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Abstract—Software-defined networking (SDN) renovates tra-
ditional networking systems by replacing a distributed, per-switch
control plane with a (logically) centralized one. To design a
scalable, highly available SDN control plane, it is inevitable to
disseminate the network state to multiple instances horizontally
by using measures like replication and partitioning. However,
some recent studies reported that it is not sufficient to cover a
large scale network in a purely horizontal manner. In this paper,
we propose FRACTAL, a framework for recursive abstraction of
SDN control-plane, to address this problem. In FRACTAL, a large
network is divided into multiple small networks, each of which is
abstracted as a single virtual switch. This “divide-and-abstract”
process is recursively iterated until a divided network can be
handled by a single controller. A virtual switch is controlled by
the higher level controller over OpenFlow, so that FRACTAL can
coexist with other SDN mechanisms.

Keywords—Distributed Architecture, Software Defined Network-
ing (SDN)

I. INTRODUCTION

Software Defined Networking (SDN) decouples the control
planes from data planes of switches; it replaces a distributed,
per-switch control plane with a (logically) centralized one on
which SDN applications can control an operational network
with a global network-wide view by enforcing packet forward-
ing rules to the distributed data planes.

From an architecture perspective, the scalability, resilience,
and responsiveness is required by designing a (logically)
centralized SDN control-plane to cover a large sized network
for future carrier-grade cloud or cloud 2.0 services. In such
large scale networking environments, it is inevitable that a
(logically) centralized SDN control plane should be distributed
to multiple controllers, each of which is in charge of its own
partition. Many research studies have been done to address the
scalability issue [4, 8], most of which leverage replicating and
partitioning a network state in the control plane horizontally.

However, some of recent investigations pointed out that
the horizontal (or flat) distribution of network state is not
so effective for large-scale production networks, e.g., inter-
datacenter networks, multi-site enterprise networks, and wide
area networks, due to the latency taken by querying or repli-
cating the network state among controllers. [9] focused on the
SDN controller placement problem – how many controllers are
needed and where they should be located to cover the whole

network. Further, [10] illustrated how the level of consistency
impacts the performance and complexity of network control
logics. In case of low complexity, the inconsistent network
state information is likely to lead to suboptimal decisions. If
any tolerance against inconsistency is to be allowed, highly
complex control is required.

Meanwhile, [12] took a novel approach for scalability,
where the SDN control plane is hierarchically organized and
hence the locality is exploited for local events. It effectively
limits the propagation scope of events at the control plane,
reducing the amount of the network state information transmit-
ted or replicated. However, it requires (i) the redesign of the
existing SDN control plane, e.g., services and network control
logics, and (ii) the development of a new protocol between
parent-child SDN controllers. To the best of our knowledge,
there is still no solution to take into consideration both the
locality and the distributed control plane at the same time.

Inspired by the literature, in this paper, we present FRAC-
TAL: a Framework for Recursive Abstraction of SDN ConTrol
plane for large-scALe production networks. FRACTAL lever-
ages recursion to achieve scalability. The key idea behind
FRACTAL is that a large network is partitioned into multiple
small networks; a small network can be further divided into
smaller networks. This process can be recursively repeated
depending on the whole network size, and the capacity of a
controller. A partitioned network at any hierarchical level is
called a domain network, which is controlled by a domain
controller. Thus, the central idea of FRACTAL is to abstract a
domain network to its parent controller as a single big virtual
switch over OpenFlow.

The gain of FRACTAL is threefold. First, since FRAC-
TAL partitions a single large network into multiple small
networks, and utilizes a locality by organizing domain con-
trollers hierarchically, it effectively eliminates the overhead of
disseminating or replicating the information of events that are
locally significant. Second, FRACTAL transparently abstracts
a domain network as a single virtual switch that establishes
a connection to its own SDN controller through the same
southbound protocol like OpenFlow. Hence, there is no need to
develop a new protocol between the controller and its switches.
Third, FRACTAL no longer introduces the modification to
existing services such as a host tracker, a topology manager,
a switch manager, and other SDN applications due to the
properties of FRACTAL, e.g., transparency.978-1-4799-7899-1/15/$31.00 c©2015 IEEE



II. BACKGROUND

Before elaborating on FRACTAL, We investigate a dis-
tributed SDN control plane to answer such a question–how
does a horizontally distributed SDN control plane impact the
performance of SDN applications.–which is a main motivation
of this paper.

