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Each and every spatial point in an indoor space has its own distinct and stable fingerprint, which arises owing to the distortion
of the magnetic field induced by the surrounding steel and iron structures. This phenomenon makes many indoor positioning
techniques rely on the magnetic field as an important source of localization. Most of the existing studies, however, have
leveraged smartphones that have a relatively high computational power and many sensors. Thus, their algorithmic complexity
is usually high, especially for commercial location-based services. In this paper, we present an energy-efficient and lightweight
system that utilizes the magnetic field for indoor positioning in Internet of Things (IoT) environments. We propose a new
hardware design of an IoT device that has a BLE interface and two sensors (magnetometer and accelerometer), with the
lifetime of one year when using a coin-size battery. We further propose an augmented particle filter framework that features
a robust motion model and a localization heuristic with small sensory data. The prototype-based evaluation shows that the
proposed system achieves a median accuracy of 1.62 m for an office building, while exhibiting low computational complexity
and high energy efficiency.
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1 INTRODUCTION

Location-based applications such as car navigation systems, restaurant recommendation systems, parking locators,
and emergency escape services have significantly increased the quality of our daily life. The location of a user
is key contextual information that is utilized by such location-based services (LBSs) [47]. However, in indoor
environments, the location of a user cannot be easily acquired owing to the blockade of global positioning system
(GPS) signals by building structures. Hence, over the last decade, many methods for indoor localization have
been proposed.

There have been many attempts to use various sources of information for indoor localization. Methods that
utilize WiFi signals [2, 6, 39] are among the most widely used ones. However, these methods require frequent
WiFi scans that result in signification consumption of energy. In addition, fluctuations in the signal strength
negatively affect the localization performance. Ultra-wideband (UWB) based methods [13, 34, 40] can be highly
accurate. However, these methods require customized hardware devices for analyzing reflected signals. More
practical solutions are based on inertial sensors including magnetometers, accelerometers, and gyroscopes [25].
However, these solutions have their own limitations. For instance, a heading inference mechanism in pedestrian
dead reckoning (PDR) [3] usually suffers from the distortion effect of steel materials on geo-magnetism.

The distortion effect of steel materials on a magnetic field is a double-edged sword. Since the magnetic distortion
makes each spatial point distinct from others, it can serve as a fingerprint that helps localize any device with a
magnetic sensor. As claimed in [14] and [32], magnetic fields exhibit desirable properties for indoor localization,
e.g., temporal stability and insensitivity to moving nearby objects [26]. In addition, magnetic sensors are cheap and
off-the-shelf everywhere. Consequently, many studies have proposed to use magnetic fields to a certain degree: a
complete system [26, 37], a supplementary module [27, 38, 43], or a combination with other sources [10, 19].

The main problem associated with using magnetic fields for fingerprinting is that their sensor data requires
special processing. The raw sensor reading from a magnetometer is parameterized as a three-dimensional vector,
which should be transformed to a scalar (i.e., the magnitude of the vector) or to a two-dimensional vector [17],
to mitigate the effect of noise owing to the device’s movement. Note that such movement affects the reference
coordinates, not the magnetic field itself. To deal with this issue, Maloc [37] and Magicol [26] used a temporal
change in the magnetic field (generated in the course of the user’s motion) as a fingerprint, and incorporated this
measure into a particle filter framework. However, comparison of the temporal patterns of the magnetic field and
processing of the particle filter technique is computationally expensive, and is feasible only with high-end devices
such as smartphones. In other words, such solutions may not be used for low-end devices such as Internet of
things (IoT) devices, unless the issues of high computation complexity and energy efficiency are resolved. An
energy-efficient and lightweight indoor localization technique is essential for IoT device-based localization.

IoT devices are typically small, lightweight, and energy-efficient, and thus are easy to deploy or relocate,
compared with smartphones or other dedicated localization devices (i.e., foot-mounted IMUs). If the performance
of IoT device-based localization is sufficient for commercial-grade service, it can be a low-cost and energy-efficient
alternative for many LBSs: supervising and tracking of assets and employees in office/factory environments,
preventing workers from entering hazard zones, providing more precise geofencing services for patients or child
care, and guiding emergency escape, to name a few.

To address these constraints and to reduce the cost of computation, we propose a novel magnetic field-based
indoor localization system for IoT devices. We use energy saving wireless communication, bluetooth low energy
(BLE), and report here a proprietary system that features a BLE interface and a magnetic sensor. We also streamline
the positioning algorithms to reduce the computational complexity while maintaining the localization accuracy.
In summary, our work makes the following contributions.

o To the best of our knowledge, this paper is the first attempt to design a magnetic field-based, energy-efficient,
and lightweight indoor localization system for IoT applications. The first-class requirement for IoT devices
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is energy efficiency; hence, we tackle the algorithmic complexity and energy efficiency while maintaining
the localization precision.

o In this work, we develop a specialized IoT device hardware (and the corresponding firmware) that substan-
tiates energy-efficient localization (Section 4).

o To reduce the system complexity, we streamline the server-side localization algorithms, as well as the design
of the end-user device, while maintaining localization performance comparable to those of state-of-the-art
localization techniques (Section 5).

o Using sensor data that had been collected over a period of three months, we demonstrate that our proposed
system is energy-efficient, i.e., a single-coin battery can last for one year.

This paper is organized as follows. After reviewing some related work in Section 2, we discuss several issues
associated with the use of magnetic fields in Section 3. In Section 4, we explain our design of an IoT device
for magnetic field-based localization. Section 5 introduces the architecture of our system that supports energy-
efficient and lightweight localization for IoT environments. We then evaluate the proposed system in Section 6.
After discussing practical issues in Section 7, we conclude the paper in Section 8.

