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ABSTRACT 

With the advent of high-speed access network technologies such as ADSL, increasing numbers of Internet users are 
participating in various interactive multimedia applications. Among these, the most popular are the massively 
interactive on-line games, or MMPOGs. In MMPOGs, a large amount of event data is associated with various control 
objects. This event data has different characteristics from that which is generally used on the Internet. Namely, events 
occur very frequently with short inter-arrival times and their size is quite small, because they only contain control 
information. Most commercial MMPOGs use TCP or UDP as the transport protocol for the event data. However, since 
TCP is such a heavy protocol, due to its complex congestion control algorithm and byte-oriented window scheme, it is 
difficult to support many concurrent users. On the other hand, UDP is a relatively lightweight protocol, but there are no 
functions available which permit reliable transmission and session management. In this paper, we propose a new 
transport protocol, Game Transport Protocol (GTP), which is designed for the transmission of the event data used by 
MMPOGs. GTP supports several functions designed to meet the various requirements of MMPOGs. Firstly, GTP uses a 
packet-based window scheme not a byte-based window scheme as in the case of TCP. This scheme is quite simple and 
suitable for the small size of the event data. Also, GTP performs session management and retransmission using GTP 
control blocks, and supports an adaptive retransmission scheme that controls the maximum number of retransmissions 
according to the real-time priority, in order to meet the time constraints of the event data. Although GTP is a specialized 
transport protocol, optimized for MMPOGs, it could also be utilized as a transport protocol for other interactive 
multimedia applications. 

 
Keywords: Massively multiplayer on-line games, Game Transport Protocol, Packet-based window scheme, 

Adaptive retransmission scheme, Session management 
 

1. INTRODUCTION 

There has been a tremendous advance in Internet technology, and the World Wide Web (WWW) in particular has made 
it easy for many people to access the Internet. The WWW is undoubtedly the dominant application currently in use of 
the Internet, however, it is destined to be integrated with various multimedia applications in the next-generation 
Internet. Video on demand (VOD), Web-based Internet telephony, and Internet broadcasting are good examples of 
multimedia applications. Among these widespread multimedia applications, massively multiplayer on-line games have 
recently attracted considerable attention as a new Internet multimedia application.  

The massively multiplayer on-line game is a type of distributed interactive real-time applications. Over the past years 
three distinct classes of distributed interactive real-time applications have become prominent: (1) military simulations, 
(2) networked virtual environments (NVEs), and (3) massively multiplayer on-line games (MMPOGs) [1]. The focus of 
scientific research has shifted from military simulations (in the 1980s) through NVEs (in the 1990s) and now to 
MMPOGs. Furthermore, the entertainment industry is investing substantially in MMPOGs, including in the areas of 
mobile gaming and online gaming in general. Fig. 1 shows the trend being followed by distributed interactive real-time 
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applications with its evolving terminology. For example, until recently NVEs were usually called distributed virtual 
environments (DVEs), which then gave way to collaborative virtual environments (CVEs).  
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Fig. 1 History of distributed interactive real-time applications 

Unlike other multimedia applications, MMPOGs have different characteristics in terms of their underlying network 
technology. In MMPOGs, there are many objects which need to be controlled by the users. Therefore, a considerable 
amount of event data containing control information is generated. In spite of the fact that the characteristics of game 
event data are different from those of general Internet data, most commercial on-line games use Transmission Control 
Protocol (TCP) or User Datagram Protocol (UDP) as the transport protocol for the game event data.  

TCP is responsible for verifying the correct delivery of data from client to server. When data is lost in the 
intermediate network, TCP supports mechanisms to detect these errors, or the lost data, and to trigger retransmission 
until the data is correctly and completely received. On the other hand, UDP is a connectionless protocol that runs on top 
of the IP layer. Unlike TCP, UDP provides very few error recovery services, offering instead a direct way to send and 
receive data over the IP layer. It's used primarily for broadcasting messages over a network. Because these two transport 
protocols are implemented in almost all network devices, it is easy to deploy new applications using them. However, 
since TCP is such a heavy protocol, due to its complex congestion control algorithms and byte-oriented window 
scheme, it is difficult to support many concurrent users with this protocol. Furthermore, in TCP, even moderate 
congestion makes the game data unusable, so it is a particularly inefficient protocol for MMPOGs. On the other hand, 
UDP is a relatively lightweight protocol, but there are no functions which enable for reliable transmission and session 
management. Therefore, neither TCP nor UDP is the best solutions for the transmission of game event data. The 
description of the characteristics of game traffic, presented in the next section, demonstrates that neither of these two 
dominant protocols is suitable as the transport protocol for game event data.  

