
Computer Networks 54 (2010) 1316–1327
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
An adaptive peer-to-peer live streaming system with incentives
for resilience q

Kunwoo Park a, Sangheon Pack b, Ted ‘‘Taekyoung” Kwon a,*

a School of Computer Science and Engineering, Seoul National, Republic of Korea
b School of Electrical Engineering, Korea University, Seoul, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 11 November 2009

Keywords:
P2P live streaming
Resilience
Incentive
Self-improvement
Adaptation
1389-1286/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.comnet.2009.10.022

q A preliminary version of this paper was presente
Workshop on Peer-to-Peer Systems (IPTPS’ 08)
electronic archive [1].

* Corresponding author. Address: Seoul National
301, Room 553-1,599 Gwanak-ro, Gwanak-gu, Seoul
Korea. Tel.: +82 2 880 1848.

E-mail addresses: kwpark@mmlab.snu.ac.kr (K.
ac.kr (S. Pack), tkkwon@snu.ac.kr (T. ‘‘Taekyoung” K
Recently, there have been a lot of research efforts on peer-to-peer (P2P) live streaming ser-
vices. P2P systems can be easily deployed since a participating peer’s resources (i.e., upload
link bandwidth) can be exploited to distribute contents. However, how to adapt to leaving
peers and how to encourage peers to contribute resources voluntarily are still challenging
issues. In this paper, we propose Climber, an adaptive P2P live streaming system with
incentives for resilience. Climber is based on the hybrid structure of a tree and a mesh,
so as to achieve self-improvement and adaptation to users’ dynamic joining and leaving.
Moreover, Climber substantiates an incentive mechanism that provides better resilience
for peers with more upload bandwidth allocated. Simulation results reveal that Climber
significantly reduces the topology maintenance cost compared to SplitStream and
NICE-PRM. Also, simulation and analytical results verify that Climber can bound the level
of disruption by dynamically adapting to the user churning rate.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Recently, live streaming services over the Internet (e.g.,
sports game or music concert) are becoming popular. For
example, Akamai [2] provides an infrastructure support
for these services; AOL broadcast [3] and MSN broadcast
[4] serve as streaming portals. Live Earth concerts in July
2007 on MSN broadcast service recorded 15 million
streaming sessions, with 237,000 simultaneous viewers
at the peak [4]. These services leverage infrastructures
(i.e., server-farm based solutions or content delivery net-
. All rights reserved.

d at The International
and published as an

University, Building
151-742, Republic of

Park), shpack@korea.
won).
works (CDNs)) where contents are replicated on a number
of servers to improve the speed of content delivery. How-
ever, infrastructure-based live streaming systems have
some drawbacks in terms of cost, scalability, and deploy-
ment. Akamai reports an aggregate traffic of 885 Gbps dur-
ing peak traffic periods through 30,000 servers in 67
countries [5].

Unlike these infrastructure-based services, peer-to-peer
(P2P) live streaming is gaining much attention in the liter-
ature [6–10] because of its scalability, low cost, and tactical
deployment. In P2P live streaming, all peers participate in
distributing contents by sharing their resources (i.e., up-
load link bandwidth). However, providing a resilient P2P
streaming service is a key challenge since peers are prone
to departures and failures. Especially, a peer acts as both
a server and a client, and thus each failure of a peer causes
streaming disruption for peers downstream until the time
the relevant topology is reconstructed.

In this paper, we focus on two challenging issues for
resilient P2P live streaming: (1) efficiency and (2)

http://dx.doi.org/10.1016/j.comnet.2009.10.022
mailto:kwpark@mmlab.snu.ac.kr
mailto:shpack@korea. ac.kr
mailto:shpack@korea. ac.kr
mailto:tkkwon@snu.ac.kr
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet

1 Hereafter, we use the term ‘‘node” when a peer joins a system.
However, the terms ‘‘node” and ‘‘peer” may be used interchangeably.