2 RELATED WORK

Over the last decade, many efforts have been made to utilize distortion of the magnetic field in an indoor
environment for localization. [33] first exploited the disturbance of a magnetic compass reading for positioning
of a robot subject to some constraints. [8, 12, 35] attempted to leverage raw magnetic field data to construct a
magnetic fingerprint. However, the raw magnetic field data significantly change with the location and heading of
a magnetic sensor. These techniques thus require magnetic sensors to be fixed in space, or require a high overhead
of the site survey or wardriving. These limitations make it difficult to use these approaches for positioning of
humans. Therefore, as argued in [32] and [17], the raw magnetic field data should be transformed to make the
sensor data robust to changes in the sensor’s position as the users move. [32] and [15] proposed a magnetic
fingerprinting scheme based on the magnetic field’s intensity, which is a scalar. However, these systems can only
localize users that move in straight trajectories, such as corridors; they cannot be used in complex structured
areas. The systems proposed in MaLoc [37] and Magicol [26] adopted a two-dimensional magnetic fingerprinting
model suggested in [17]. As the variation in the magnetic field data increases, the corresponding location is
more likely to be uniquely identified, which enhances the localization performance. They also chose a particle
filter framework to adapt to the complexity of indoor environments. However, the adoption of the particle filter
framework significantly increases the algorithmic complexity of the problem, which reduces the device’s energy
efficiency. We believe that methods to reduce the cost of the site survey and to reduce the complexity of the
system’s operation (e.g., dynamic time warping (DTW) [4]) have not been given due attention; this realization
motivated us to design a proprietary system for commercial-grade services.

3 ISSUES ON USING MAGNETIC FIELD
3.1 Characteristics of Magnetic Field

As claimed in [14], approaches that use sensory data and radio frequency (RF) signals for indoor localization
should have three desirable properties: time-invariance, spatial distinctiveness, and universality. The sensory data
generated by magnetic fields have been accepted to have these properties [1, 32, 37]. In addition, these magnetic
fields are not affected by human bodies or moving (non-metal) objects in indoor environments [26]. This is one
of the outstanding advantages of using magnetic fields for indoor localization, compared with varying RF signals
such as WiFi.

Moreover, as explained in the previous section, the sensor data should be transformed to enhance the method’s
robustness with respect to changes in the position and heading of a magnetic sensor. The raw magnetic field data
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are parameterized as a three-dimensional vector, B, 4, = (By, By, B;). As suggested in [17], it is possible to obtain
a two-dimensional vector By, that consists of the horizontal component By, and the vertical component B,, by
rotating B,,,, onto a gravity plane. Note that By, is hardly changed even if a magnetic sensor changes its position
or heading due to a movement (e.g., the sensor holder’s movement). That is why this transformation process is
crucial when using the magnetic field for localization. While a two-dimensional vector form of a magnetic field
for each spatial point is very helpful, it may not be sufficient for fine-grained localization, compared with WiFi
fingerprinting that can be very high-dimensional. To overcome this phenomenon, [26] suggested to add another
dimension to By, by accumulating the temporal history of By,,, and use the temporal vector of By, as a magnetic
fingerprint. We adopted the same approach in this paper.

3.2 Variation Issues

Even if the magnetic field in indoor environments is stable, actual sensor readings are somewhat complicated,
owing to several reasons. First, different magnetic sensors at the same location may show different readings,
which can be owing to different manufacturing materials and/or different sensing mechanisms in these magnetic
sensors. Figure 1(a) shows the magnetic sensor readings from three different devices over the same corridor
(length, 60 m). Note that we plot only B,, for the sake of simplicity. The absolute differences between the readings
of the three devices vary substantially, but their patterns of signal changes are similar. We can confirm this
phenomenon by applying the mean removal technique to the individual patterns, as shown in Figure 1(b). The
tendencies along the same trajectory can be slightly different if the heights of the magnetic sensors (i.e., their
altitude from the floor) are different, but this difference is not substantial (see [37]).

Second, even the same magnetic sensors may exhibit different readings owing to a possible bias associated
with the ferromagnetic materials, which results from the previous magnetic readings. Figure 2(a) shows the
magnetic sensor readings for the same magnetic sensor, at different distances from a ferromagnetic material (i.e.,
a battery). It shows the patterns of B, along the same corridor as the distance varies between the sensor and the
ferromagnetic material (1, 2, and 3 cm). The absolute difference increases as the magnetic disturbance increases,
but again, the trends of signal change are similar (compare with Figure 1(b)). Thus, the signal differences owing
to this bias can also be removed by applying the mean removal technique, as shown in Figure 2(b). Note that we
also adopted here the ellipsoid-fitting calibration method [22] that can compensate the bias itself with a simple
swinging gesture.

Third, for the same trajectory, different walking speeds of different users will result in different rates of changes
in magnetic readings. Figure 3 shows the magnetic fingerprints of users moving at different speeds along the
same trajectory. The rates of change in the magnetic data are different while the patterns of signals in the two
plots are similar. This phenomenon may make the location finding/matching process somewhat more difficult. To
address this issue, [26] leveraged the DTW algorithm [4]. The DTW algorithm allows to compare two sequences
with different time scales or speeds. However, its complexity is so high that using the particle filter framework
may demand many more system resources. Thus, in our approach we aimed to avoid using the DTW algorithm.

3.3 Sensing Rate

The rate of reading of a magnetic sensor is directly related to the amount of data to process. It decides not only
how frequently the magnetic field data are acquired, but also how much of the device’s energy is consumed. Thus,
choosing the right sensing rate is important, especially considering the IoT paradigm. Recent smartphones can
choose the sensing frequency in the range from dozens to hundreds Hz. As we seek to reduce the devices’ energy
consumption, we set the sensing rate to be as small as possible. Figure 4 shows the magnetic fingerprints for
different sensing rates, for users walking at normal speeds. Compared with the fingerprint pattern for the 50 Hz
sensing rate in Figure 4(a), the pattern for the 3 Hz sensing rate in Figure 4(b) exhibits almost no loss. Note that
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Fig. 1. Sensor readings from different magnetic sensors are plotted before and after mean removal, which shows that the
relative change in magnetic readings along the trajectory is independent of magnetic sensors.

the fingerprint for the 1 Hz sampling rate in Figure 4(c) reveals some pattern losses, especially at the beginning
and the end of the trajectory. We also plot the fingerprint for the 0.5 Hz sampling rate in Figure 4(d), which shows
many pattern losses overall. We thus chose 3 Hz as the sensing rate.
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Fig. 2. Sensor readings from the same magnetic sensor are plotted before and after the mean removal, as the distance from
the ferromagnetic material varies.