To support the efficient delivery of game traffic over IP networks, many solutions have recently been proposed [2] 
[3]. However, since these proposals focused on system architectures rather than on transport protocols, they do not 
represent optimized solutions for game traffic. In this paper, we propose a new transport protocol, Game Transport 
Protocol (GTP), which is designed for the transmission of game event data in MMPOGs. This protocol supports several 
functions designed to meet the various requirements of MMPOGs, i.e. a packet-based window scheme, an adaptive 
retransmission scheme, priority based marking, etc.  

The remainder of this paper is organized as follows. Section 2 shows the characteristics of event data in MMPOGs, 
based on the results of traffic measurement during real massively multiplayer on-line games. Section 3 describes the 
specification of GTP. Section 4 summarizes the main features of GTP. Section 5 introduces the result of GTP 
implementations. Finally, Section 6 concludes this paper. 

 



2. CHARACTERISTICS OF GAME TRAFFICS 

The development of GTP was motivated by the fact that game traffic in MMPOGs has characteristics which are 
different from those of other Internet applications such as the WWW, File Transfer Protocol (FTP), e-mail services, etc. 
Several previous reports have documented the characteristics of game traffic [4] [5]. However, since game traffic is 
highly dependent on the features of the game itself, it is difficult to generalize these characteristics. Therefore, in order 
to characterize game traffic, we selected certain representative network games which are currently very popular. For the 
traffic analysis, we measured the inter-arrival time of packets and their packet size. Fig. 2 and Fig. 3 give the probability 
density functions (pdf) of the inter-arrival time and the packet size, respectively. The representative MMPOG chosen is 
“StarCraft”, which is currently the most popular networked on-line game worldwide. In this game, TCP is used for 
session and user management, while UDP is used for delivery of game event data.   

In terms of packet size, almost all event data consists of less than 64 bytes, with 60% of this data being made up of 
just 50 bytes. This means that the packet size of game traffic is much smaller than that of general data traffic and that 
the variance is also small. According to the measured results, the inter-arrival time is very small, generally less than 100 
msec. This shows that event data tend to occur in the form of bursts.  
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Fig. 2 Probability density function of packet length 
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Fig. 3 Probability density function of inter-arrival time 

As a result of the traffic analysis, we defined several requirements for a new transport protocol for MMPOGs. 



Low delivery latency:  The most important factor in MMPOGs is to deliver game event data within the specified time 
boundary. For example, if the event data for the movement of an object in the game is delivered after the specified time 
limit, the data will become useless and, as a result, user satisfaction will decrease dramatically. Therefore it is essential 
to guarantee low delivery latency. However, it is impossible to provide on-time delivery over the current IP networks, 
because IP networks support only best-effort services. Of course, there are many proposals for providing Quality of 
Service (QoS) over IP networks, however, for a variety of reasons these solutions have not been widely deployed. 
Therefore, we propose a flexible method in GTP for on-time delivery. Although this method does not guarantee 
absolutely on-time delivery, it can be selectively inter-worked with various existing network technologies such as 
DiffServ, MPLS, etc.   

Adaptive reliable transmission: In MMPOGs, it is necessary to deliver event data reliably in order for the games to be 
able to progress correctly. Therefore, many commercial games use TCP as a transport protocol in spite of its overhead. 
However, not all event data has to be delivered reliably. For example, in on-line shooting games, when a user pushes 
the spacebar hundreds of times to shoot the gun, each key pressed generates event data. However, although a portion of 
the event may be lost, this has no effect on the progress of the game. Therefore, this kind of data does not require 
guaranteed reliable transmission. On the other hand, user commands that make an object move in a certain direction 
should be delivered without any data loss and retransmission in case of packet loss should be supported in this case. To 
take into account these particular characteristics, we propose an adaptive reliable transmission scheme.    

Low protocol overhead: MMPOGs based on the client-server model are designed to support millions of concurrent 
users. Therefore, the transport protocol used should be a light-weighted protocol. The currently used transport protocol, 
TCP, is not a lightweight protocol, because of its complex flow control mechanisms and control blocks. Therefore, it 
cannot meet the scalability requirements of MMPOGs. Furthermore, since TCP uses a byte-based window scheme, it is 
difficult to support retransmission. Therefore, in developing GTP, we focused on reducing the protocol overhead for the 
sake of scalability.  