K. Park et al. / Computer Networks 54 (2010) 1316–1327 1317
incentive. The first issue is how to efficiently support dy-
namic membership; i.e., each peer dynamically joins or
leaves (peers easily fail or leave at will) the P2P network.
Hence resilience to churning rate should be taken into ac-
count. In general, sending more signaling packets (e.g.,
keep-alive or heartbeat messages) between peers will in-
crease the resilience level of the network, while consuming
a considerable amount of network resources. There is a
trade-off between the service resilience and the signaling
overhead of the system; so the target level of resilience
should be carefully decided. The control overhead of a sys-
tem is also tightly coupled with the complexity of the sys-
tem. The system should be designed to be as simple as
possible for efficient operations.

The second issue, incentive, is more crucial. The perfor-
mance of P2P systems strongly relies on how much re-
sources are contributed by peers. Therefore, the way to
encourage peers to contribute their resources for stream
distribution should be devised in order to improve the qual-
ity of live streaming services in terms of delay and resil-
ience. In P2P file-sharing applications (e.g. [11,12]) with
an incentive mechanism, download rate of a peer is roughly
proportional to the peer’s contributions. Hence, peers with
more contributions need a shorter time to receive a file
than others. Even though a peer with low contribution
(i.e., a peer with small upload capacity) is able to receive
a complete file, it will take longer time than peers with high
contributions. This incentive mechanism makes sense since
the objective is just to share the file. However, there is a sig-
nificant difference in live streaming applications and file-
sharing applications. Especially in the P2P live streaming
applications, the incentive mechanism should be designed
by considering unique characteristics of P2P live streaming
which contrast with those file-sharing applications.

There have been some P2P live streaming proposals that
have similar incentive mechanisms to the file-sharing
applications. Generally, peers contribute to a system by
providing their upload bandwidth in order to gain reputa-
tion (e.g. [13,14]) or currency (e.g. [15]) as a reward. In
these systems, reputation is used to compete for connec-
tions with better neighbors against other peers, or currency
is consumed to buy chunks from other peers. However,
streaming packets of a stream are generated by a source
in live streaming applications, encoded and sent to other
peers (suppose the stream is k kbps). Live streaming pack-
ets are periodically generated and streaming packets at
the current moment are disseminated. Thus, if a peer with
high contributions is receiving a stream of k kbps, there is
no way to give more incentive to this contributor. Peers
with low contributions, receiving lower than k kbps, cannot
play a video due to the nature of live streaming. Therefore,
we should devise a different incentive mechanism for live
streaming applications.

We propose a novel P2P live streaming system, Climber.
The salient characteristics of Climber are summarized as
follows. (1) Climber is a hybrid of a tree and a mesh. That
is, a single tree is a main structure for streaming; however,
random (or redundant) edges between peers (not between
parent and child) are added to the tree for resilient connec-
tivity. (2) Climber is simple in the sense that the effect of
the dynamic membership on the system topology is miti-
gated. Climber simply attaches a new joining node1 to
the tree as a leaf node. When a non-leaf node leaves or fails,
Climber minimizes the effect of peer departure by efficiently
relocating its descendants to other positions of the tree. (3)
Despite the time-varying network conditions (e.g., churning
rate, congestion, delay), Climber bounds the level of resil-
ience of a system. Climber adaptively changes its mesh
topology (i.e., the random edges) to maintain a target level
of resilience which is an input QoS parameter. (4) Climber
keeps improving the transfer delay of a tree using the mesh
topology. When a peer finds an alternative path that is faster
than the current data path from the root, the peer switches
its link to the alternative path. This switching process con-
tinuously improves the overall root-to-peer (or end-to-
end) delay in the system. (5) Climber embodies an incentive
mechanism that enhances resilience despite churning rate.
The number of potential incoming data paths from a source
to a peer is approximately proportional to the number of
child nodes of the peer. Hence, a peer will experience more
resilient services as the peer maintains more child nodes (or
allocate more upload link bandwidth). This incentive mech-
anism encourages nodes to assign more upload link band-
width for streaming data distribution, which leads to more
(system-wide) resilient services.