4 DESIGN OF ENERGY-EFFICIENT DEVICE FOR LOCALIZATION

Considering the observations and issues, we now introduce the design of an IoT device for magnetic field-based
localization.
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Fig. 4. Magnetic fingerprints obtained in the same corridor, for different sensing rates. Sensing rates as low as 3 Hz yield
only marginal information loss.

4.1 Hardware Design

We aim to build a positioning system that uses IoT devices in office areas, in cooperation with SK Telecom [31], a
leading mobile operator in South Korea. Among candidate platforms for IoT devices, we chose a small ID card, to
which positioning functionalities were added. Figure 5 shows an ID card (right) in the size of a credit card, and
a sensor-equipped board (left), in which the positioning functionalities were implemented. The width and the
height of the board were 23 mm and 52 mm, respectively, for mounting on the ID card.

The top requirement for the hardware design is energy efficiency, hence we seek to achieve one-year lifetime
for a coin battery system. The proposed system contains only two sensors for localization: a magnetometer
and an accelerometer. An accelerometer is essential for (i) the transformation from B, 4., to By, (ii) the PDR
technique, and (iii) inferring the user’s orientation. Other sensors, such as a gyroscope sensor and a barometer,
can help enhance the localization performance; however, they were excluded from the present design, to reduce
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Fig. 5. The implemented localization loT device, in the form of an ID card on which a small board is mounted. The board
contains a magnetometer, an accelerometer, and a BLE interface.

the device’s energy consumption. We chose a KMX62-1031[16] sensor, which is an ASIC that consists of a 3-axis
magnetometer and a 3-axis accelerometer.

For wireless communications, we chose a BLE chip [29] owing to its energy efficiency [28]. The BLE chipset used
on the board was nRF52832 [21]. To localize the card’s user in real time, the card/device continuously broadcasts
a BLE advertisement frame that contains its sensor data. Thus, tuning advertisement-related parameters, such
as the Tx interval and the Tx power, is a necessary step toward achieving energy efficiency. We set one second
to be the Tx interval and -20 dBm to be the Tx power, to achieve the battery lifetime of one year, which was
demonstrated in preliminary experiments. In the case of the Tx interval, one second is sufficient for tracking the
position of the device’s user. However, -20 dBm for the Tx power might be too weak for detecting at a certain
distance, which required us to conduct the following experiments.

Table 1 shows the observation probability of the BLE beacon frames vs. the distance between the BLE access
point (AP) and the Tx device, with the Tx power set to -20 dBm. The observation probability decreases for
distances longer than 10 m. In our experimental environment, four BLE APs were deployed at every corner of a
square-shaped office area in a grid format, and the length of a side of a square was 20 m. The case in which every
AP received no beacon frames consecutively occurred infrequently during the entire evaluation process, owing
to many APs. To make up for missing a single beacon frame, the device also sends the magnetic field data of the
previous round.

4.2 Structure of the BLE Beacon Frame

Figure 6 shows the message format of the BLE advertisement frame, which is used for conveying the sensory data
from an IoT device to a localization server in our system. The maximal size of the BLE advertisement frame is
currently 31 bytes according to [29]. In the proposed system, the available space for the sensory data is 19 bytes,
since 12 bytes are reserved for other data, including the company ID, the device’s status, the remaining battery
level, and the sequence number. We first contain a series of three pairs By, and B, in the current round (1 round
= 1), where each value is 2 bytes long. Recall that the sensing rate is 3 Hz. Note that each value ranges from
-1200 uT to +1200 uT [16]. Thus, the total number of bytes for reading magnetic vectors is 12. Then, the series of
three |B| values of the previous round needs 3 bytes; this is to make up for beacon missing cases, as mentioned in
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Table 1. The observation probability of BLE beacons vs. distance, for the Tx power of -20 dBm.

Distance Observation Transmission Observation
(m) Count Count Probability
1 57 57 1.00
3 79 79 1.00
5 57 57 1.00
7 59 59 1.00
10 70 80 0.88
15 63 73 0.86
Metadata . :
Item (seq. # battery, status, ...) B, B, last |B| lacce| Orientation
6 6 3 3
Bytes 12 (3*2bytes) | (3*2bytes) | (3% 1bytes) | (6 * 0.5 bytes) 1

Fig. 6. A BLE beacon frame contains the magnetic data, accelerometer data, and orientation data.

Section 4.1. Even though a single value (|B|) may make it difficult to distinguish the magnetic fingerprint of one
location from others, we cannot afford to keep two values (B, and B,,) for the previous round, due to the space
limit. In the case of the accelerometer, its sensing rate is 6 Hz, and each reading needs 0.5 bytes for its vector
strength. Overall, that requires 6 * 0.5 = 3. The acceleration data itself are used only in the step detection, and
the detection algorithm does not require high-resolution data, as will be detailed in Section 5.3.1. The last byte is
assigned to the average value of the orientation observed in the current round. The change of the user’s heading
direction in the indoor space tends to be not so frequent. Thus, a single orientation value per second is sufficient
to track the direction of the user’s movement.

4.3 Processing Sensor Data

In the proposed system, the device delivers the sensor readings to a back-end server via BLE APs. In this way,
device-end data processing is minimized for energy saving purposes. However, owing to the space limitation
of the BLE advertisement frame, front-end processing of sensory data should be performed in the device to
compress the data that are to be delivered. Figure 7 shows the device architecture including data processing
components and their inputs/outputs. Calculating |acc|, transforming a three-dimensional magnetic vector to a
two-dimensional value (denoted by By,,) [17], and averaging the orientation values [20] are straightforward.