Simulation: To answer this question, we first carry out
simulation experiments by leveraging a custom flow-level
simulator with identical settings to [10], including the topology
(comprised of two switches, and two clients and servers con-
nected to each switch), the sync overhead, and the controllers.
When a flow request (to any of two servers) arrives at switch
i (i is 1 or 2), the corresponding controller i decides to which
server the flow is set up–the objective is to minimize the
maximum link utilization in our network. If the controller has
a global network-wide view by combining both the physical
network state from within its domain as well as the link
utilization of the other domain and it chooses the path with the
lowest maximum link utilization, it is a simple link balancing
controller (LBC). Note that it is likely that the global network-
wide view is potentially stale. Whereas, if a controller is aware
of the (potentially stale) global network-wide view and it has
a logic to tolerate [10], this is a separate state link balancing
controller (SSLBC).

We vary the workload (i.e., arrivals of flow requests) using
exponentially distributed flow inter-arrival times (average is 10
unit time) and Weibull distributed flow durations. We also vary
the sync overhead (T = {0, 4, 16} in simulation unit time);
T = 0 means the network state is instantly shared between the
controllers. To change the distribution of flow durations, the
shape parameter is varied (k = {0.5, 1, 1.5, 5}) with the fixed
scale parameter (λ = 10 in simulation unit time). Note that λ is
the average flow duration. Thus, as k decreases, the frequency
of flows whose duration is less than the average increases. We
measure a root mean squared error (RMSE) of the utilization
of the links to the servers to compare the performance of LBC
and SSLBC. For the details of the simulation experiments,
refer to [10].

Figure 1(a) shows that the server link RMSE is increased
significantly as we increase the sync interval of a distributed
SDN control plane. This means that LBC is limited since it
receives the state of the links (of the other controller) after T
unit time, which may be stale. Consequently, SDN applications
requires a logic to tolerate the staleness, resulting in increasing
the complexity of SDN applications’ logic. Figure 1(b) shows
that SSLBC (which seeks to maximize the local link utiliza-
tion) is much more robust against staleness than LBC due to
its logic to tolerate.

Moreover, Figure 1(a) also shows that as k increases, the
performance of LBC and SSLBC are more robust against the
staleness of a distributed SDN control plane. This implies that
we should utilize the locality of events for latency-sensitive
SDN applications by limiting the propagation scope of short
flows.

Microbenchmark: Since the simulation settings are not so
realistic, we further carry out experiments on a real testbed.
To this end, we build a cluster of three physical servers, each
of which is running OpenDaylight. Note that OpenDaylight
leverages Infinispan [3], which is a distributed in-memory
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(a) The imbalance between the two
server links is worsened as the sync
interval T increases.
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(b) SSLBC is not affected by the
sync interval since its logic is inde-
pendent of the staleness of network
state.
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(c) As the number of transactions
per second increases, the synchro-
nization (sync) delay increases due
to computational overhead.
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(d) CDF of the computation laten-
cies of transactions is plotted when
the transactions per second is 750.

Fig. 1: Upper figures are simulation results to demonstrate the
performance issues in the horizontally distributed controllers.
Lower figures are microbenchmark results on a real testbed.

key/value data store to implement a distributed SDN control
plane. When a controller receives the network event, the
updated state is replicated to the other controllers through
Infinispan.

To stress this data store, we use Cbench [1] on a test
machine, which emulates a bunch of switches and sends
packet_in messages, and receives flow_mod messages
(from controller 1) to modify the flowtable. The workload
to the Infinispan can be determined by varying the number
of switches emulated and the rate of new flows generated at
each switch. We vary the number of transactions per second
(trans/sec= {600, 650, 700, 750}) to the data store.

