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Abstract It has been shown recently that using Mobile
Agents (MAs) in wireless sensor networks (WSNs) can
help to achieve the flexibility of over-the-air software
deployment on demand. In MA-based WSNs, it is cru-
cial to find out an optimal itinerary for an MA to per-
form data collection from multiple distributed sensors.
However, using a single MA brings up the shortcomings
such as large latency, inefficient route, and unbalanced
resource (e.g. energy) consumption. Then a novel ge-
netic algorithm based multi-agent itinerary planning
(GA-MIP) scheme is proposed to address these draw-
backs. The extensive simulation experiments show that
GA-MIP performs better than the prior single agent
algorithms in terms of the product of delay and energy
consumption.

Keywords mobile agent · wireless sensor networks ·
genetic algorithm · itinerary planning

1 Introduction

A wireless sensor network (WSN) [1] consists of
spatially distributed sensors to cooperatively monitor
physical or environmental conditions, such as temper-
ature, sound, vibration, pressure, motion or pollutants.
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The development of WSNs is initially driven by military
applications such as battlefield surveillance. WSNs are
now used in many industrial and civilian application
areas, including industrial process monitoring and con-
trol, environment and habitat monitoring, healthcare
applications, home automation, and traffic control.

There is a burgeoning interest in using a Mobile
Agent (MA) [2] in a WSN, which can address the
software (re)installation issue for dynamically changing
application functionalities (or their requirements) [3–
5]. As a special kind of software, a MA migrates among
sensor nodes to carry out task(s) autonomously. For
instance, collecting sensory data from a number of
source nodes with some processing defined on demand,
and adaptively handling sensory data depending on
time-varying network dynamics are typical application
requirements of the MA dispatcher (i.e., the sink node)
in WSNs. Using MAs has been shown to be an efficient
approach to enhance such capabilities of WSNs [6, 7].

The MA design in WSNs can be decomposed into
a few components [4]: (1) an overall framework, (2)
itinerary planning, (3) a middleware system design,
and (4) agent cooperation. Among these components,
itinerary planning determines the order of sensory
data source nodes to be visited during the MA mi-
gration, which has a significant impact on the per-
formance of MA-based WSNs. Thus, finding out an
optimal itinerary for a MA to visit the given set of the
source nodes is crucial. However, finding an optimal
itinerary is NP-hard [8], and heuristic algorithms have
been proposed to compute itineraries with sub-optimal
performance.

A number of itinerary planning schemes have been
proposed in recent studies [6–9], but most of them focus
only on the single MA itinerary in WSNs. Although
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the MA technique can help to achieve the flexible
(re)installation of application software on demand, us-
ing only a single MA may also bring some shortcom-
ings, e.g., the long latency and the unbalanced energy
consumption. In order to address these shortcomings
of single MA itinerary planing (SIP), the potential
advantage of using multi-agent itinerary planning is il-
lustrated in [10]. In this paper, a novel genetic algorithm
(GA) based multi-agent itinerary planning (GA-MIP)
scheme is proposed, which seeks to reduce the delay by
dispatching multiple MAs in parallel.

To realize the GA-MIP algorithm, we contrive to
represent the itineraries of multiple MAs by encoding a
Source Ordering Code and a Source Group Code (see
Section 4.2 for details) into digits, which can be inter-
preted as a particular gene for genetic evolution. First,
we set up a searching space from randomly selected
genes. Then, we perform an iterative genetic evolution
process. At each iteration, evolution operators such as
crossover and mutation are applied to increase the vari-
ety of the genes. After this process, a fitness function is
used to choose the better genes to survive for the next
generation, which is analogous to the natural-selection
in the real world. After a number of evolutionary it-
erations, the solution(s) corresponding to an efficient
itinerary planning will be determined.

The contributions of this paper are summarized in
the following:

– Novelty: Though the use of a genetic algorithm in
planning the itinerary for a MA is presented in
[9], only using a single agent is considered. To the
best of our knowledge, this paper is the first effort
to solve the multi-agent itinerary planning (MIP)
problem based on the genetic algorithm.

– Performance: The previous MIP paper [10] breaks
down the MIP solution procedure into three
phases: (1) determining the number of MAs, (2)
grouping source nodes for individual MAs, and (3)
determining the visiting sequence for each MA.
Intrinsically, these three phases merely transform a
MIP problem to a repetition of SIP problems. This
may lead to substantially sub-optimal solutions. In
contrast, the proposed GA-MIP scheme in this pa-
per considers the three phases simultaneously as a
single problem for better performance.