As to extracting the gravity vector from the raw accelerator vector, many papers [11, 42, 44] have used an N-
order Butterworth low pass filter (LPF) [5]. However, despite its good filtering performance, the Butterworth filter
has O(N log N) time complexity [36] of the fast Fourier transform (FFT). Thus, it requires too much computational
power and memory for IoT settings. We note that the main purpose of extracting the gravity vector is to obtain
By, by rotating B,,,, onto the gravity plane. For lightweight operations, we replaced the Butterworth filter by a
first-order LPF as follows, since a simple LPF can calculate By, approximately.

yi=axx;+(1—a)*yi (1)
where x; is an input value at the current time i, and y;, y;_; are output values at the current time i and previous
time i — 1, respectively. Here, a is a constant for the LPF.
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Fig. 8. Magpnetic fingerprints extracted using different gravity vectors, for the same path.

Equation (1) is a simplified formula for the first-order LPF. This LPF is much simpler than the Butterworth
filter and requires memory only for a single floating number y;_;. To evaluate the performance of filters, we first
recorded the acceleration data and B, 4,, while walking along the corridor, and rotated the B, ., vector by different
gravity vectors extracted using different filters. A gravity vector obtained using a commercial gravity sensor
of Samsung Galaxy S5 and a magnetic fingerprint rotated by raw acceleration were also used for comparison.
Figure 8 plots only B, which shows that the patterns of magnetic fingerprints are almost similar. We thus used
the simple first-order LPF in Equation (1).

As the final validation process, we compared the magnetic fingerprints obtained by a smartphone and the
presently designed IoT device. The two fingerprints exhibited almost the same pattern along a 150-m-long
trajectory in terms of By, and B,, respectively, as shown in Figure 9.
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5 SYSTEM ARCHITECTURE

We now introduce the architecture of the proposed system and the positioning algorithm, whose designs are
based on the findings described in the previous sections.

5.1 Overview

In the proposed system, the positioning algorithm starts when a user carrying a neck ID card enters the target
area. The card/device periodically advertises a BLE beacon frame with sensor readings as specified in Figure 6.
The BLE APs positioned in a grid-like manner (intervals of 20 m) then receive the frame, which in turn is delivered
to a back-end server. The APs each collect the received signal strength (RSS) of the received beacon frame for
localization purposes. We analyze the BLE RSS along with the magnetic field data, to enhance the localization
performance.

After receiving the beacon frames, the back-end server estimates the location of the user, using the particle
filter algorithm. The computation is performed for each period (period duration, 1 s). The server first counts the
number of footsteps and moves the particles depending on the step count and the orientation. Then, the user’s
final location is estimated using the particle filtering process, which will be described in details below.

5.2 Site Survey Methodology

For the site survey, we used the same magnetic fingerprint collection method as in Maloc [37]. In Maloc [37],
the surveyor collected (and interpolated) magnetic fingerprints at every 0.1m * 0.1m grid points by moving in
the target area along straight-line paths. However, storing fingerprints with such a fine granularity leads to a
huge fingerprint database and high computational cost. What is worse, as the number of measurement points
increases, there are likely to be more points with the same or similar magnetic reading. To determine the suitable
size of a grid unit, we divided a 2-m-wide corridor into seven straight-line paths with 0.3 m intervals, which were
numbered from 1 to 7, from the left to the right direction. Figure 10 shows the magnetic fingerprints along the
different paths. We found that two adjacent fingerprints exhibited similar patterns, while next-nearest fingerprints
tended to exhibit distinct patterns. Moreover, using the insights in 3.3, we also estimated the proper grid size by

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 2, No. 1, Article 17. Publication date: March 2018.



17:12 « M. Kwak et al

-
(]
]
(]
]
(]

-
=

T)
-
=

EGS = 65
560 . £ 60
= =
255 255
in in
- 50 - 50
] ]
iC 45 45
2 2
T 40 T 40
L 1 &35
= 2 =
30 3 30
25 25
0 50 100 0 50 100 0 50 100
# of samples # of samples # of samples
(a) Left-side paths (b) Middle paths (c) Right-side paths

Fig. 10. Fingerprints collected along multiple paths (in a corridor), with the distance of 0.3 m between adjacent collection
sites.

observing the magnetic data along the same path. That is, the spatial change in the magnetic field data along
a path was marginal for a certain distance. If the sensing rate of 3 Hz is sufficient for tracking the magnetic
fingerprint pattern of a user when the user walks at a normal speed ranging from 1 m/s to 1.5 m/s, we can obtain
only one or two fingerprint data for each 0.5 m unit as a representative value. We thus chose 0.5 m as the grid
size based on the above findings.

We implemented an Android application for convenient site surveying, and Figure 11 shows a screenshot of
this application. The surveyor can easily choose the target grid for measurements. We also incorporated a PDR
module into the application, hence allowing to map collected fingerprints to proper grids, even if the surveyor
walks at various speeds. Note that we use the average values of By, B, and the RSSs received by the BLE APs
nearby as the fingerprint of each grid.

5.3 Particle Filter Framework

In this section, we explain the particle filter framework that is used in the proposed system. The particle filter
solves the filtering problem, which amounts to estimating the state of a dynamical system (i.e., the location of a
user) from noisy and partial observations. The key action of the particle filter consists of distributing a set of
particles (also called samples) in each epoch, to represent the probability distribution of the state of the dynamical
system. In the next epoch, the observation is different, owing to the dynamical nature of the system, which is
manifested as replacement of old particles (of negligible probabilities) by new particles or moving particles into a
new distribution.

