
Fast Update of Forwarding Tables in Internet Router
Using AS Numbers �

Heonsoo Lee, Seokjae Ha, and Yanghee Choi
School of Computer Science and Engineering

Seoul National University
San 56-1, Shilim-dong, Kwanak-ku, Seoul, Korea

fgrace, sjha, yhchoig@mmlab.snu.ac.kr

Abstract

The updates of router forwarding tables can be made
faster using the Autonomous System number corresponding
to a prefix as an intermediate number between the prefix
and the next-hop address. At the cost of fast update, one
table lookup introduces small additional delay, which can
be eliminated by pipelining. This scheme is applicable to
several routing table lookup algorithms for fast update.

1. Introduction

The IP address lookup is a process finding a next-hop
address from a destination IP address. This process is so
important function of routers that it must be fast, and im-
plemented with a reasonable cost. Before CIDR(Classless
Inter-Domain Routing) [2], the lookup could be done easily
with comparisons of fixed length prefixes. The shortage of
32bit IPv4 addresses, especially the shortage of class-B ad-
dresses, stems from the fact that there is no proper address
class for medium-sized organizations. A class-C address,
which can accommodate up to 254 hosts, is too small, and a
class-B address, which can support up to 65534, is too big
for them. The growing size of the routing tables in the Inter-
net routers was also a problem [2]. With the introducing of
CIDR in 1993, new network addresses are allocated, and the
increasing rate of routing table size is slowed down. How-
ever it also introduced the Longest Prefix Matching(LPM)
problem in the routing lookups. Here, ’prefix’ means a set
of networks. A prefix is of variable length, and the longer a
prefix is, the more specific routing information it has. LPM
compares a destination IP address and each prefix in the

�This work was supported in part by the Brain Korea 21 project of
Ministry of Education, in part by the National Research Laboratory project
of Ministry of Science and Technology, and in part by Electronics and
Telecommunications Research Institute, 2000, Korea.

forwarding table and produces a set of matching prefixes.
Among them, the longest prefix, which has the most spe-
cific routing information, is selected. Because this direct
method is inefficient, many faster schemes have been sug-
gested [1, 4, 5, 6, 11, 12, 13, 14]. Most uses more memory
to reduce the time.

Routers can be classified into three categories [3].
Routers in access networks allow homes and small busi-
nesses to connect to an ISP(Internet Service Provider).
Routers in enterprise network link computers within a cam-
pus or enterprise. Routers in the backbone link together
ISPs and enterprise networks with long distance trunks. It
is the backbone routers that have difficulties in LPM, be-
cause of the huge routing table size. This paper is focused
on backbone routers.

Many schemes concentrate on fast lookup time at the
cost of slow update. Because of frequent routing table up-
date of the Internet, however, it is important to invent up-
date method applicable to many schemes for fast update.
We propose such a method that does not increase memory
or time complexity of lookup. As an instance, we show that
this method improves [1].

This paper is organized as follows. Section 2 de-
scribes previous works, and section 3 presents our proposed
scheme. Section 4 discusses impact of routing instability to
forwarding table update schemes.

2. Previous work

The major performance bottleneck in backbone IP
routers is the time taken to lookup a route in the forwarding
table [3]. Because memory access is much slower than code
execution, the lookup time depends primarily on the mem-
ory access time. In other words, the speed of a route lookup
algorithm is determined by the number of memory accesses
to find the matching route entry, and by the memory speed.
By the memory size used, lookup schemes can be classified

into two categories.
The first category uses high-speed memory to reduce

time. Generally, memory size is reduced by compressing
the forwarding table into a small high-speed memory at the
cost of increased number of memory accesses. Because
the meaningful prefixes exist very sparsely in the prefix
space of 232, efficient forwarding table compaction can be
achieved. As memory prices drop, however, this may be the
wrong design decision [3].

Lampson et al. [4] suggested binary search on the sorted
IP address pairs, where a pair corresponds to maximum and
minimum value of IP addresses for a prefix. Very small
memory is used, but sorting makes the update difficult. And
the binary search takes too long in case of large table. So
this is applicable only to medium-sized enterprise routers.