The remainder of the paper is organized as fol-
lows. Related work is introduced in Section 2. Net-
work model and problem statement are represented in
Section 3. Then we describe the novel genetic
algorithm-based multi-agent itinerary planning scheme
in Section 4. Simulation experiments are performed in
Section 5. Finally, Section 6 concludes this paper.

2 Related work

A number of studies have been conducted for MA
itinerary planning in WSNs [6–11]. Among these
heuristic proposals, Local Closest First (LCF) and
Global Closest First (GCF) are simple approaches [7]
for MA itinerary planning. LCF searches for the next
sensorydata source node with the shortest distance to
the current node while GCF selects the next closest
node to the sink node as its next source node. MADD
[6] is similar to LCF, but selects the farthest source
node as the starting point of the itinerary.

IEMF extends LCF by estimating the communica-
tion cost in MA migration. It quantifies the increase in
the MA packet size and then models the energy con-
sumption of MA migration by Estimated Cost. In [9],
a genetic algorithm for single MA itinerary planning is
proposed to exploit the information of sensor detection
signal levels and link power consumption.

However, all of these studies only focus on the sin-
gle MA itinerary planning (SIP) problem. Thus, they
have some intrinsic shortcomings of using a single MA,
which aggravates as the number of source nodes be-
comes large [11] such as:

– Delay Scalability Issue: A single MA roams in a
network for data collection. The duration of visiting
all of the given source nodes in sequence will incur a
large delay, especially as the network size increases;

– Potential Route Inef f iciency: Often, the source
nodes to be visited may be distributed in a clustered
manner. A single MA then migrates from one clus-
ter to another, carrying the data it retrieved before.
The ever increasing MA packet size will consume
substantially increased energy if the clusters are
distant;

– Traf f ic Load Issue: In the perspective of the net-
work lifetime, it is better to distribute the traffic
load across the network. However, sensor nodes in
the agent itinerary will deplete their energy faster
than others. Note that the MA packet size will be
increased as it collects more and more data from
the sensor sources.

To address these problems, a multi-agent itinerary
planning (MIP) is first proposed in [10], in which a
circular area with the center of a cluster (i.e. the group
of densely located source nodes) and some radius is
determined as the coverage of each MA. This process
repeats until all of the given source nodes are covered.
In other words, a MIP problem is divided into individ-
ual SIP ones, which can be solved by the previous SIP
solution repeatedly. However, this greedy approach
may lead to a substantially sub-optimal MIP solution.
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3 Network model and problem statement

We consider a WSN that consists of a number of
randomly deployed static sensor nodes. A static sink
node is deployed at the central location of the WSN,
with almost infinite power supply and strong com-
putational capability. A number of sensor nodes are
battery-powered, each of which knows its geographical
location. All the sensor nodes have the same transmis-
sion radius, and any two directly connected (1-hop) sen-
sor nodes have a stable bi-directional link. The density
of the sensor nodes deployed is assumed to be high
enough to guarantee that each sensor node has at least
two 1-hop neighbor nodes. A number of MAs can be
issued by the sink node to visit the set of given source
nodes simultaneously with different itineraries. That is,
each MA has its own itinerary for visiting a subset of
the source nodes. This paper seeks to reduce the task
duration (or the delay of the MA migration to collect
data from the given sources), which may be critical
application requirements.

4 Genetic algorithm based multi-agent
itinerary planning

In this section, we introduce the GA-MIP scheme. The
encoding methods, the operators for the evolution, and
the fitness function are the three key components in
GA-MIP, to be detailed in Sections 4.2, 4.3, and 4.4.

4.1 Introduction to genetic algorithm

A genetic algorithm [12] (GA) is an adaptive heuris-
tic search algorithm based on the evolutionary theory
of genetics and natural selection, which simulates the
survival of the fittest principle. In a GA system, each
solution to the problem is described as an individual

with a particular genetic instance (or simply a gene) in
the nature. The solutions (or parents) produce children
that inherit mixed gene from their parents. Meanwhile,
an opportunistic mutation may happen to generate
new individuals. Through the evaluation by a fitness
function, the better individuals could survive. As time
goes on, the survivals contain the better genes which
represent the better solutions to the problem.

