

CodePoint 11 (10, 20, 21), Drop Ratio7† 6.2%
, . CodePoint 11

Traffic 62% 7† 7† 80% Voice
Packet , Voice Packet
SLA(Service Level Agreement) , Voice
Quality .

СР	Total Packets	Dropped Packets	Drop Ratio
All	79989	29951	37.4 %
10	10008	121	1.2 %
11	29986	24248	80.8 %
20	10008	0	0 %
21	29987	2983	9.9 %

2 Diffserv

Packet Drop Ratio

Diffserv가

Jitter	Voice	Quality	
Circuit Sv	vitching Mode	Jitter	가
	, All IP	Packet	Packet
routing	가	, router	Jitter가
가			
Diffserv		Packet Jitter	0.16ms .

3 Diffserv Diffserv jitter가 CP 가

СР	Jitter
All	0.19
10	0.05
11	0.22
20	0.02
21	0.09

3 Diffserv Jitter

가 CodePoint 11 Packet Drop Ratio Jitter가 Jitter가 3

Hop

5. Conclusion and Future Work

All IP 가 Voice

Quality

가

Diffserv

ns-2 Simulator Diffserv **CDMA** Packet Diffsery CDMA Packet Packet Drop Ratio Jitter , Diffserv , Service Level 가 Packet Diffserv

(Topology) Wired Network(Diffserv

Network) topology

가

All IP **CDMA** Voice Quality

References

- [1] Kwandoh Cho and Jongha Ko, Performance Evaluation of the IEEE 802.16.1 MAC Protocol According to the Structure of a MAP Message, CSCC '01
- [2] Samir R. Das and Rimli Sengupt, Comparative Performance Evaluation of Routing Protocols for Mobile, Ad hoc

http://www.cs.washington.edu/homes/rimli/papers/manet.pdf

- [3] Ian F. Akyildiz and Inwhee Joe, A slotted CDMA Protocol with BER Scheduling for Wireless Multimedia Networks, IEEE Transactions on Networking, Vol.7, No.2, April, 1999
- [4] Zesong Di and H.T. Mouftah, Performance Evaluation of Per-Hop Forwarding Behaviors in the Diffserv Internet, Proceedings of ISCC 2000
- [5] Shriram Sarvotham, Rudolf Riedi, and Richard Baraniuk, Connection-level Analysis and Modeling of Network Traffic. , http://www.icir.org/vern/imw2001-papers/81.ps.gz
- [6] Balachander Krishnamurthy, Jia Wang and Yinglian Xie, Early Measurements of a Cluster-based Architecture for P2P Systems, http://www.icir.org/vern/imw2001-papers/29.ps.gz
- [7] Supratik Bhattacharyya, Christophe Diot, Jorjeta Jetcheva, and Nina Taft, Pop-Level and Access-Link-Level Traffic Dynamics in a Tier-1 POP. http://www.icir.org/vern/imw2001-papers/58.ps.gz

[8] Charles D. Cranor, Emden Gansner, Balachander Krishnamurthy, and Oliver Spatscheck, Characterizing Large DNS Traces Using Graphs.,

http://www.icir.org/vern/imw2001-papers/28.ps.gz

[9] Paul Barford and David Plonka, Characteristics of Network Traffic Flow Anomalies., http://www.icir.org/vern/imw2001-papers/47.pdf