The contribution of this paper is three-fold. First, we pro-
poses a simple and adaptive system for resilient P2P stream-
ing. Second, an analytical model, which demonstrates the
effect of the disruption rate, is developed and validated by
simulations. Third, extensive simulation results are given
to evaluate the performance of Climber against other
schemes. To the best of our knowledge, Climber is the first
proposal that provides the required level of resilience prob-
abilistically, and the incentives to contribute more resources
for better resilience that suits P2P live streaming services.

The rest of this paper is organized as follows. Design
concepts and the operations of Climber are introduced in
Section 2, and we analyze the level of disruption of Climber
in Section 3. Section 4 gives simulation results, followed by
related work in Section 5. Finally, we conclude this paper
in Section 6.
2. Climber

2.1. System model

The structure of Climber is based on a single tree, rooted
at the source, but more than one data path from the source
may exist for each peer. We focus on P2P live streaming
applications where 10 or 20 s of delay is tolerable, which
is normally assumed in the literature [9,16]. We focus on
the packet forwarding aspect of Climber, and how to
achieve reliability is out of the scope of this paper. Reliable
transmission can be achieved by error control techniques
(e.g., forward error correction (FEC)) or retransmission
techniques.

A peer i has Oi ðOi P 0Þ outdegrees, which means the
peer i currently forwards packets to Oi child nodes. We as-

1318 K. Park et al. / Computer Networks 54 (2010) 1316–1327
sume that a peer’s incoming link bandwidth (used by its
parent to send packets to the peer) is always enough and
the bottleneck resource is the outgoing (or upload) link
bandwidth in P2P streaming. Omax

i Omax
i P 1

� �
is the maxi-

mum number of outgoing edges permitted to use by the
peer. Peer i can adjust the maximum amount of possible
contributions to the system by setting/updating Omax

i .
A root node generates a series of streaming packets and

tags each packet with a sequence number in an incremental
order. Therefore, we can assume a packet with a higher se-
quence number is the packet generated more recently. Seqi

is the sequence number of an arriving streaming packet
from a parent node i. In Climber, parent and child nodes ex-
change heartbeat messages at relatively long intervals to de-
tect a path failure. A heartbeat message contains the number
of descendants and therefore a root node can estimate the
current total number of nodes in the system by these
messages.

2.2. Topology construction

A peer first sends a Join message to the root to join Clim-
ber. If the root cannot accept the new peer as its child, the
Join message is randomly forwarded to one of its child
nodes. If node i in the system (including the root) receives
a Join message and the node has a remaining outdegree
(i.e., Oi < Omax

i), it takes the new peer as a child node with
the probability 1� ðOi=Omax

i Þ
l, where l is a positive real

number determined by the system. If the new node is not
accepted, the Join message is randomly forwarded to one
of its child nodes. When a leaf node receives the Join mes-
sage, it should always take the node as a child node since
Oi ¼ 0 and Omax

i P 1. Note that the tree-depth parameter l
is a configurable parameter that tunes the average tree-
depth of Climber. If l ¼ 1, the probability of accepting a
new node as a child node linearly decreases as Oi increases.
If l > 1, Climber tends to build a short and wide tree, while
if l < 1, Climber tends to make a tall and narrow tree. Over-
all, the value of l will trade-off the end-to-end delay for sys-
tem resilience, which will be investigated in Section 4.2.

In addition to the tree topology, we have to build a mesh
topology for resilience. After node i joins the system, it
makes a decision whether to establish a random edge or
not with probability kt at time t for each available outde-
gree Omax

i � Oi
� �

. kt is a random edge generation probability,
which is sent from the root node piggybacked in the
streaming packets. The terminal node (‘‘prospective child
nodes”) of a random edge is randomly selected from the
set of all the peers. Afterwards, node i forwards only the se-
quence numbers of the streaming packets to its prospective
child nodes. A root node keeps a list of recently joined
nodes and each node obtains the list from the root node
when it joins. In this way, the joining node is aware of the
peers. When a random edge is established, the lists are ex-
changed so as to maintain the up-to-date list. How the root
node determines kt will be elaborated in Section 2.4.