4.2 Encoding method

To enable GA implementation, we represent a solution
to the (MIP) problem as digits representing a gene. In
GA-MIP, we devise a gene consists of Source-Ordering-
Code and Source-Grouping-Code, which have the fol-
lowing definitions:

1. Source-Ordering-Code. It is an array of the source
nodes’ identifier numbers. Actually, the array is the
concatenation of the sources to be visited; more
precisely, the array is the concatenation of the
segments, each of which is the group of sources.
That is, each segment of the array will be covered
by each MA, where the MA will traverse the given
sources of the segment from left to right. A segment
is called a Source Node Group, which is the sources
to be visited by a particular MA.

2. Source-Grouping-Code. It is an array of numbers,
each of which indicates the number of source nodes
that are allocated in the corresponding Source
Node Group. In other words, each number in the
array is the segment size.

Note that the combination of Source-Ordering-Code
and Source-Grouping-Code represents a single MIP
solution or a gene.

Figure 1a shows an example for the substantiation
of the encoding. The number of non-zero elements in
Source-Grouping-Code represents the number of MAs;

(a) The codes with 3 MAs and 8 source nodes (b) The codes of the same solution with different permutation

Fig. 1 The encoding examples
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thus, there are three MAs in Fig. 1a. Furthermore, the
value of each non-zero element indicates the number
of source nodes to be visited by the corresponding MA.
For example, the three non-zero elements (i.e., 4, 3,
1) in the Source-Grouping-Code mean the following
information: (1) The first MA (MA1 in Fig. 1a) will visit
4 source nodes in the order of 6, 3, 2, 4; (2) The second
MA (i.e., MA2) will visit the source nodes in the order
of 8, 1, 7; (3) The third MA (i.e., MA3) will visit the
source node with ID of 5.

Additionally, the elements in the Source-Grouping-
Code must be sorted by a descending order, in order to
guarantee the uniqueness of a source grouping solution.
Since each Source-Ordering-Code is associated with a
Source-Grouping-Code, such uniqueness can eliminate
the duplicated genes. Otherwise, the combinations of
the two codes likely produce duplicate solutions. For
instance, without sorting the elements in the source-
grouping code, the GA technique may generate two
solutions of the same gene (see Fig. 1b is equivalent to
Fig. 1a).

4.3 Operators

In this section, we describe the genetic operators for the
GA-MIP scheme. Like the conventional operators for
GA, we have the crossover and mutation operators.

Fig. 2 An example for source-ordering-code crossover

4.3.1 Crossover operators

A crossover operator is a key component in GA. It imi-
tates the way of natural biological evolution. There are
several crossover schemes have been proposed, such as
one-point crossover [13] and multi-point crossover [14].

In our approach, crossover is only applied between
the two segments in two Source-Ordering-Codes whose
corresponding sizes in the Source-Grouping-Codes are
equal as shown in Fig. 2 (in this case 3). Suppose there
are two parents (or solutions). We first randomly select
a non-zero element (denoted by m) that is common
in the two parents’ Source-Grouping-Codes; that is,
each parent should have a segment of the same length
m.1 Thus, m is mapped to a segment in the Source-
Ordering-Code of each of the two parents (the second
segments in both parents in Fig. 2a). The selected
segment of one parent is inserted to that of the other
parent and vice versa as shown in Fig. 2b. Note that
the duplicate source IDs after the crossover should
be eliminated to ensure the correctness of the Source-
Ordering-Code.

4.3.2 Mutation operators

The mutation operator is used to accommodate the
variety of the genes so that the discovery of new (hope-
fully better) solutions is possible. In our approach, both
Source-Ordering-Code mutation and Source-Grouping-
Code mutation are incorporated independently.

For the Source-Ordering-Code, the operator ran-
domly selects two elements in the code and switches
their positions. Figure 3 illustrates the mutation of a
Source-Ordering-Code, where the second and the fifth
elements transpose their positions. Let an array soc[]
with size of N denote the Source-Ordering-Code to be
mutated. Note that the the elements are located from
soc[1] to soc[N]. Its mutation pseudo-code is given in
Algorithm 1.