5.3.1 Step Counting. First, we should count the number of steps for moving the particles. In our system, there
are only six |acc| values per second owing to the space limitation on the beacon frame; thus, we use a simplified
heuristic algorithm for counting the number of steps. We adopted the peak-valley detection technique [7, 18, 24],
which allows to count the steps using a simple algorithm. It is widely known that the temporal change in the
acceleration (of a walking user) exhibits a periodic pattern of alternating peaks and valleys. Thus, steps can be
counted by tracing this pattern.

We collect the acceleration magnitude (i.e., raw floating data) as the user walks 15 steps with the sampling
frequency of 15 Hz, as shown in Figure 12(a), and the measurements are filtered by the proposed system (6 Hz,
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Fig. 11. A screenshot of the site survey app, captured to illustrate the convenience of fingerprint measurements.

rounded off to integers), as shown in Figure 12(b). To clearly trace the peaks and valleys in our measurements,
we designed the device firmware to compute the maxima and minima of the acceleration magnitude three times
during a time window (1-s-long window). Thus, three max-min pairs (of the acceleration magnitude data) for each
time window are transmitted over the BLE interface. Obviously, some information is lost owing to compression,
but the data critical for the peak-valley detection technique are delivered. Next, we determine the peaks and
valleys in the sequence by applying two thresholds: 12m/s? for the peaks and 8m/s® for the valleys. We also
consider the increasing and decreasing trends in the overall sequence for excluding false peaks and valleys.
The red dots in Figure 12(b) show the results obtained using our step-counting algorithm. The accuracy of the
step-counting algorithm over the entire evaluation process was above 90%.

5.3.2  Motion Model. Although the distortion in the magnetic field in an indoor environment can be used as a
fingerprint, it also hinders us from inferring the heading orientation of a user/device. This phenomenon directly
and negatively affects the performance of the particle filter technique, because particles should move in the same
direction as the user’s orientation. To overcome this problem, we adopted a technique that was introduced in
Magicol [26]. Magicol exploits the observation that a walking human is very likely to follow the direction of a
corridor, rather than making random turns. However, we have to propose an alternative solution because we
cannot use a gyroscope sensor (to track the user’s heading more correctly) as in Magicol.
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Fig. 12. The temporal pattern of the acceleration magnitude and the result obtained using the proposed step-counting
algorithm, for a user walking 15 steps.

To ensure that particles follow the user’s walking direction, we take a probabilistic approach substantiated
in Algorithm 1. Forty percent of the particles move along the pathway (one out of several candidate pathways)
whose direction is closest to the orientation reading of the device. Another 40% of the particles choose a direction
by considering the extrapolation of the user’s movement between the previous and current rounds. The remaining
20% of the particles move simply following the raw orientation reading (regardless of the pathway). The proposed
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Algorithm 1: The algorithm for the estimation of heading in the particle filter framework.

Input: 6,,,, = Raw orientation from sensor reading
Input: Hjﬁ’l = Orientation in the previous round of each particle p
for each particle p do
prob = choose a random number between 0 - 1.0;
if prob < 0.4 then
Opath = choose the closest orientation to 0y, from the directions of the pathway where p is on;
if Oparh — Oraw| < 90 then

‘ move p towards Opah;
else

‘ move p towards y4.y;
end
Ise if 0.4 <= prob < 0.8 then
Opath = choose the closest orientation to 9;,‘1 from the directions of the pathway where p is on;
if Oparn — 9;‘1| < 90 then

move p towards Opah;

else

‘ move p towards y4.y;
end

(o)

else
‘ move p towards y4.y;
end

end

model is thus likely to force most of the particles (~80%) move along the (estimated) pathway direction. Figure 13
shows that this algorithm (indicated by Motion Model) traces the user’s walking orientation with the accuracy
of 84%, even if the user makes 11 turns on the trajectory. Here, GT denotes the ground truth direction of the
user. Note that the magnetic reading for the orientation can be far from the real direction of the user, owing to
distortion.

While other magnetic field-based systems, such as Maloc [37] and Magicol [26], aggressively leverage the
accurate estimation of orientation using a gyroscope, the proposed motion model achieves high accuracy in spite
of the much lower sensor rate (1 Hz) and the absence of a gyroscope. Our probabilistic approach that tracks both
the pathway’s direction and the history of the user’s trace effectively estimates the user’s true orientation in
structured indoor environments. The performance of the motion model directly affects the posterior distribution
of states in the particle filtering framework.

5.3.3  Magnetic Matching. After all particles move, the survival probabilities (weights) of the particles need
to be computed. As described in 3.1, the weight of a particle is computed using the temporal history of By, as
a fingerprint to overcome the low distinctiveness of magnetic field data. Prior approaches [26, 32] that used
magnetic field history data exploited the DTW algorithm to compare the similarity between magnetic fingerprints
to support various walking speeds. However, the DTW technique is expensive both computationally and memory-
wise, especially when used with the particle filter framework that computes the weight of every particle. Thus, in
our approach we exploit the Euclidean distance to lower the computational complexity when comparing the
similarity between the observed fingerprint and patterns in the database.
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Fig. 13. Performance of the motion model algorithm for inferencing the user’s orientation. Raw orientation readings were
obtained and calibrated by the motion model that achieved 84% accuracy on a trajectory with 11 turns.

To exploit the Euclidean distance to find the matching entry in the database, the speed of the user’s fingerprint
measurements should be estimated first. As explained in Section 3, various walking speeds and sensing rates of
the device along the same path may generate seemingly different fingerprint patterns. As the sensing rate is fixed
at 3 Hz in the proposed system, the issue that remains to be resolved pertains to different walking speeds of the
user and the (site) surveyor. We resolve this issue by (1) allocating a wide range of stride lengths for each particle,
and (2) disseminating the particles in a wider area in the proposed particle filter framework during the resampling
of dead particles. With the sensing rate fixed, the differences between the fingerprint patterns of different users
are relatively small. Thus, moving the particles to some area including the true location of the user is easily
achieved using the two above-mentioned techniques. Although we should use many particles (about 3000) to
cover the wide range of stride lengths and hence the wide area of dissemination during the resampling, the
increase in the execution time with the Euclidean distance is much smaller than the one for the DTW technique
(detailed in Section 6).