2.3. Handling churn

When a node i has a tree edge from a parent node j and
a random incoming edge from a node r (r is called a ‘‘pro-
spective parent”), it compares Seqj and Seqr . If the sequence
number from its parent is lower than that from the pro-
spective parent by a certain margin (i.e., Seqj þ D < Seqr ,
where D is a predefined threshold to avoid oscillations),
it indicates that the current data path is slower than the
path via the random edge. Then node i changes its parent
from node j to node r, and hence the old parent–child link
is broken. Furthermore, if Oi < Omax

i , node i immediately
sets up an outgoing random edge to its old parent j. If
the sequence number from the parent is higher than the
one from the prospective parent, no actions are taken. To
adapt to membership dynamics and network topology
changes, each peer reestablishes the random edge(s) peri-
odically to other nodes.

Fig. 1 illustrates how a node ‘‘climbs” a tree using a ran-
dom edge. Let us assume node 1 is the source and the net-
work around node 3 is congested. (a) When node 2
establishes a random edge r2 (shown as a dotted arrow)
to node 7, node 7 compares Seq6 from its parent node 6
and Seq2 from node 2. (b) If Seq6 < Seq2, which means the
current data path (1–3–6–7) is slower than the path (1–
2–7), node 7 changes its parent from node 6 to node 2. Sup-
posing O7 < Omax

7 , node 7 sets up a random edge r7 to node
6. (c) Node 6 also detects Seq3 < Seq7 and switches its par-
ent to node 7 and establishes r6 to node 3. If Seq1 > Seq6, no
further action is taken. We call our system ‘‘Climber” since
node 7 climbs the tree by being a child of node 2.

The random forwarding technique greatly simplifies
the recovery procedure caused by node departures or fail-
ures. We do not need a fast failure detection mechanism
(usually done with heavy signaling overhead [9]) or a fail-
ure recovery (proactive [17] or reactive [7]) method addi-
tionally. Instead, parent and child nodes need to exchange
heartbeat messages at relatively long intervals, which
means low signaling overhead. Actually, Climber does
not distinguish node departure or failure from node con-
gestion. That is, Fig. 1 describes the recovery procedure
of Climber not only from congestion, but also from node
failure: (a) when node 3 fails, its descendent nodes 6, 7,
8 (node 3’s subtree) notice the current data path has a
problem since no streaming packets are received; (b) at
that moment, if there exists at least one random edge
ðr2Þ established from the outside of the subtree to the in-
side of the subtree, node 7 with the random incoming
edge switches its parent to node 2. Then node 7 forwards
the stream to old parent node 6 (through a newly estab-
lished random edge r7) and child nodes; (c) finally, the
failed node 3 is placed at the end of data path (1–3) and
node 1 concludes that node 3 has left the tree due to miss-
ing heartbeat messages. This continual climbing effort also
keeps improving the performance of the distribution
structure even if the system experiences the high churn-
ing rate.

If a node has no incoming random edges and its parent
fails, then the node detects that there is no parent alive by
missing heartbeat messages. We say the node is disrupted,
and the node sends a Rejoin message to the root node,
which is the same as the joining process. Note that dis-
rupted nodes are the direct child nodes of a failed node.
Therefore, the number of Rejoin messages is bounded to
the number of current outdegrees of the failed node.

Fig. 1. Tree reconstruction steps are illustrated using random edges. When node 3 suffers from congestion, node 7 climbs the tree by being a child of node 2.
Then node 6 becomes a child of node 7.