Algorithm 1 Source-Ordering-Code Mutation
1: Pick two integers randomly r1, r2 ∈ [1, N], r1 ≤ r2

2: Temp ← soc[r1]
3: soc[r1] ← soc[r2]
4: soc[r2] ← Temp
5: return

1Even if they do not have the same length segment currently,
Source-Grouping-Codes are changed by the mutation process at
each iteration, to be detailed later. Thus, they will have the same
length segment at some later iteration.
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Fig. 3 The example for source-ordering-code mutation

The mutation of the Source-Grouping-Code is per-
formed by an incremental approach. Two elements in
the Source-Grouping-Code will be randomly selected,
one will be incremented by 1 and the other will be
decremented by 1. Notice that we have to ensure the
the values of the elements in the Source-Grouping-
Code after the mutation should still be within the range
of [0, N], where N is the number of total source nodes
to be visited. Denote the array of the elements in the
Source-Grouping-Code by sgc[]. In an extreme case,
there will be one MA for one source node. Then sgc[]
will have N elements. To allow even this unlikely case
to happen, we consider maximum N elements from
sgc[1] to sgc[N]. As illustrated in Fig. 4, the (ran-
domly selected) third and fifth elements are decre-
mented and incremented, respectively. So, the third
element decreases to 0 and the fifth element increases
to 2, which is shown as the “Intermediate Result” in
Fig. 4b. As the values of the elements are not listed
in a numerical order, we perform sorting to produce
the final Source-Grouping-Code in Fig. 4c. The pseudo-
code of the mutation on Source-Grouping-Code is
given in Algorithm 2.

Algorithm 2 Source-Grouping-Code Mutation
1: repeat
2: Pick two integers randomly r1, r2 ∈ [1, N]
3: until sgc[r1] > 0 and sgc[r2] < N
4: Decrease sgc[r1] by 1
5: Increase sgc[r2] by 1
6: Sort sgc[] by Descending Order
7: return

4.4 Fitness function

For the purpose of selecting the better genes to survive
for the evolution at each iteration, we propose a fitness
function to evaluate the performance of a gene. The
fitness function should estimate the communication
cost of each solution, which represents the itineraries

Fig. 4 The example for source-grouping-code mutation

of MAs determined by the combination of the Source-
Ordering-Code and the Source-Grouping-Code.

As in [8], we employ the similar model to estimate
the MA migration energy cost for each MA. The cost
of k-th MA’s itinerary is denoted by Ek, k = 1, 2, ..., K,
where K is the total number of MAs dispatched in the
current solution.

In order to calculate Ek, we first calculate the MA
size, which increases as it traverses the source nodes
since it accumulates the data from the sources that have
visited. Let Sdata denote the size of raw sensory data
at a source node. Also, let Sproc and Shead denote the
size of the processing code of the MA, and the MA
header size, respectively. To model this MA increase,
first let S0

ma = Sproc + Shead denote the size of MA when
dispatched from the sink. Then, let Si

k denote the size
of the k-th MA when it leaves after processing data
at i-th source in the source list assigned to this MA.
Let r denote the reduction ratio by agent assisted local
processing, and let ρ denote the aggregation ratio for
redundancy elimination among the sensory data col-
lected in different sources. Then Si

k is given by:

Si
k = Si−1

k + (1 − ρ)(1 − r)Sdata

= S0
ma + [1 + (i − 1)(1 − ρ)](1 − r)Sdata

Let mtx and mrx be the energy consumption for
receiving and transmitting a data bit, respectively. Let
ectrl denote the energy consumed for control messages
(e.g. an ACK frame). We assume that mtx, mrx and ectrl

are identical at each node without power control. Let
Srx and Stx be the size of a received packet and that
of a transmitted packet. The communication energy
consumption at a source by receiving the MA (whose
size is Srx) and then transmitting MA (whose size is Stx)
can be calculated by:

e(Srx, Stx) = mrx · Srx + mtx · Stx + ectrl
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Let H(i − 1, i) denote the hop counts between two
adjacent sources in the itinerary of an MA (say, i − 1-th
source to i-th source in the MA’s list). Also, let mp

denote the energy consumption for processing a bit.
Finally Ei

i−1(Si−1
k ) is the communication energy cost

when a MA migrates from its i − 1-th source to i-th
source with the MA size Si−1

k , which is given by:

Ei
i−1(Si−1

k ) = mp · Sdata + e
(
0, Si−1

k

)

+H(i − 1, i) · e
(
Si−1

k , Si−1
k

) + e
(
Si−1

k , 0
)

We divide the whole itinerary of the k-th MA into
three phases:

1. Code-conveying phase: the goal of this phase is to
convey the processing code to the target region.
In the phase, the the k-th MA migrates from the
sink to its first source node s1

k. Let E1k denote the
communication energy consumption in this phase.
Then, E1k = H(t, s1

k) · e(S0
ma, S0

ma), where t denote
the sink node.