Waldvogel et al. [5] suggested prefix grouping accord-
ing to length. From the longest prefix group, it tries to
find the matching prefix. In a group, the wanted one can
be found in a memory access by perfect hashing. Binary
search, instead of linear one, can find the longest prefix in
log L times among L groups. This scheme is scalable for
address lengths, and is applicable to IPv6. Because of per-
fect hashing, however, the entire forwarding table must be
regenerated at every update. And the lookup time is not
fixed, and it exhibits long worst case time.

Degermark et al. [6] suggested a very efficient index-
ing scheme. It assumes a complete binary tree containing
prefixes. And the tree is cut into three levels at heights 16,
24 and 32. At the first level, a bit vector of 216 bits rep-
resents 216 nodes, and a node with a set bit at the bit vec-
tor has a pointer to a next-hop address or a next-level trie.
The second category aims to reduce the number of memory
accesses. The extreme method uses a table of 232(4G) en-
tries of IP address, and the corresponding next-hop address.
Then, lookup can be done in one memory access. However,
4GB memory (assuming next-hop is denoted in 8bit) is still
expensive and it has difficulties in initializing and updating.
However, required memory size can be significantly shrunk
if the table is divided into several smaller ones.

Gupta et al. [1] suggested two tables, one is for pre-
fixes shorter than or equal to 24bit, and the other for pre-
fixes longer than 24bit. As observed in the present Internet
prefixes shorter than or equal to 24bit amounts to 99.93%.
The big table (TBL24) is for short prefixes (224entires),
and the small table (TBLlong) for a few long prefixes.
The TBL24 has next-hop addresses for normal prefixes,
but has pointers into the TBLlong in case of long pre-
fixes. In practice, the required memory can be reduced
to 33MB(TBL24(32MB)+TBLlong(1MB)). Separating the
two tables into independent memory banks enables pipelin-
ing (Fig. 1). Therefore, one lookup can be done in one
memory access time.

The major drawback of this scheme is that many table

TBL24

TBLlong

IP
address

0

23

31

next-hop

next-hop

Figure 1. Pipeline architecture. The next hop
is directly obtained.

entries need to be changed to update a prefix. Each prefix
must be expanded to 24bit regardless of its original length,
so an 8bit prefix, for example, is mapped to 65536 entries.
Therefore, to change the next-hop address of the 8bit prefix,
as many as 65536 entries must be changed. Generally, for a
prefix of length k, the update time complexity is O(224�k).
The solutions suggested by [1] do not reduce the overall
burden of updates, but only move the burden from proces-
sor to a specially designed hardware. As before, lookup
cannot proceed during updates, and each update needs burst
memory accesses.

Recently, many newly-suggested lookup schemes adopt
advantages of both categories. The first 16bits of IP address
are used as in the first category and the remnant bits are used
as in the second category.

3. The proposed scheme

3.1. Update

The aim of this scheme is to reduce the update overhead
of forwarding table. For that purpose, a stage of indirection
is introduced between prefixes and next-hop addresses. In
spite of frequent changes of next-hop addresses, the change
should be restricted between intermediate number and next-
hop addresses, and the change itself should be easy. The
intermediate number should have following features.

� The intermediate number itself should not change fre-
quently in order to retain the relation between prefixes
and next-hop addresses.

� Every prefix should have only one intermediate num-
ber.

� It should be short.

� It should be easily obtained in backbone routers. It
would be unreasonable to prepare additional protocols
only to get the intermediate number.

We decided to use Autonomous System (AS) number for
the destination IP address as the intermediate number. The
Internet can be modeled as interconnected ASes and back-
bone routers are located at AS boundary [18]. AS advertises
prefixes under its control with its 16bit AS number through
BGP(Border Gateway Protocol) [7]. The origin AS number,
to which a prefix belong, can be obtained from AS-PATH in
the routing table. It can be downloaded from the routing
table, and satisfies the above requirements as intermediate
number.

Therefore, the AS number, instead of next-hop address,
is looked up first, and then the next-hop address. Assum-
ing that next-hop addresses of a router are fewer than 256,
64KB of memory is required because AS number is 16bits.