Connection-oriented service: In terms of low protocol overhead, UDP may be a suitable choice as a transport protocol 
in MMPOGs. However, it does not provide any retransmission mechanism or flow control scheme. In addition, it 
transmits data using a connection-less service model. However, in MMPOGs, it is essential to manage the game states 
for each user, so that a connection-oriented service model is required. Therefore, GTP was designed as connection-
oriented protocol, unlike UDP.   

3. GAME TRANSPORT PROTOCOL (GTP) 

3. 1 GTP HEADER STRUCTURE 

Since GTP needs to provide reliable transmission, its header structure is similar to that of TCP. However, several fields 
are modified to support the unique characteristics of GTP. Fig. 4 shows the structure of the GTP packet header. Detailed 
descriptions for each field are as follows.  
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Fig. 4 GTP Packet Header 



•  SOURCE PORT & DESTINATION PORT: They contain the GTP port numbers that identify the application 
programs at each end of the GTP connection. They perform the same functions as the source and destination ports in 
TCP. 

•  SEQUENCE NUMBER & ACKNOWLEDMENT NUMBER: In TCP, the SEQUENCE NUMBER field is used 
to identify the position of the data in the packet in the sender’s byte stream. However, GTP uses the packet-based 
window scheme and not the byte-based window scheme. Therefore, in GTP, this field identifies the position in the 
sender’s packet stream. The ACKNOWLEDMENT NUMBER field identifies the number of the packet that the 
source expects to receive next. 

•  HLEN: This field contains an integer that specifies the length of the packet header measured in multiples of 32-bits. 
It is needed because the OPTIONS field varies in length, depending on which options have been included. Thus, the 
size of the GTP header varies according to the options selected. 

•  MODE: The characteristics of game traffic in MMPOGs vary according to the categorization and contents of the 
games. Therefore, it is necessary to provide diverse flow control options within the application layer. By offering 
multiple options, applications can selectively choose a suitable flow control mechanism. The MODE field is therefore 
designed to support the multiple options available in the transport layer. More detailed descriptions are given in 
section 4.3. 

•  CLASS: This field is used to separate GTP packets into several classes. This classification information is used in the 
adaptive retransmission scheme and the inter-working with DiffServ. More detailed explanations are presented in 
section 4.3.  

•  CODE BITS: GTP uses the 4-bit field labeled CODE BITS to determine the purpose and contents of the GTP 
packet. These four bits allow the interpretation of other fields in the header according to Table 1. 

Bit (left to right) Meaning if bit set to 1 

SYN Synchronize sequence numbers 

FIN Sender has reached end of its data stream 

RST Reset the connection 

ACK Acknowledgement field is valid 

 Table 1 Bits of the CODE BITS field in the GTP header 

•  WINDOW SIZE: The WINDOW SIZE field advertises how much data a GTP session is willing to accept, by 
specifying its buffer size every time a packet is sent.  

•  OPTIONS: The OPTIONS field is defined to provide additional functions in a GTP session. It is not currently used. 

3.2 CONNECTION SETUP & RELEASE 

In MMPOGs, there are continuous interactions between game servers and user clients. Therefore, connection-oriented 
data transmission should be supported in MMPOGs. For the purpose of establishing connections, GTP uses a three-way 
handshake method that is similar to that used by TCP. To support full-duplex communication, GTP uses only three 
frames instead of four packets.  

Fig. 5 shows the connection establishment procedure. Connection setup begins by the client setting a bit, known as 
the SYN bit, within the GTP header, indicating a request for synchronization with the destination GTP process. The 
receiving host’s GTP session must acknowledge the receipt of this SYN request and send its own SYN request. The 
SYN request should also contain the ACK bit. Namely, the packet has both the SYN and ACK bits set. The SYN 



request must be acknowledged by the sending client. By means of these message flows, a full-duplex connection is 
established.  