K. Park et al. / Computer Networks 54 (2010) 1316–1327 1319
2.4. Adaptation

Climber provides fine-grained control over the mesh
topology, i.e., kt indicates the level of structural resilience
at time t in the system operation. To make a protocol more
agile to live streaming, the service provider should have a
way to adjust the level of QoS; e.g., the disruption rate is
defined as the ratio of the number of disrupted nodes to
the total number of nodes in the system. In Climber, a
source node compares a predefined disruption rate Q and
Q t , the latter of which is the number of received Rejoin
messages out of the total number of nodes in the system
at time t. As the churning rate increases, Q t will exceed
Q. Then, the source node increases ktþ1 to enhance the
resilience of the distribution structure. Otherwise, the
source node decreases ktþ1 to save network bandwidth by
reducing the number of random edges. In Climber, a source
node smoothes Q t by a moving average method and ktþ1 is
derived from

ktþ1 ¼
maxðkt � 0:01; 0:01Þ if Qt 6 Q ;

minðkt þ 0:01;1Þ otherwise:

�

The above formula is one example of how to adjust ktþ1.
Other solutions (e.g., additive increase and multiple de-
crease (AIMD) as in a TCP window) may be applied
depending on the characteristics of the service or stream-
ing contents.

2.5. Incentives

Climber gives more incentives to a highly contributing
peer in the sense that a peer that makes higher contribu-
tions will have more descendants, which implies more
incoming random edges to its subtree probabilistically.
The level of contribution of a peer is defined as the current
number of outgoing links (child nodes). Note that the time
during which the node has been participating in the tree
also affects the level of contribution. The number of
descendants of a node tends to increase with the node’s
outdegrees and the participating time. This is because
more attempts have been by the node and its descendants
to set up outgoing random edges to prospective child
nodes. Since Climber is designed to recover from failures
by using random edges, a node with more descendants will
experience less streaming disruptions. Through this mech-
anism, Climber encourages nodes to use more upload link
bandwidth to its child nodes and prospective child nodes,
which leads to better performance in P2P streaming
services.

Instead of providing more resilient service as an incen-
tive, there is another way to give incentives namely by
adjusting streaming quality (i.e., higher bit rate). Multi-
bit rate encoding schemes (e.g., MDC [18], scalable video
coding [19], or stream switching [20]) can provide differ-
entiated high or low quality streams to each nodes. Clim-
ber can be extended using multiple Climber trees with a
multi-bit rate encoding scheme to give a better quality
for a user according to the user’s contribution, which is
our future work.

3. Disruption rate analysis

Climber allows resilient streaming services by adding
random edges. The system-wide number of random edges
is adjusted based on kt sent by a root node. There is a trade-
off between the resilience of a system and the signaling
overhead over random edges. In this section, we analyze
Climber with a focus on the effect of random edges on
the disruption rate.

We have the following notation and assumptions. m
nodes form a complete g-ary tree with height h. Let G de-
note the set of all nodes of the tree. All non-leaf nodes
are assumed to have the same number, g, of child nodes.
For the sake of simplicity, m is set to the number of nodes
of complete g-ary trees. In addition to g child nodes, every
node is assumed to have r random edges whose destina-
tions are uniformly distributed over other nodes. Note that
r is a positive real number. vd refers to a node v at depth d
(e.g., 0 6 d 6 h; d ¼ 0 for a root node). The set of descen-
dant nodes of vd is denoted by Ad. When vd leaves (we as-
sume the root node does not leave), vd’s descendants are
partitioned into g subtrees and each subtree is denoted

1320 K. Park et al. / Computer Networks 54 (2010) 1316–1327
by ad. The number of nodes of a tree T is denoted by jTj
(e.g., jGj ¼ m). Hence, jAdj and jadj are respectively calcu-
lated as

jAdj ¼
Xh�d

i¼0

gi � 1 ð1Þ

and

jadj ¼
jAdj

g
: ð2Þ

Let f ðp; qÞ be the number of possible permutations that q
are chosen out of p elements with repetitions on the condi-
tion that each of p different elements exists in the permu-
tations. For example, if p ¼ 2 and the elements are 1 and 2,
f ð2;3Þ ¼ 6, since among eight possible permutations (111,
112,121,122,211,212,221,222), only six permutations
satisfy the constraint (112,121,122,211,212,221). Then
f ðp; qÞ can be calculated as

f ðp; qÞ ¼

0 if p > q;