In Figure 1(c), the sync delay (from the moment of a
packet_in arrival at Infinispan to the moment of finish of
synchronization among the controllers) increases as we in-
crease transactions per second. At 750 transactions per second,
the sync delay to synchronize the distributed SDN control
plane is approximately 25 ms. As the average flow duration
in production data center networks is around 100 ms [7], it
is 25% overhead. However, Figure 1(d) is the cdf of the
computation latencies (which is sync delay - queueing delay)
at 750 transactions per second, showing that almost 90% of
transactions take a few milliseconds of computation. This
indicates 25 ms overall delay in synchronization is significant
compared with the latency due to computation only.

III. FRACTAL DESIGN

FRACTAL aims at building a scalable framework for an
SDN control plane by partitioning a large-scale network into
multiple small networks recursively. A partitioned network



is abstracted as a virtual switch, which is controlled by a
single controller. Note that the higher level controller (of the
whole network) controls small networks as virtual switches
through the same southbound protocol (e.g., OpenFlow). Fig-
ure 2 illustrates how a network is hierarchically abstracted
by FRACTAL. We now describe the details of a “Domain
Manager” which is a main component of FRACTAL.

A. Domain Manager

To transparently abstract a domain network as a virtual
switch, we exploit a control plane of software switches (e.g., [2,
5]) so that a domain controller of a domain network can serve
as an OpenFlow switch. The domain manager realizes a virtual
switch, and consists of a connection manager, a state manager,
and a configuration manager.

The connection manager manages OpenFlow connection
instances with other controllers, checks the status of the
connections by keep-alive messages, and processes OpenFlow
messages. The state manager maintains the internal state (of
a virtual switch) such as flow tables in which rules to be
enforced for the domain network, ports from which virtual
ports are built, and statistics of flows and virtual ports of its
domain network. Moreover, the domain manager provides a
functionality for querying and configuring the virtual switch
through the configuration manager. That is, the configuration
manager provides the interfaces for adding (deleting) virtual
ports to the virtual switch, installing (retrieving) rules, and so
on.

B. “Many-to-One” Mapping

When a domain controller provides transparent abstraction
(for its next higher level controller), a “many-to-one” mapping
between the switches in its domain network and a virtual
switch is required; in particular, there are two types of trans-
lations: (i) topology translation and (ii) message translation.

Topology Translation: The first step for the topology
translation is to specify the relations between the switches of a
domain network and a virtual switch. For this, a domain man-
ager maintains a bidirectional hash map consisting of a pair
of (vsw-id, vport#) and (sw-id, port#) which is
specified by a configuration manager in the above. (sw-id,
port#) means the actual physical port which is exposed to
higher level controller, and (vsw-id, vport#) means the
corresponding virtual information for the port. Further, the map
provides a straightforward translation for the topology.

Message Translation: Since a domain network is seen
as a virtual switch to other (domain) controller, all non-local
messages triggered on a switch in the domain network should
look like the messages triggered on the virtual switch. In
OpenFlow, two types of messages are believed to be influenced
by this message translation: switch-to-controller messages such
as packet_in and controller-to-switch messages such as
packet_out and flow_mod.

For example of “many-to-one”, assume that there is a
domain network comprised of a switch with two ports, and
the mapping table in its domain controller has next two
entries: [(switch1, port1)↔(vswitch1, port1)] and [(switch2,
port2)↔(vswitch1, port2)]. When a packet_in message
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Fig. 2: A large-scale network is partitioned into three domain
networks, which form a two-level hierarchy in FRACTAL. Red
dotted lines indicate Openflow connections.

is triggered from port1 of switch1, it is to be exported to
the higher level domain controller, the message translator
in the domain manager rewrites the in_port field in the
packet_in message with vport1 of the vswitch1 by looking
up the mapping table. In the opposite direction, it rewrites the
out_port field in the packet_out message with port1
of switch1. However, the message translation of flow_mod
message is not straightforward, since it is to be interpreted in
the virtual switch rather than a domain network. For this, the
message translator interacts with local SDN applications such
as the topology manager to transform the rules written for the
virtual switch into ones for the domain network.