5.34 BLE Matching. In our approach, we also used the BLE matching technique as a supplement to the
particle filter framework. We first adopted a traditional fingerprinting approach introduced in RADAR [2] for BLE
matching. In the fingerprint database, each grid of the target area contains a BLE RSS fingerprint obtained during
the site survey, which allowed us to infer the best-matched grid by comparing the user’s BLE RSS observation and
the database content. However, owing to the weak strength of BLE signals compared with WiFi, the localization
performance of BLE fingerprinting may be somewhat unstable. Thus, augmenting the BLE matching results with
particle weighting does not improve the overall performance of the system.

When we extend the magnetic field data in the time domain for fingerprinting, we should decide how many
readings of the magnetic field data will be sufficient for achieving the desired localization performance. To
this end, we conducted a pilot experiment to decide the time duration that is necessary to make the temporal
history of magnetic readings distinct; it took about 10 s (10 m to 15 m in the moving distance) for a sequence of
magnetic data to have distinctiveness. Hence, we used the BLE matching combined with the magnetic fingerprint
to improve the overall localization performance. For the first 10 s after the initialization, we remove the particles
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that are beyond a certain range Rp; g from the BLE matched grid. Note that the particles around the GT point
should not be removed. For that, we count how many times a particle is outside the Rpy g range consecutively; if
the particle is outside for 7, times, it is removed. We call this technique BLE filtering. Also, we set 7. to 2 and
RprE to 6 m to speed up the convergence of the particle distribution.

5.3.5 Particle Filter. We now combine the above component processes into a particle filter framework. Equa-
tion 2 shows the particle model for particle p; in the proposed system

pi =< xisyi96;71,wisci’ﬁ> (2)
where x;, y; represent the current location of particle p;, which captures the candidate user location. ! ~" is the

orientation measure in the previous round (i.e., t — 1) and w; represents the weight of the particle. ¢; and h denote
the BLE filtering count of the particle and the temporal history of By, that the particle has observed along its
trajectory, respectively.

During the initialization phase, the particles are uniformly distributed throughout the target area. Then, for
each beacon, the position and the weight are updated. At first, the position of particle p; at time ¢ is updated
based on the step-counting and motion model algorithms, using Equation 3

S

_ -1 t
Y =Y; +Nstep

x (I + Gy) X cos (0%,,,, + Gg)
x (I + G;) x sin (6%,,, + Gp)

®3)
where Ny, is a detected step count at time ¢,/ is 0.65 m as a mean value of the stride length distribution, and 0;,,,,
represents the calibrated orientation obtained using the motion model. G; and Gy are Gaussian noise processes
of the stride length and orientation, respectively.

We add a relatively higher Gaussian noise to the stride length as G; ~ N(0, 0.5]) compared with the existing
approaches (e.g., 0 = 0.2] as used in [26]), to expand the distribution area of the particles to support various
walking speeds (of users). The Gaussian noise for the orientation is set to G ~ N(0, 10°).

After the particles move, their weights should be updated. In our approach, we adopted a Gaussian weight
function, following [26]. The Gaussian function effectively enhances the distinctiveness of the magnetic fingerprint
patterns owing to its bell-like shape. Equation 4 describes the weight function

w; = ae 27 (4)
where « is the height of the Gaussian curve’s peak and the maximal value of the magnetic weight, o is the

aggressive parameter to control the width of the Gaussian curve, which captures how aggressively the weight
decreases as ||d|| increases. Here, ||d|| is the Euclidean distance, as shown in Equation 5

lld|l = d(h, u) (5)

where i is the vector of By, measured by the device.

Note that the mean removal technique is applied to hand @, respectively, as explained in Section 3.2. After
updating the particle’s weight, the particle is removed if it satisfies any of the following conditions.

(1) The particle hits the wall

(2) w; is lower than a threshold z,,

(3) BLE filtering

The final phase of the particle filter algorithm is resampling and the inference of the user’s location. As
explained in 5.3.3, we adopt here a heuristic algorithm to maintain a sizable area for particle dissemination
to support various walking speeds of users. For the removed particles, we replenish the same number of new
particles around the survived particles with top 10% of weights. At this moment, the distance between surviving
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Fig. 14. Evaluation of the proposed system in a 20.5 m X 16 m office area with three conference rooms.

and replenished particles is randomly distributed within a circular area of its radius being 1.5 m. Finally, to infer
the final location of the user, we calculate the average of the coordinates over all of the particles, weighted by w;.

6 EVALUATION

In this section, we evaluate the proposed system in terms of the localization accuracy, computational cost, as well
as energy efficiency. The evaluation consists of (1) parameter tuning for the particle filter algorithm such as the
temporal sequence of h and number of particles P, (2) comparing the effectiveness of the Euclidean distance
(EUC) approach with the DTW approach, and (3) measurements of battery consumption for the prototype device.

6.1 Implementation

We first implemented an IoT device for localization, as shown in Figure 5, and its firmware as described in
Section 4. When the testers carrying the device walked in the target area, the device continuously delivered
sensor readings to the back-end server via the BLE APs. Note that the four BLE APs were organized in a grid-like
manner (with 20 m intervals) at the four corners of the testbed. Then, the particle filter framework implemented
on the back-end server PC with a 3.3 GHz CPU and 16 GB memory estimated the location of the device based
on the sensor readings. The particle filter framework could perform both real-time and off-line analysis after
collecting user traces. We chose the latter to evaluate the proposed system against the ground truth for the sake
of simplicity.