1 else if p ¼ 1;

pq �
Pp�1

i¼1

n

i

� �
� f ði; qÞ otherwise:

8>>><
>>>:

Since Climber recovers disrupted nodes by random
edges, it is necessary to estimate how many random edges
are set up from non-disrupted nodes. For the sake of anal-
ysis, if vd fails, nodes in Ad are assumed to be partitioned
from G, and then the expected number of disrupted nodes
in Ad will be determined by the expected number of ran-
dom edges from G� ðAd [fvdgÞ. For a node vd; bðk; dÞ is
the probability that k random edges fall into Ad from
G� ðAd [fvdgÞ. Since jG� ðAd [fvdgÞj ¼ m� jAdj � 1 and
every node has r random edges, bðk; dÞ is given by

bðk;dÞ¼
ðm�jAdj�1Þr

k

� �
� jAdj

m�1

� �k

� 1� jAdj
m�1

� �ðm�jAd j�1Þr�k

:

ð3Þ

We next derive nðk; dÞ, the expected number of dis-
rupted nodes if vd fails when Ad has k incoming random
edges from outside. When vd fails, Ad is partitioned into
g subtrees (each subtree is ad). Every node in ad is not dis-
rupted if one or more random edges fall into the subtree ad.
Out of g subtrees, suppose i subtrees do not have any
incoming random edges. As a result, i � jadj nodes will be
disrupted. Then, nðk; dÞ is given by

nðk;dÞ ¼
Xg

i¼0

g

i

� �
� f ðg � i; kÞ

gk
� i � jadj:

ð4Þ

By multiplying Eqs. (3) and (4), the expected number of
disrupted nodes when vd fails, nðdÞ, can be obtained from

nðdÞ ¼
Xm�1

k¼0

bðk; dÞ � nðk;dÞ: ð5Þ

The probability of a node to be located at depth d is gd

m.
Then, the expected number of disrupted nodes when a
node v fails, n, is given by

n ¼
Xh

d¼1

gd

m
� nðdÞ: ð6Þ
Fig. 2 shows the expected number of disrupted nodes
ðnÞ as a function of the number of nodes ðmÞ. In Fig. 2, a
4-ary complete tree and three different r values (0.01,
0.05, and 0.1) are used, and the expected number of ran-
dom edges in each experiment is mr. It can be found that
the analytical and simulation results are consistent, which
validates the analytical model. From Fig. 2, when r is 0.01,
the number of disrupted nodes converges to 2.9, whereas
the number converges to 1.4 when r is 0.1. Consequently,
it can be concluded that even an arbitrary small r (e.g.,
0.01) value can bound the level of disruption of Climber
even if the number of nodes increases exponentially.
4. Simulation results

4.1. Methodology

We use the GT-ITM topology generator [21] to generate
the network topology, which consists of 3000 peers and
600 routers, using the Transit-Stub graph model. The
topology consists of three transit domains with 8 transit
routers each. There are an average of three stub domains
per transit router, and an average of eight stub routers
per stub domain (hence, there are total 3� 8�
ð1þ 3� 8Þ ¼ 600 routers). Peers are randomly connected
to one of 576 stub routers. Link delays for the simulation
are derived from [22]. Link delays are uniformly distrib-
uted ranging from 1 to 55 ms for transit-transit or tran-
sit-stub links, and link delays within a stub are uniformly
distributed from 1 to 10 ms. Each link is a symmetric link
without packet loss as assumed in [23,24]. Only peers join
and leave the system and every peer departure is regarded
as a node failure. When a peer leaves the system, there is
no explicit notification and the peer rejoins the system
(at a different position in the tree) immediately again so
that the number of peers in the system remains un-
changed. The maximum outdegree Omax

i of peer i is ran-
domly chosen between 1 and 10 1 6 Omax

i 6 10
� �

.
For performance comparison, we consider the following

relevant systems.