AS(16bit) Next-hop(8bit)
0 A
1 A
2 B
... ...

65534 C
65535 B

Table 1. AS2NH(AS to Next Hop address) Ta-
ble

The next-hop address can be retrieved in one memory
access, and updated in one memory access in case of an
AS-PATH change(Table 1). If the destination is the router’s
own AS, packets should be forwarded differently accord-
ing to its prefix. To assign different next-hop for each local
prefix, we suggest the allocation of the upper area of AS
numbers. As in Table 2, the bottom area is used for globally
allocated AS numbers, which are as many as 16971 at the
time of this writing(July 2000), and the top area is reserved
for private use in AS by IANA [8]. We reserve the top 1024
AS numbers for long prefixes (i.e. it is assumed that a back-
bone router does not have more than 1024 entries for pre-
fixes longer than 24bits). And for prefixes for local AS, the
area between 16972 and 64511 can be allocated from the
top (i.e. 64511).

Because an additional stage is introduced (AS to NH),
entire lookup delay is increased. However, the delay can be
reduced if the 64KB of table is made by high-speed mem-
ory. Because of its simplicity, embedding this scheme into
existing lookup schemes is trivial.

3.2. Lookup

The proposed scheme changes the original two-table
scheme [1] (Fig. 1) to three-table one (Fig. 2) where
AS2NH table is inserted into the pipeline as the last stage.

65535
Allocation of long prefixes

64512
64511

Allocation of local subnetworks

Unallocated
16972
16971

Globally Allocated
0

Table 2. An allocation map of AS num-
bers.(July 2000)

The three tables are as follows.

� TBL24 : With 224 address space and each entry of
16bit AS number, the memory amounts to 32MB.

� TBLlong : This table can accommodate up to 1024
prefixes, where each prefix has 256 sub entries. Each
entry with 16bit AS number, the required memory
amounts to 512KB (1024*256*16bit).

� AS2NH : With 216 address space and each entry of 8bit
next-hop address, the memory amounts to 64KB.

Among AS numbers, the top most 1024
numbers(64512�65535) are reserved for private use
of AS. We use these numbers as indicators of long prefixes
in TBL24. If we encounter a number smaller than 64512 in
TBL24, that corresponds to normal AS number. Otherwise,
that corresponds to long prefix, so TBLlong is referred
to find out the AS number. The numbers greater than
64512(11111100000000002) can be easily found out by
checking the most significant six bits. The remaining ten
bits point to the location of entry in TBLlong.

As in the original scheme(Fig. 1), the separation of
three tables into independent three memory banks en-
ables pipelining. And although increased to three stages,
the hardware pipeline sustains the maximum through-
put(Fig. 2).

3.3. Examples

Assuming two prefixes, 147.46/16, 147.46.114.128/28,
AS numbers 9488, 2563, and next-hop addresses A, B, re-
spectively, the three tables are as follows(Fig. 3).

If the destination IP address is 147.46.115.31, then
TBL24 returns 9488, and then AS2NH returns A as the
next-hop address.

TBL24

TBLlong

IP
address

0

23

31

AS Number

AS
Number

AS2NH next
hop

h

Figure 2. Proposed revised pipeline architecture. AS number is converted to next-hop.

For 147.46.114.83, which belongs to a long prefix,
TBL24 returns 64555. Because the value is over 64512,
it indicates that the IP address belongs to long prefix.
The difference 43(64555 - 64512) corresponds to the en-
try number in TBLlong. Then, the number is multiplied
by 256 and added by the least significant 8bits of IP ad-
dress(83), resulting in the corresponding sub entry num-
ber(43*256+83). Then, AS2NH returns B as the next-hop
address for AS2563.

If the next-hop address of AS9488 changes to C, only
the corresponding entry in AS2NH table is changed with
one memory access.