6.2 Experiment Setup

To evaluate the performance of the proposed system in a real-world setting, we collected sensory data in a 20.5
m X 16 m office area, as shown in Figure 14. The target area contained three conference rooms and multiple
corridors. To support the various moving speeds and stride lengths of target users, three testers with different
heights collected the data for three months, from February to April of 2017. We defined seven trajectories in the
target area, among which two trajectories each were tested at three speeds (0.58 m/s, 0.91 m/s, and 1.30 m/s) and
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Fig. 15. Effect of the temporal duration of magnetic readings on the localization performance and on the execution time.

three device heights (0.9 m, 1.1 m, and 1.3 m). The other five trajectories were tested for speeds in the 1.0 - 1.1
m/s range. In Figure 14, two trajectories are drawn in red and light green, and the others are drawn in black.
Using the collected data, we evaluated the system in terms of the localization accuracy, computational cost, and
energy efficiency.

6.3 Localization Performance

6.3.1 Temporal Duration of Magnetic Readings. We first evaluated how the temporal duration of the magnetic
readings (i.e., E) affected the localization performance in Figure 15. Figure 15(a) compares the localization accuracy
of the Euclidean distance (EUC) and the DTW algorithms, for different temporal duration of h. Note that we
assigned 3000 particles in this experiment. Figure 15(a) shows that both algorithms achieved the accuracy of 2 m
when we set the temporal duration of h to be longer than 20 s. The execution times for the EUC and DTW methods,
plotted in Figure 15(b), show that the difference between the EUC and DTW methods increases significantly with
increasing temporal duration of h. Interestingly, the execution time of the EUC algorithm appears to converge,
even when the temporal duration of h increases. Hence, we conservatively chose 30 s as the temporal duration of
magnetic readings (i.e., 90 samples) in what follows.

6.3.2  Number of Particles. The number of particles, P, in the particle filter algorithm is a key parameter directly
linked to the localization performance and the computational cost. Figure 16 shows the time-series localization
performance when a target user walks along the trajectory (I) as shown in Figure 14. We assigned two numbers
to P: 500 (Figure 16(a)) and 3000 (Figure 16(b)).

With P = 500, as shown in Figure 16(a), the EUC method poorly traces the movement of the target user
when two turns are made with a short interval (around 75 and 79 s). It then spends almost 30 s on catching
up with the target user at the similar localization accuracy as the DTW method. The main reason for the poor
performance of the EUC method with P = 500 is that a wide but sparse distribution of particles may not cover
the ground-truth location of a target user. On the other hand, in the case of P = 3000, as shown in Figure 16(b),
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Fig. 16. Localization performance of the EUC and DTW methods, for different numbers of particles in a long trajectory.

the localization errors for the EUC method around 75 s and 79 s do not spike owing to the sufficient density of
particles. Interestingly, the EUC method with P = 3000 performs even better than the DTW method with the
same number of particles. That is, the average localization error of the DTW method is 1.92 m, while that of the
EUC method is 1.81 m. All of the experiments for all scenarios demonstrated the same tendency, as shown in
Figure 19(a). As shown in Figure 19(a), using the DTW method with P = 500 (DT W500) was slightly advantageous
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Fig. 17. Effect of the heuristic algorithms in Section 5.3.5 for a system with 3000 particles in the particle filter framework.

to using the EUC method with P = 500 (EUC500), but the performance gap between the DTW3000 and EUC3000
methods was negligible, owing to the sufficient number of particles.

We also evaluated the effect of the heuristic algorithms (in Section 5.3.5) that can contain the candidate locations
(by placing the particles as explained in Section 5.3.5) when they run with the sufficient number of particles,
P = 3000. Figure 17 compares the results for EUC3000, with and without these heuristic algorithms. As shown in
Figure 17, the performance of the EUC method without these heuristic algorithms is significantly compromised,
which implies that these heuristic algorithms are effective when a sufficient number of particles is used.

We next compared the computational cost of the EUC and DTW methods, and the results are shown in Figure 18.
Figure 18 shows the computation time for a single-round particle filter algorithm. As shown in Figure 18, the
EUC method is more computationally efficient. Since we set the temporal duration of h to 30 s, the accumulated
history size of the DTW method gradually increases until 30 s from the start, and maintains the same size after
that point. On the other hand, the execution time of the EUC method is almost the same up to 30 s from the start.
Moreover, the EUC method yields a 15x faster execution time than the DTW method on average (450 ms for
DTW, 30 ms for EUC). This also holds for different scenarios with different P, as shown in Figure 19(b). Note
that the execution time of DTW500 is even 2.7x times longer than that of EUC3000; the median execution time
of EUC3000 is 29 ms, while that of DTW500 is 78 ms. Considering the comparable localization performance
of EUC3000 and DTW3000, as shown in Figure 19(a), we conclude that leveraging the Euclidean distance can
achieve a comparable localization performance to that of the DTW approach, while being more computationally
efficient (and thus more energy efficient).

Finally, we set the number of particles to 3000 in the proposed system, i.e., EUC3000. Figure 19(a) shows the
localization errors for the different algorithms. For comparison, we also evaluated the PDR-based particle filter
algorithm (PDR_RAW) without the motion model and the BLE fingerprinting algorithm adopting RADAR [2]
(BLE_RADAR). The average localization error of the proposed system for every scenario was 1.96 m, and the
median error was 1.62 m. This result indicates that the proposed system performs almost as well as systems that
use smartphones [26, 37] and the DTW approach. At the same time, the proposed system is more computationally
efficient than other systems, as shown in Figure 19(b). In comparison with Magicol [26] and Maloc [37] approaches,
for which the execution times are longer than 3 s and 1 s, respectively, our system performs much faster owing
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Fig. 18. Comparison of execution times of the EUC and DTW methods, with P = 3000, for a long trajectory.
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to the smaller number of sensors and data rate, and because it does not use computationally heavy algorithms

such as the DTW algorithm.
6.3.3 BLE Filtering. Figure 20 analyzes the efficiency associated with incorporating the BLE filtering technique

into the particle filter framework. As shown in Figure 20(a), BLE filtering reduces the localization error and its
convergence time, especially in the first part of the experiment. Figure 20(b) shows the cumulative distribution
functions (CDFs) of the localization errors, for different scenarios. As shown in Figure 20(b), the localization
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performance is improved, especially for the cases with large localization errors, because BLE filtering reduces the

convergence time.