� SplitStream [7] is a multitree-based system which parti-
tions an original stream into multiple substreams. Each
substream is distributed over its corresponding tree.
Note that the number of trees is equal to the number
of substreams. Each tree is structured according to
Scribe [25] built on Pastry [26]. We use 16 multicast
trees, which is a default setting in [27]. Each tree is inte-
rior-node-disjoint, where each node is an interior node
in at most one tree, and a leaf node in the other trees.
Since a node failure causes the loss of a single sub-
stream, SplitStream can mitigate the effect of node
failures.

� NICE-PRM is Probabilistic Resilient Multicast (PRM) [28]
added on the NICE application-layer multicast protocol
[29]. NICE creates a hierarchical tree, where an interior
node of the tree is a cluster of multiple peers in proxim-
ity. Its cluster size is maintained between k and 3k� 1,
where k ¼ 3 in our simulations as in [29]. Streaming
packets are delivered through cluster leaders of each

 0

 1

 2

 3

 4

 5

 21 85 341 1365 5461

Ex
pe

ct
ed

 n
um

be
r o

f d
is

ru
pt

ed
 n

od
es

, n

Total number of nodes, m

analytical (r=0.01)
analytical (r=0.05)
analytical (r=0.1)

simulation (r=0.01)
simulation (r=0.05)
simulation (r=0.1)

Fig. 2. Expected number of disrupted nodes vs. total number of nodes. We plot both analytical and simulation results as r changes.

K. Park et al. / Computer Networks 54 (2010) 1316–1327 1321
cluster. PRM uses randomized forwarding among peers2

and we use PRM-(3,0.01), where three random nodes are
chosen and packets are forwarded to each of them with
probability 0.01, as configured in [28]. We focus on the
resilience and efficiency of NICE-PRM, compared to those
of Climber.

� BT is a Basic-Tree that is a primitive graph-theoretical
tree. BT consists of m nodes and m� 1 edges, without
any additional functionalities for performance improve-
ment. Node i always receives a new joining node until Oi

reaches Omax
i , and randomly forwards a joining request

to one of its child nodes if Oi equals Omax
i . A node failure

is detected by a missing Heartbeat message and dis-
rupted nodes simply rejoin the tree. Although the per-
formance of BT is poor, the complexity of BT is
minimum.

� Climber-Q is our proposed scheme, where Q is the target
delivery rate of QoS. The delivery rate is the proportion
of nodes which receive the streaming packet among
the alive nodes. Note that the disruption rate is
100� Q ð%Þ. For instance, Climber-95 refers to a Clim-
ber system that adjusts the number of random edges
to achieve 95% delivery rate, depending on the current
network churning rate.

In Climber and NICE-PRM, peers reestablish their ran-
dom edges in every 10 s.

4.2. Tree depth parameter l

As mentioned in Section 2.2, node i takes a new joining
peer as a child node with the probability 1� Oi=Omax

i

� �l.
As l becomes greater, Climber tends to build a short and
wide tree, while if l gets smaller, Climber tends to make a
2 This is similar to random edges in Climber. However, Climber forwards
only the sequence number over random edges, while PRM forwards
streaming packets. Also, PRM maintains a fixed number of random edges
probabilistically system-wide.
tall and narrow tree. Fig. 3 shows the average delay from
a root node to other nodes, and the average number of dis-
ruptions a node experiences during simulation time. The
experiment is carried out for 1000 s in Climber-95. Network
churning rate is fixed at 5% (i.e., out of 3000 peers, 150 peers
fail for each second) to avoid side effects from time-varying
number of random edges. As l increases, the average delay
from a root node tends to decrease because Climber builds
a shorter tree. There is a trade-off between the root-peer
delay and system resilience. In a short tree, non-leaf nodes
fill their remaining outdegrees with new joining nodes as
child nodes. This leads to the insufficient number of ran-
dom edges, since random edges are probabilistically gener-
ated for each remaining outdegrees of a node. As shown in
Fig. 3, the average number of disruptions per node increases
with the increase of l. Since l ¼ 2 is the knee point, l is set to
two for the rest of our simulations.
4.3. Adaptation