2. Roaming phase: starting from the time when the
k-th MA leaves s1

k to the time when it visits
its last source node sn(k)

k , where n(k) denote the
number of source nodes needed to be visited by
the k-th MA; let E2k denote the communication
energy consumption in this phase. Then, E2k =∑n(k)

i=2 Ei
i−1(Si−1

k ).
3. Returning phase: starting from the time when the

k-th MA finishes visiting all the assigned source
nodes to the time when it returns to the sink.
The communication energy consumption in this
phase is denoted by E3k, i.e., E3k = mp · Sdata +
e(0, sn(k)

k ) + H(sn(k)

k , t) · e(sn(k)

k , sn(k)

k ).

Finally, the communication energy for the migration
of the k-th MA can be estimated by Ek = E1k + E2k +
E3k. Let Emigration denote the total migration cost of all
the MAs. Thus, Emigration = ∑K

k=1 Ek.
Consequently, the fitness function considers the en-

ergy cost of the migration of the MAs by f = Emigration.
During the GA evolution, the j-th gene corresponds to
a particular itinerary solution, whose cost is denoted by
f ( j), j = 1...P, where P is the number of selected solu-
tions (or genes) at each iteration. After the crossover
and mutations, the population of genes is expanded by
a certain factor (say, α); that is, the number of genes is
increased to (1 + α)P. The larger is α, the better genes
can be selected for the next generation at the cost of
the more computation overhead. In our simulation, α

is set to 1. In order to construct the population of the
next generation (or iteration), the selection operator

chooses the P best genes among (1 + α)P genes ac-
cording to the lower (or better) value of their fitness
function values. This procedure will be repeated for I
iterations.

4.5 Pseudo-code of GA-MIP

We summarize the GA-MIP procedure as pseudo-code
in Algorithm 3. A particular solution (or gene) is de-
noted simply by G[], which is actually the combination
of soc[] and sgc[]. Note that as in the nature world, both
crossover and mutation occur with some probability
distributions. In GA-MIP, crossover is performed only
on Source-Ordering-Code by the probability pOC. Like-
wise, the probabilities of mutation on Source-Ordering-
Code and Source-Grouping-Code are denoted by pOM

and pGM, respectively. Recall that we denote the num-
ber of selected solutions (or genes) at each iteration by
P and the number of iterations by I.

Algorithm 3 GA-MIP Algorithm
1: Source-Ordering-Code random list of N sources
2: Source-Grouping-Code random initialization
3: for i = 1 to P do
4: Random Gene Initialization G[i]
5: end for
6: for k = 1 to I do
7: for i = 1 to P do
8: select r1, r2, r3 ∈ [0, 1], from a uniform

distribution
9: if r1 ≤ pOC then

10: for j = 1 to P do
11: if sgc[] in G[ j] equals sgc[] in G[i] then
12: Source-Ordering-Code Crossover on

G[i], G[ j]
13: Break
14: end if
15: end for
16: end if
17: if r2 ≤ pOM then
18: Source-Ordering-Code Mutation on G[i]
19: end if
20: if r3 ≤ pGM then
21: Source-Grouping-Code Mutation on G[i]
22: end if
23: Produce Child Gene G[N + i]
24: end for
25: Sort G[] by descending order by fitness function
26: Select from G[1] to G[P]
27: end for
28: return the best gene in G[]
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Table 1 Simulation parameters for mobile agent system

Raw data size 2,048 bits
MA code size 1,024 bits
MA accessing delay 10 ms
Data processing rate 50 Mbps
Raw data reduction ratio 0.8
Aggregation ratio 0.9
Network size 1,000 × 500
Radio transmission range 60 m
Number of sensor nodes 800
MAC layer standard 802.11 b

5 Simulation

5.1 Simulation setup

We implemented the proposed GA-MIP algorithm as
well as several existing SIP algorithms, such as LCF
[7], MADD [6] and IEMF[8]. We use OPNET2 and
perform simulations. The same network model in [10]
is adopted, in which the nodes are uniformly deployed
within a 1,000 × 500 m field, and the sink node is
located at the center of the field and multiple source
nodes are randomly distributed in the network. To
verify the scaling property of our algorithms, we select
a large-scale network with 800 nodes. The parameters
for MA system are shown in following Table 1.