If the client does not need to maintain the established connection with the server any longer, it can tear down the 
connection. The GTP session teardown process utilizes the same three-way handshake method as was used for session 
setup. It utilizes a three-frame exchange to close the session. The client requesting session closure sets the FIN bit 
within the GTP header, indicating that the request is to close the session; it then sends the FIN packet to the other side. 
The recipient must in turn acknowledge receipt of the initial FIN packet and send its own FIN packet, which is then 
acknowledged by the original host requesting to close the session. At this point both sides release the allocated 
resources and make them available for other processes. Fig. 6 shows the message flows in the connection release 
process.  
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Fig. 5 Connection setup 
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Fig. 6 Connection release 

 
4. CHARACTERISTICS 

4.1 PACKET-BASED WINDOW SCHEME2 

TCP views the data stream as a sequence of bytes that it divides into segments for transmission. Usually, each segment 
travels across the Internet as a single IP packet. TCP uses a sliding window mechanism for efficient transmission and 
flow control. The TCP window mechanism makes it possible to send multiple segments before an acknowledgement 
arrives. Doing so increases total throughput because it keeps the network busy. The TCP sliding window protocol also 
solves the end-to-end flow control problem, by allowing the receiver to restrict transmission until it has sufficient buffer 
space to accommodate more data [6].  

The TCP sliding window mechanism operates at the byte level, not at the segment or packet level. Bytes of the data 
stream are numbered sequentially, and a sender keeps three pointers associated with every connection. These pointers 
define the sliding window. The first pointer marks the left of the sliding window, separating bytes that have been sent 
and acknowledged from bytes yet to be acknowledged. A second pointer marks the right of the sliding window and 
defines the highest byte in the sequence that can be sent before more acknowledgements are received. The third pointer 
marks the boundary inside the window that separates those bytes that have already been sent from those octets that have 
not yet been sent. The protocol software sends all bytes in the window without delay, so the boundary inside the 
window usually moves quickly from left to right.  

However, the byte level sliding window mechanism induces more overhead than the packet level sliding window 
mechanism. In terms of retransmissions, a TCP sender has to record bytes acknowledged as well as bytes to be 
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acknowledged. Furthermore, it has to compute how many octets should be transmitted in the next time slot and what the 
first and last bytes to be transmitted are. If more complex flow control schemes such as the selective ACK scheme are 
used, even more computing overhead may be required. As mentioned above, since the size of game event data is much 
less than that of general data, a lightweight transport protocol is more appropriate for its transmission. To reduce this 
overhead, we used the packet level sliding window scheme in GTP. Of course, the byte-based window scheme is more 
efficient in case of a variable size data stream, however, as mentioned above, the variance of the game event data length 
is quite small. This means that most event data have similar packet sizes. Therefore, the packet-based window scheme is 
more suitable for the transmission of game event data.   

In this scheme, a client (or a game server) sends data to a server (or a client) in units of packets rather than bytes. In 
TCP, which uses the byte-based window scheme, much overhead is required to divide application-level data into byte 
streams and to reassemble them at the receivers. Furthermore, it causes flow control and retransmission to be quite 
complex operations. However, since GTP uses the packet-based window scheme, flow control schemes can be 
implemented more easily. Fig. 7 compares two schemes: the byte-based window scheme and the packet-based window 
scheme. 

In the byte-based window scheme, the data stream at the application level is divided into several packets containing a 
certain number of bytes, and each fragment of data is transmitted as a packet. The packet size is determined by the flow 
control mechanism being used. In the case of short sized data segments, many portions of the packet are filled with 
useless data (padding). Furthermore, since long sized data segments are fragmented into several packets, additional 
packet handling is required at the receivers. On the other hand, in the packet-based window scheme, since each data 
segment at the application level forms a packet to be transmitted, there is no fragmentation or padding. Of course, when 
the data segment size varies greatly, the packet-based window scheme may lead to network congestions. In TCP, when 
network congestions occurs, the sender decreases the number of bytes to be sent in the next time. Doing so prevents 
severe network collapses. On the other hand, in the packet-based window scheme, when the congestions are occurred, 
the sender decreases the number of packets to be sent. However, since a packet may be quite large, the fact that the 
number of packets is small doesn’t mean that the number of bytes to be sent is any less than before. However, as 
described in section 2, game event data involves small sized packets and most packets have similar sizes. Therefore, it 
is more efficient to utilize the packet-based window scheme for the transmission of game event data.   
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Fig. 7 Comparison of two window schemes: Byte-based window vs. Packet-based window 

 

4.2 ADAPTIVE RETRANSMISSION SCHEME 

GTP supports a retransmission scheme for the reliable data transmission. The retransmission scheme is implemented 
using the packet level window scheme described in the previous section. Unlike general data traffic, game traffic should 
be delivered within a pre-defined time boundary. Furthermore, considerable real-time traffic is generated by MMPOGs 



during short time intervals. If some packets, having a specific time boundary, are delivered outside of this time 
boundary, the packets may no longer be useful for the receiver. In this case, it would be more efficient not to retransmit 
these packets to the receiver.  