6.4 Energy and Algorithmic Efficiency

We next evaluated the energy efficiency of the IoT device by measuring its energy consumption as shown in
Figure 21. We observed that the device uses 0.159 mA in the active mode, during which it performs continuous
BLE advertisements at 1 Hz, while it requires 0.004 mA in the sleep mode. The battery we used in the proposed
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Fig. 21. We measured the energy consumption of the developed loT device.

Table 2. The CPU usage of a typical back-end server vs. the number of devices.

Number  CPU Usage

of Devices (%)
1 5.27
10 8.52
20 19.50
30 59.50
40 71.78
50 70.82
60 87.53

device was a CR2450 [9] with the 620 mAh capacity. Hence, assuming the device is used 8 h a day, the device can
be used for 324 days. Note that switching between the active and sleep modes can be easily triggered by sensing
the magnitude of acceleration.

We also evaluated how many IoT devices a typical back-end server (i.e., with 2.2 GHz CPU and 16 GB memory)
can handle. To this end, we implemented a benchmark software that emulated multiple devices in the proposed
particle filter system. As shown in Table 2, the CPU usage (of the back-end server) increased with increasing the
number of devices. We found that a desktop-level machine can handle about 60 devices. Therefore, we expect
that the proposed system can simultaneously support hundreds of devices with a high-end server machine.

7 DISCUSSION

Comparison with Other Indoor Localization Systems. We compared our system with other representative indoor
localization systems in Table 3. Methods that leverage WiFi signals, such as Horus [39], are the most widely
used ones, owing to the wide deployment of WiFi APs. However, WiFi scanning takes 3-4 s, and also consumes
much energy. UWB-based systems [13] achieve very high accuracy on the centimeter scale and provide real-
time positioning services. However, they still suffer from the problems of high energy consumption [23] and
high deployment cost, due to the need for customized hardware devices. From the viewpoints of both energy
consumption and scanning frequency, systems that are based on BLE [46] can be a good alternative. However, they
are characterized by a high cost for dense installation of BLE beacons. Moreover, frequent fluctuations of these
wireless signals (including WiFi, BLE, UWB), caused by the multi-path effect and human body blockage, often
make the localization performance of these systems unstable. As a way to overcome the inherent weaknesses
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Table 3. Comprehensive comparison with other representative indoor localization systems.

System Technology Accuracy Algorithm Cost Energy Robustness
Complexity Efficiency

[39] WiFi 2m Medium Low Poor Moderate

[13] UWB 39 cm Low High Poor Moderate

[46] BLE 1.4-1.7m Low High Good Moderate

[45] Vision light 18 cm Medium Low Poor Poor

[37] Magnetic 1-2.8 m Medium Low Moderate Good

[26] Magnetic 1-2m High Low Moderate Good
Our System Magnetic 1.6 m Low Low Good Good

of wireless signals, some studies [41, 45] have proposed visible light-based localization systems. These systems
achieve very high positioning accuracy and their deployment cost is much lower, because there are already
ubiquitously deployed fluorescent lights and light-emitting diodes (LEDs) in buildings. The drawbacks are (i)
high energy consumption associated with the camera operation and vision data analysis, and (ii) line-of-sight
(LoS) path requirements on the light sources.

On the other hand, as explained in Section 3.1, the robustness and pervasiveness of magnetic fields make
magnetic field-based systems more viable than systems based on other localization sources. The magnetic field
is not affected by obstacles and is nearly stable in time, and its discernibility can be enhanced by using the
temporal history of By, as a fingerprint. Compared with previous studies [26, 37], our system is more energy
and algorithmically efficient. Our prototype IoT device achieves one-year battery life for a coin battery, by
streamlining the amount of sensor data to process, and by simplifying the sensory data-processing algorithms.
We suggest an augmented particle filter framework by introducing a robust motion model that achieves similar
accuracy despite much smaller amounts of sensor data. The evaluation results confirmed that our system exhibits
a similar level of positioning accuracy as previous magnetic field-based systems, while it is more computationally
and energy efficient. Although the positioning accuracy of the system is slightly lower than those of UWB- and
vision light-based systems, the median accuracy of 1.6 m is sufficient for most LBS-like tasks of tracking humans
in workplaces, child care services, and emergency escape services.

Bluetooth 5.0. We used a BLE chipset based on the Bluetooth 4.2 specification in the proposed system, because
the Bluetooth 5.0 specification was published after its hardware implementation. Adopting Bluetooth 5.0 [30] in
the proposed system would provide a larger beacon frame length, up to 255 bytes. Without the space constraints
on the BLE payload size, each device would be able to deliver more information to the back-end server, which is
expected to enhance the performance. In this paper, we used a highly simplified version of PDR based on a low
sensor rate (6 Hz for the accelerometer, 1 Hz for orientation), owing to the limitation of the payload size. Using a
more sophisticated PDR technique (say [25]) with higher sensing rates of the accelerometer and the orientation
sensor will likely improve the performance of the motion model and hence the performance of the entire system.

Deployment on Smartphone. The proposed system is equipped with the same type of sensors as the ones that
are used in commercial smartphones. Thus, the proposed solution can be easily deployed in smartphones while
reducing the computational cost and enhancing the system’s energy efficiency.
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8 CONCLUSION

In this paper, we designed and implemented a practical indoor localization system based on the magnetic field,
for use in 10T applications. We first addressed the issues related to using the magnetic field for localization, and
designed an IoT device equipped with a magnetic sensor, an accelerometer, and a BLE interface. Using the results
of our preliminary experiments, we sought to streamline the computational overhead and the sensory data for
localization. We also enhanced the efficiency of the particle filter algorithm by adopting multiple techniques. The
comprehensive experiments reveal that the proposed system achieves the median localization accuracy of 1 m,
while satisfying the low computational overhead and high energy efficiency requirements.
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