Moreover, in FRACTAL, only the links between the virtual
ports have to be exposed to the higher level controller. Thus,
the controller of a lower level domain network has to redirect
the LLDP (Link Layer Discovery Protocol) packets incoming
at virtual ports. The translator takes over this role, it virtualizes
and redirects these LLDP packets to its higher level controller
by the above process. We call this mechanism virtualized
LLDP dissemination.

IV. EVALUATION

In this section, first we explain a microbenchmark used
to evaluate the scalability and the performance overhead of
FRACTAL. We then describe how FRACTAL performs on
a real network considering an SDN application for traffic
engineering on data center network.

A. Microbenchmark

Scalability: To evaluate the scalability, we use Cbench [1]
which stresses FRACTAL by varying the number of switches
that send a number of requests, and measures the per-switch
responsiveness as we vary the number of controllers that
comprise FRACTAL.

Figure 3(a) shows the controller throughput as the level of
the controller hierarchy increases (from 1 to 4). The controller
throughput means the number of packet_in messages pro-
cessed by a bottom level controller divided by the number of
switches that the controller manages. Assuming 80 switches
in the whole network, we partition the network by adopting
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Fig. 3: Microbenchmark result to evaluate the scalability and
the performance overhead of FRACTAL.

binary tree as a hierarchical structure. For instance, if the
hierarchy level is 1, a single controller handles all the 80
switches. If the level is 4, each bottom level domain controller
handles only 10 switches (there are 8 bottom level controllers).
The per-switch controller throughput superlinearly increases
as the hierarchy level grows since the FRACTAL framework
divides the network, in which a single controller can in turn
process relatively much more messages in the per-switch
perspective. Note that the controller throughput of inter-domain
flow is originally distributed among the higher level controller,
but we omit it since it takes a small portion compared to intra-
domain ones.

Performance Overhead: Partitioning a network incurs
some overhead to the FRACTAL framework. In abstracting
a domain network, its domain manager looks up the mapping
table for the topology and rewrites the messages for the context
of the virtual switch. Notice that there is no additional overhead
to the data plane; packets are forwarded at line rate. FRACTAL
adds no additional traffic in the control plane either. FRACTAL
only adds the propagation delay between the hierarchy levels
and the processing overhead to the messages that requires
mapping and resolution. Note that the propagation delays can
be omitted, because they are added only for inter-domain flows
that take a small portion.

To quantify the overhead due to partitioning, we measure
the response time between packet_in and the corresponding
flow_mod when the level of controller hierarchy is four.
Figure 3(b) evaluates the performance overhead that partition-
ing incurs. The response time increases by 5 ms on average
for crossing each level in the hierarchy. Thus, there is a
tradeoff between the per-switch controller throughput and the
response time of a non-local message in determining the level
of controller hierarchy.

B. Experiments on campus network

A data center topology: We now build a data center
network on our campus network; two island networks are
connected on our campus network as an overlay. That is,
one network contains a (k = 4, where k is the number of
pods per core switch and a pod consists of two layers of k/2
switches) FatTree topology connected with the other through
tunnels, both of which forms a k = 8 FatTree topology with 16
tunneling links between the networks. There are three domain

controllers: one for each network for local events and the 3rd
one on the campus network for non local events.

For the purpose of comparison, we consider another net-
work setting, which is a single large non-blocking switch.
This setting is configured to find out the maximum throughput
since traffic is constrained only by link speeds. Because
non-oversubscribed FatTree topologies are rearrangeably non-
blocking [6], a non-blocking FatTree topology can also achieve
the optimum performance.

A traffic engineering on data center topology: A traffic
engineering (TE) can highlight the SDN’s benefit because
the controller has a global network state such as a topology,
flow statistics and link utilization. The controller can thus
arbitrarily choose best paths even if they are not shortest,
with no concerns about convergence time, forwarding loops,
or black holes.