To support this selective retransmission, we used an adaptive retransmission scheme in GTP. In GTP, all packets are 
categorized into several classes using the CLASS field. The CLASS field is also used for interworking with the 
DiffServ model. This is described in the next sub-section. Up until now, we have defined just four retransmission types 
based on the CLASS field. Following packet classification, each packet is treated according to a different 
retransmission policy. Table 2 shows the different retransmission schemes. In the case of adaptive retransmission, we 
adopted several adaptive retransmission schemes which are presented in [7].  

CLASS field Category Retransmission Scheme 

000 Scheme 1 Retransmit all non-delivered packets 

001 Scheme 2 Retransmit packets up to N times 

010 Scheme 3 Retransmit packets up to M times 

011 Scheme 4 No retransmit 

Others None Currently Unused 
 

Table 2 The CLASS field and retransmission schemes 

In scheme 1, a sender retransmits all non-delivered packets until the receiver eventually receives them. On the other 
hand, in schemes 2 and 3, the sender retransmits non-delivered packets up to N or M times, respectively. N and M 
represent the maximum number of retransmission and N is set to a larger value than M. The only difference between 
schemes 2 and 3 is the maximum number of retransmissions. The following pseudo-code describes the retransmission 
procedures in the case of scheme 2: 

when the receiver detects the loss of packet A: 

if(C > N)          

    give up the packet’s delivery, namely ignore the packet;  

    end; 

if(Tc + RTT + Ds < Td(A)) 

send the request for retransmission of packet A to the sender;  

increase the value of C; 

where C is the number of retransmission up to the current time, N is the maximum number of retransmission in the 
scheme 2, Tc is the current time, RTT is the estimated round trip time, Ds is a slack term, and Td(A) is the time when 
packet A is scheduled for playing. The slack term, Ds, could include the error tolerance in estimating RTT, the sender’s 
response time to a request, and/or the receiver’s processing delay. These schemes are aimed at minimizing the number 
of requests for retransmissions that will not arrive in a timely manner for playing. It is clear that if Tc+RTT+Ds < 
Td(A), the retransmitted packet is expected to arrive in a timely manner for playing. The timing diagram for receiver-
based control is shown in Fig. 8. 
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Fig. 8 Timing Diagram 

4.3 PRIORITY-BASED PACKET MARKING 

As mentioned above, on-time delivery and low latency are the most important issues in MMPOGs. However, it is 
impossible to provide on-time delivery in transport layers without appropriate support from the lower layers. To meet 
these constraints, the Internet Engineering Task Force (IETF) has proposed several models: Integrated Service (IntServ) 
[8], Differentiated Service (DiffServ) [9], etc. Although IntServ can provide per-flow guaranteed services, it is not a 
scalable solution. Therefore, DiffServ may be a more suitable solution for wide area networks.  

In this paper, we utilized the CLASS field to interact with the DiffServ model. In the DiffServ model, since all 
packets are processed according to Per-Hop Behaviors (PHBs) at each node, PHBs for the game event data should be 
defined. Table 2 shows an example of a mapping table between game traffic and DiffServ PHBs. In this example, we 
used Assured Forwarding (AF) as a PHB for game event traffic. Defined in [10], AF is actually a PHB for edge-to-edge 
services specified in terms of relative bandwidth availability and multi-tiered packet drop characteristics. Whereas 
Expedited Forwarding (EF) supports services with “hard” bandwidth and jitter characteristics, AF allows for more 
flexible and dynamic sharing of network resources supporting the “soft” bandwidth and loss guarantees appropriate for 
bursty traffic. [10] currently defines four service classes and three levels of drop precedence. A shorthand notion exists 
for referring to a particular AF PHB. AFxy refers to AF service class x with drop precedence y. Specific drop 
probabilities for each precedence level are assigned by the network operator to meet the desired packet loss 
characteristics of each class. The only requirements are that drop precedence 3 have a more aggressive drop probability 
than precedence 2, which in turn should have a more aggressive drop probability than precedence 1. In addition, the 
probability functions may vary from one class to another, for example packets marked AF12 (service class 1, drop 
precedence 2) may be subject to an entirely different drop probability function than packets marked AF22 (service class 
2, drop precedence 2). 