4. Routing instability

4.1. Ideal situation

In an optimal stable wide-area network, routers should
only generate routing updates for relatively infrequent pol-
icy changes and the addition of new physical networks [9].
Insertion or deletion of a prefix(or a physical network) result
in burst memory access to change AS numbers of TBL24 or
TBLlong. Table 3 represents the comparison of two snap-
shots taken from the global prefix databases, which have
7-day-gap between them [17]. About 1000 prefixes are
changed, which corresponds to 1 in every 10 minutes.

This amount of changes does not matter much. And the
other kind of updates, the change of next-hop address, can
be reflected into AS2NH in one memory access. Therefore,
the suggested scheme seems to be suitable for the stable
Internet.

Time of snapshots Deleted prefix Inserted prefix
1/10/97, 1/17/97 571 850

10/17/97, 10/24/97 645 549
7/8/00, 7/15/00 288 594
8/3/00, 8/10/00 338 547

Table 3. Examples of changes in snapshot of
prefixes.

4.2. Route flaps

But, the real Internet routing has been known to be un-
stable [9]. The instability comes mainly from exchanging
large amounts of redundant update messages among back-
bone routers. A prefix is advertised as having been with-
drawn, which is not, and a few minutes later, is announced
as appeared. Such update messages sometimes amounts to
a few hundreds in a second.

There are three types of routing updates: forwarding
instability(the network has to choose a new path), policy
changes(BGP is announcing something new that does not
really affect routing), redundant information(junk). Es-
pecially, among the redundant information, the duplicate
withdraw announcements is predominant(more than 99% of
BGP information [9].)

Among the proposed solutions for this instability, damp-
ening [10] is to mark unstable routes, and delay update in-
formation for those, because the update messages are con-
centrated on those unstable ones. However, delaying every
update message is not suitable for really changed routes, so
immediate update for normal routes should be guaranteed.
Another method is to neglect update messages for prefixes

Entry Contents
...

147.45.255

147.46.1

147.46.2

...

147.46.113

147.46.114

147.46.115

...

147.46.255

147.47.1

...

...

230

9488

9488

...

9488

64555

9488

...

9488

230

...

Entry Contents
...

43*256

43*256+1

43*256+2

...

43*256+82

43*256+83

43*256+84

...

43*256+255

44*256

...

...

1382

2563

2563

...

2563

2563

2563

...

2563

491

...

Entry Contents
....

2562

2563

2564

...

9487

9488

9489

...

...

C

B

C

...

D

A

E

...

TBL24 TBLlong
AS2NH

Figure 3. Example of TBL24, TBLlong, and AS2NH.

longer than a threshold, for longer prefixes tend to be unsta-
ble. It is also helpful to refuse to peer with small ISPs, for
their usual instability.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 200 400 600 800 1000 1200 1400

C
ou

nt

Time

"Next_hop_change"
"AS_change"

Figure 4. Cumulative frequency graph of AS
changes and next hop changes for 14 days.

5. Simulation result

We want to show that how much the proposed algorithm
reduces memory accesses as respect to previous ones. We
regard [1] as a representative of previous ones, so used it
as the reference. [1] requires many memory accesses for
every next hop update, and the proposed algorithm requires

Date 10/2 10/5 10/8 10/12 10/15
AS 599 3023 3422 4667 4816

Next hop 9022 22377 26793 34706 37496

Table 4. Cumulative frequency table of AS
changes and next hop changes for 14 days.

about the same amount of memory accesses for every AS
update, but only 1 access for next hop update. Therefore,
we measured how often AS and next hop changes in a real
backbone router. And, we eliminated some route flaps be-
fore simulation by accepting only explicitly different ASes
or next hops compared to previous ones.

Routing table snapshots and BGP update messages of
an NAP are available through [19]. Routing table snap-
shots are provided as HTML format, and have over 40,000
default-free prefixes, each of which may have multiple path
information. BGP update messages are provided as binary
raw data through FTP, and are aggregated into a file for
every 15 minutes. We used all the data from 10/1/2000
21:45 to 10/15/2000 17:45 for simulation. First, we con-
structed a routing table by parsing a routing table snapshot.
Then, we updated the routing table with decoded BGP up-
date messages. Because of bursty characteristics of update,
we show the result as cumulative frequency graph(Fig. 4)
and table(Table 4).