5.2 Evaluation metrics

In order to evaluate the time and energy efficiency from
the simulation results, we consider the following four
performance metrics as follows:

– Estimated energy cost: The value of estimated en-
ergy cost calculated by the fitness function. Even
though these values are just approximate energy
cost in the network, they still could be a criterion
to evaluate the convergence of the GA evolution
progress.

– Task duration: In a SIP algorithm, it is equivalent
to average end-to-end report delay, which is the av-
erage delay from the time when a MA is dispatched
by the sink to the time when the agent returns to
the sink. In an MIP algorithm, since multiple agents
work in parallel, there must be one agent which
returns to the sink at last. Then, the task duration
of an MIP algorithm is the delay of that agent.

– Task energy: The task energy is the total com-
munication energy consumption, which includes

2OPNET, http://www.opnet.com/.

transmitting, receiving, retransmissions, overhear-
ing and collision, to obtain sensory data from all the
target sources.

– Energy-Delay Product (EDP): For time-sensitive
applications over energy constrained WSNs, EDP
(calculated by EDP = energy × delay) gives us a
unified view. The smaller the value of EDP is, the
better the unified performance will be.

5.3 Parameters selection for genetic algorithm

Some parameters are critical to the performance of the
genetic algorithm, such as the iteration times, the size
of search space, the ratio of crossover and mutations
for Source-Ordering-Code and Source-Grouping-Code.
In this section, we evaluate the impacts of these para-
meters on the performance of the GA evolution, which
is the estimated energy cost Emigration.

Figure 5 illustrates the impacts of the number of
iterations (I) and the size of search space (P) on the
estimated cost. obviously, the more iterations and the
larger search space in GA evolution will lead to lower
estimated cost. Thus, regarding to the enhancement of
GA-MIP, we should set their values as large as possible.
However, the larger iteration times and search space
will incur the more computational overhead. There is
a trade-off between the algorithm performance and
the computational complexity. We observe that the
estimated cost almost converges after 450 iterations,
meanwhile, 400 is an acceptable value for the size of
search space.

In addition, we study the optimal ratio for perform-
ing crossover and mutation during the gene evolution.
As shown in Fig. 6a–c, the GA estimated energy cost
reaches the minimum when the values for the ordering
crossover ratio, ordering mutation ratio and grouping
mutation ratio are around 0.8, 0.5, and 0.4, respectively.
We adopt these values to set pOC, pOM and pGM in
evaluating GA-MIP.

Table 2 lists the GA parameters adopted in
evaluation.

5.4 Visualization of search result computed
by GA-MIP and LCF

Figures 7 and 8 visualize different outcomes of the MIP
solution (GA-MIP) and SIP solution (LCF). In the 20
source node scenario, Fig. 7 shows the result of the
itinerary searching of GA-MIP, in which three MAs
are sent by the sink node to collect the sensory data
in source nodes simultaneously. In contrast, for the
same network topology, Fig. 8 shows the result of the
itinerary planning by LCF, in which a single MA travels

http://www.opnet.com/
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(a) More iteration leads to lower estimated energy cost (b) Larger search space leads to lower estimated energy cost

Fig. 5 The larger iterations and search space lead to the lower estimated energy cost
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Fig. 6 The impacts of the changing crossover and mutation ratios

Table 2 Simulation parameters for GA-MIP

GA iterations (I) 450
GA search space (P) 400
Ordering crossover ratio 0.8
Ordering mutation ratio 0.5
Grouping mutation ratio 0.4
Population expanding factor α 1

a long route in the network. Apparently, for GA-MIP,
the task duration is significantly reduced during the
data collection by delivering multiple MAs in parallel.

One of the salient features of GA-MIP is not to
split the grouping and source visiting order into two
problems. Thus, it can dynamically adapt to the deploy-
ment of source nodes by choosing some appropriate
number of MAs. We provide another two snapshots
for readers to see the outcomes of GA-MIP scheme
with varying source node deployments. Note that the
number of source nodes is identically 20 in these two
tasks, however, the deployment of source nodes are
different due to the random seed. The number of MAs
resulted from the GA-MIP scheme is different. For
instance, in Fig. 9, only two MAs are dispatched into
the network, but in Fig. 10 four MAs are delivered.
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Fig. 7 Visualization of GA-MIP with 3 MAs

Fig. 8 Visualization of LCF with 1 MA

Fig. 9 Visualization of GA-MIP with 2 MAs

Fig. 10 Visualization of GA-MIP with 4 MAs
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Fig. 11 The impact of number of source nodes on task duration