Fig. 9 shows the marking procedure for the systems at each end of the network connection. In the application layer, 
data segments are classified into several classes according to their priorities. The transport layer, where GTP is used, 
marks the CLASS field in the classified segments and delivers them to the IP layer. In the IP layer, GTP packets are 
mapped to correspondent PHBs using a mapping table similar to the table in Table 3.  

CLASS field DiffServ PHB Description 

000 AF11 Highest importance level 

001 AF12 Medium importance level 

010 AF13 Lowest importance level 

Others None Currently Unused 
 

Table 3 A mapping table between CLASS field and DiffServ PHB 
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Fig. 9 Marking procedure in end hosts 

4.4 MULTIPLE MODES SUPPORT 

The motivation behind GTP is to provide MMPOGs with a more efficient transport layer protocol. However, it is 
difficult to define the common requirements of MMPOGs. In some cases, reliable transmission is more important than 
on-time delivery (e.g. On-line chess games). On the other hand, in other MMPOGs, such as shooting games, on-time 
delivery is the most critical factor. In order to provide for these varying characteristics, GTP provides multiple mode 
options. The developers can choose a suitable options using upper layer interfaces, namely socket APIs, according to 
the requirements of the applications that GTP is being used for. In the current version of GTP, we defined the four 
options described below. Since the MODE field in the GTP header is a 4-bit field, it is possible to support more 
options. 

In mode 1, retransmission and flow control are not supported. Namely, mode 1 supports similar functions to those of 
UDP. Mode 2 and 3 support only the retransmission or only flow control, respectively. On the other hand, in mode 4, 
GTP supports both retransmission and flow control. 

•  MODE 1: No retransmission & No flow control 

•  MODE 2: Retransmission & No flow control 

•  MODE 3: No retransmission & Flow control 

•  MODE 4: Retransmission & Flow control 

5. IMPLEMENTATION 

We implemented and tested GTP in the Microsoft Windows operating system environment. Although GTP is a 
transport layer protocol, we implemented it over the UDP layer due to difficulties encountered in decoupling the 
network layer and the transport layer in the Windows operating system. Therefore, several redundant functions are 
implemented, e.g. those dealing with port numbers.  

GTP was originally designed as a new transport protocol in the middleware system developed by the Electronics and 
Telecommunications Research Institute (ETRI) in Korea [11]. The overall system architecture is presented in Fig. 10. 
The GTP packet queue is used for sending GTP packets to the network buffer in the OS layer and receiving IP packets 
from the network buffer. The GTP runtime module provides several functions such as retransmission, flow control, etc. 
The GTP socket is an interface between the network layer and the upper layer. It notifies the game engine about events 
which have occurred.  
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Fig. 10 Overall System Architecture 

6. CONCLUSION & FUTURE WORK 

In this paper, we proposed a new transport protocol for massively multiplayer on-line games (MMPOGs), named Game 
Transport Protocol (GTP). In order to meet certain requirements of MMPOGs, GTP supports several functions: the 
packet-based window scheme, the adaptive retransmission scheme, the priority-based marking scheme, as well as 
allowing for multiple options. From traffic measurement results, we found that the game events generally consist of 
bursts of small amounts of data. Consequently, GTP was developed on the basis of this observation, in order to provide 
for more efficient transmission of game traffic. GTP is currently implemented in the Windows operating system 
environment and is utilized in the ETRI 3D game engine. 

In the future, we plan to implement TCP friendly rate control (TFRC) mechanisms [12]. These are proposed as a 
means of overcoming the unfairness which exists between TCP flows and non-TCP flows. Since many Internet 
applications use TCP as a transport protocol, GTP should be able to support the TFRC mechanism, in order to coexist 
with other flows. 

Since GTP is a specialized transport protocol, designed for MMPOGs, it cannot entirely replace the existing transport 
layer protocols such as TCP and UDP. However, when we consider the tremendous growths in the game markets, the 
development of GTP represents a meaningful approach to providing MMPOGs with efficient network functions, and it 
is hoped that it will be widely deployed in client-server programs.  
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