In TE (or SDN in general), fast detection and scheduling
are crucial to the efficient network utilization. The fast detec-
tion of small size flows is well studied in [11]. Further, fast
scheduling of flows on large-scale networks is well studied
in Hedera [6]. In this paper, we use a polling mechanism
to gather the network state and run TE every 1 second.
For implementation simplicity, we use the global first fit
algorithm [6] for rerouting.

By default, all traffic in our network follows shortest
paths—we do not use Spanning Tree Protocol or equivalent.
When multiple shortest paths exist, ties are broken by using
equal-cost multi-path (ECMP) hashing based on the TCP/IP
5-tuple. At every second, TE gathers the utilization of every
link in the network and detects congested links and the
corresponding flows. TE then reschedules all flows routed to
the congested links to less utilized ones.

We measure the aggregate data throughput as we vary
spatial workload patterns with the TE mechanism above. In all
cases, we employ the same TE algorithm (Hedera). Meanwhile,
we measure the total number of bytes sent (data traffic) and
the fraction of those bytes that we can schedule on alternate
routes in each case.

Workloads: We use a workload generator originally writ-
ten for Hedera [6]. It has three different traffic patterns such as
Stride(s), Staggered Prob (EdgeP, PodP), and Random(u). We
exploit the same traffic patterns with [6]. For our performance
baseline we use shortest-path ECMP forwarding with no TE.
Flow sizes are exponentially-distributed with 1 GB average.
Flow inter-arrival times are exponentially distributed with 1 ms
average.

Results: Figure 4(a) shows the (data traffic) throughput of
various flow patterns on the our data center topology and on
the ideal single non-blocking switch. Note that even the non-
blocking switch does not achieve maximum throughput (1.0)
since sometimes two hosts transmit packets to the same des-
tination, causing congestions. Although a FatTree topology is
rearrangeably non-blocking, there is a significant gap between
ECMP forwarding and the single non-blocking switch due to
collisions where multiple flows are (hashed and) forwarded
onto the same link. This degradation is mitigated by TE due
to its flow scheduling.
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stag(1,0) stag(0.5,0.3) stag(0.2,0.3) stride1 stride2 stride4 stride8 stride16 rand0 rand1 rand2
0

50

100

P
o

rt
io

n
 o

f 
P

A
C

K
E

T
_

IN
c

o
v

e
re

d
 b

y
 e

a
c

h
 c

o
n

tr
o

ll
e

r 
(%

)

 

 

Ctrl A Ctrl B Ctrl C

(b) The number of packet_in messages handled by each controller: Ctrl A and Ctrl B mean the lower level controllers which take on each
k=4 FatTree network, Ctrl C means the higher level controller which takes on the partitioned domains.

Fig. 4: For various traffic patterns, aggregate throughput for ECMP and TE on the k=8 FatTree topology (with FRACTAL) is
compared to a single non-blocking switch.

We also counts the number of packet_in messages
sent to each domain controller in each domain network,
to see whether the overall control overhead is efficiently
distributed among controllers. Figure 4(b) shows the num-
ber of packet_in messages processed by each controller
with the same scenario for Figure 4. Ctrl A and Ctrl B
mean the results of the lower level controllers, and Ctrl C
means the result of the higher level controller. Figure 4(b)
demonstrates that the three controllers split the entire control
overhead moderately. In the stag(1,0) scenario, there should
be no packet_in messages to Ctrl C if we count only the
packet_in messages for data flows.

V. CONCLUSIONS

In this paper, we present FRACTAL, a framework for
scalable dissemination of the network state over the control
plane. The key idea of FRACTAL is to “divide-and-abstract”
a large network recursively until a divided network can be fully
handled by a controller. FRACTAL presents a tradeoff between
the message processing delay over the controller hierarchy and
the control plane throughput. We demonstrate the benefit of
FRACTAL by building a testbed emulating a data center with
the open source SDN controller, OpenDaylight.
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