10 15 20 25 30 35 40
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

Fig. 12 The impact of number of source nodes on energy cost
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5.5 Comparison of GA-MIP, LCF, MADD and IEMF
with varying source number

In this section, we compare the GA-MIP scheme with
the three SIP algorithms, i.e., LCF [7], MADD [6] and
IEMF[8]. During the simulation, the number of source
nodes is changed for 10–80 by the step size of 10.
For each scenario of the particular number of source
nodes, extensive simulations are performed with differ-
ent random seeds. The distribution of source nodes is
randomly selected by the recalculation of the seeds.

As shown in Fig. 11, the GA-MIP algorithm achieves
a significant gain in terms of task duration, which is
less than half of those of LCF, MADD and IEMF. The
reason for this phenomenon is that in single MA sys-
tems, one MA should travel along the whole network to
collect information in all sensor nodes. This procedure
will cost a large latency since the sensor nodes may
be distributed all over the network. Multi-agent can
speed up the task because more than one itineraries are
applied simultaneously.

In Fig. 12, the energy consumption of the GA-MIP
algorithm is comparable to those of SIP algorithms
when the number of source nodes is low. However GA-
MIP’s energy consumption becomes higher than the
others as the number of sources increases. It is because
the three following reasons:

– In a GA-MIP solution, multiple MAs are sent, thus
more energy is consumed for delivering the larger
size of processing codes while they are traveling in
the WSN. By comparison, only one process code is
carried by the single MA;

– Since multiple MAs migrate in parallel, contention
may exist when two itineraries overlaps each other.
Especially, the number of MAs increases when the
number of the source nodes is large, which may
cause a higher possibility for the contentions among
multiple itineraries;

– During MA migration, data aggregation between
source nodes leads to less accumulate data size
from source nodes to the sink, thus, reduce the
energy consumption. A SIP solution dispatches a
single MA into the surveillance area, which implies
maximum data aggregation. In contrast, dispatch-
ing more than one MA will potentially reduce the
data aggregation, and thus, lead to more energy
consumption.

However, from the visualization in Figs. 7 and 8, we
can realize that the MIP solutions cover more interme-
diate nodes in the dissemination procedure. It implies
that MIP can achieve better global load balancing than
SIP solutions, and thus a longer network lifetime.
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Fig. 13 The impact of number of source nodes on EDP

Instead of considering energy and delay separately, it
is also important to test the combined performance of
delay and energy (i.e., EDP), especially for delay con-
straint traffic in wireless sensor network. For example,
in wireless multimedia sensor network and video sensor
networks, EDP can be a viable criterion to evaluate
the QoS provided by the WSN to support real-time
video or multimedia services. In Fig. 13, we compare
the EDP values of GA-MIP and other SIP algorithms.
It shows that the GA-MIP algorithm achieves the better
performance than SIP solutions overall, which verifies
the effectiveness of the proposed algorithm.

6 Conclusion and future work

Applying mobile agents (MAs) in WSNs can facilitate
a wide spectrum of dynamic applications that require
flexible software (re)installation or adaptive data ac-
quisition. In this paper, we first investigate the short-
coming of using a single MA in the literature such as
large latency of data collection and global unbalance
in energy consumption. Thus, we proposed a genetic
algorithm based multi-agent itinerary planning (GA-
MIP) algorithm to address the problems. We substanti-
ate the proposed GA approach by encoding how many
MAs are dispatched and which sensors are covered
by individual MAs. Extensive simulations have been
carried out to show the better performance of GA-MIP
in terms of the product of delay and energy consump-
tion. For the future work, we focus on the design of a
more complicated fitness function. Currently, we sim-
ply model the energy consumption in the fitness func-
tion. However, depending on application requirements,
we need to design different fitness functions targeting at
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various objectives, such as lowest task duration, longest
lifetime, etc. Furthermore, the MIP problem would be
investigated in the following promising and challenging
scenarios:

– Mobile sink node [15]: If the sink node can be
mobile, there is a good opportunity that we can
further minimize the task duration and total com-
munication cost by coordinating the multiple MAs
and the mobile sink node.

– Duty cycled WSNs [16]: Currently, we assume that
all the sensor nodes keep on operating, which is
often not feasible in the real WSN applications. We
need to investigate the MIP problem when some of
sensor nodes are turned into sleep mode.
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