In spite of abnormal periods of highly frequent updates,
next hop changes 7 times more frequently than AS in av-
erage. Because the intermediate number should not change
frequently in order to retain the relation between prefixes

and next-hop addresses, we can conclude that AS number
is suitable for that purpose.

6. Conclusion

In this paper, we propose new scheme that reduces
update overhead in the Internet forwarding table. Some
lookup algorithms have large update overhead due to pre-
fix expansion. We suggest using the AS number of prefix as
intermediate number between IP and next-hop address for
fast update. As the simulation result from real BGP update
messages, AS number changes 7 times less frequently than
next hop. This method can be easily applied to other lookup
schemes just by inserting a small table that converts AS to
next-hop.

References

[1] P. Gupta, S. Lin and N. McKeown, ”Routing Lookups in
Hardware at Memory Speeds,” INFOCOM, pp. 1240-1247,
1998.

[2] V. Fuller, T. Li, J. Yu and K. Varadhan, ”Classless Inter-
Domain Routing (CIDR) : an Address Assignment and Ag-
gregation Strategy,” RFC 1519, IETF, Sept. 1993.

[3] S. Keshav and Rosen Sharma, ”Issues and Trends in Router
Design,” IEEE Communications Magazine, May 1998.

[4] B. Lampson, V. Srinivasan and G. Varghese, ”IP Lookups
Using Multiway and Multicolumn Search,” INFOCOM, pp.
1247-1256, 1998.

[5] M. Waldvogel, G. Varghese, J. Turner and B. Plattner, ”Scal-
able High Speed IP Routing Lookups,” SIGCOMM, pp. 25-
35, 1997.

[6] Mikael Degermark, A. Brodnik., S. Carlsson and S. Pink,
”Small Forwarding Tables for Fast Routing Lookups,” SIG-
COMM, pp. 3-14, 1997.

[7] Y. Rekhter and T. Li, ”A Border Gateway Protocol 4 (BGP-
4),” RFC 1771, IETF, Mar. 1995.

[8] J. Hawkinson and T. Bates, ”Guidelines for creation, selec-
tion, and registration of an Autonomous System (AS),” RFC
1930, IETF, Mar. 1996.

[9] C. Labovitz, G. Robert Malan and F. Jahanian, ”Internet
Routing Instability,” IEEE/ACM Transactions on Network-
ing, vol. 6, no. 5, pp. 515-528, Oct. 1998.

[10] C. Villiamizar, R. Chandra and R. Govindan, ”BGP Route
Flap Damping,” RFC 2439, IETF, Nov. 1998.

[11] V. Srinivasan and G. Varghese, ”Fast address lookups using
controlled prefix expansion,” ACM Sigmetrics, 1998.

[12] S. Nilsson and G. Karlsson, ”IP-Address Lookup Using LC-
Tries,” IEEE JSAC, vol.17, no.6, pp. 1083-1092, June 1999.

[13] H.H.-Y. Tzeng and T. Przygienda ”On Fast Address-Lookup
Algorithms,” IEEE JSAC, vol.17, no.6, pp. 1067-1082, June
1999.

[14] N. F. Huang and S. M. Zhao, ”A Novel IP-Routing
Lookup Scheme and Hardware Architecture for Multigiga-
bit Switching Routers,” IEEE JSAC, vol.17, no.6, pp. 1093-
1104, June 1999.

[15] V. Srinivasan, S. Suri and G. Varghere, ”Packet Classifica-
tion Using Tuple Space Search,” SIGCOMM, pp. 135-146,
1999.

[16] P. Gupta and N. McKeown, ”Packet Classification on Muli-
ple Fields,” SIGCOMM, pp. 147-160, 1999.

[17] The Cidr Report, http://www.employees.org/ tbates/cidr-
report.html.

[18] Y. Rekhter and P. Gross, ”Application of the Border Gate-
way Protocol in the Internet,” RFC 1772, IETF, Mar. 1995.

[19] The Internet Performance Measurement and Analysis
(IPMA) project, http://www.merit.edu/ipma/