To support a wide range of live streaming services,
Climber provides a way for the service provider to adjust
the level of QoS (e.g., the delivery rate, Q) of the stream.
Climber periodically checks Q t , the currently measured
delivery rate at time t, and adaptively changes the random
edge probability kt as described in Section 2.4. Fig. 4 shows
the adaptation behavior of Climber. The simulation is run
over 10,000 s and the network churning rate varies over
time. Churning rate is defined as the rate of the number
of leaving nodes in a second to the total number of nodes
in the system. We intentionally vary the churning rate be-
tween 0% and 20% (600 nodes fail in a second) as the sim-
ulation time goes by. In this scenario, we excercised two
versions of Climber, Climber-95 and Climber-80, which
indicates the delivery rate of each version will target 95%
and 80%, respectively.

As shown in Fig. 4, Climber successfully adapts to the
network churning rate. Since SplitStream and NICE-PRM

 480

 500

 520

 540

 560

 580

 600

 0.125 0.25 0.5 1 2 4 8

 58

 60

 62

 64

D
el

ay
 (m

se
c)

D
is

ru
pt

io
ns

Tree depth parameter, l

Disruptions per node
Average root-node delay

Fig. 3. Delay vs. tree-depth parameter l in Climber-95. As l increases, the average number of child nodes increases, which reduces end-to-end delay. Note
that the actual probability of having more child nodes converges when l exceeds 2.

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000

D
el

iv
er

y
ra

te
 a

nd
 c

hu
rn

in
g

ra
te

 (%
)

Time (sec)

Climber-95
Climber-80

SplitStream
NICE-PRM

BT
churning rate

Fig. 4. Climber adaptively changes its topology depending on the current network conditions to maintain a target delivery rate. Notice that other schemes
exhibit high fluctuation of delivery rates.

1322 K. Park et al. / Computer Networks 54 (2010) 1316–1327
do not have any adaptation mechanisms, the performance
degrades as the churning rate increases. NICE-PRM gener-
ates a constant number of random edges, 90 (we use PRM-
(3,0.01)), despite the time-varying network condition.
SplitStream performs better than NICE-PRM on average,
due to its interior-node-disjoint structure. In the worst
case of our simulation around 6500 s, when 20% of nodes
fail, the delivery rates of SplitStream, NICE-PRM and BT ex-
hibit spikes around 75%, 60%, and 30%, respectively, while
Climber maintains a target level of delivery rate Q. To meet
the constraint Q, Climber increases or decreases kt to adjust
the number of random edges.

4.4. Incentive

Climber provides more resilient streaming services to
the nodes of more contributions, i.e., a node that maintains
more descendant nodes. Therefore, peer i may increase its
Omax
i with the expectation that if it contributes more to the

system, then it will receive more resilient service. Fig. 5
shows the number of disturbances that node i experiences
with different Omax

i values. The number of disturbances of a
node is incremented when the node is disconnected due to
its parent’s failure and hence it rejoins the system. In Clim-
ber, a node with a larger Omax

i has more descendants prob-
abilistically, since establishing more outgoing random
edges implies that prospective descendants may become
‘‘real” descendants over time. As a result, these nodes will
have less chance to experience disturbances. Since Split-
Stream, NICE-PRM and BT do not have an incentive mech-
anism, there is no relationship between a node’s maximum
number of outdegrees and the expected number of
disturbances.

Note that our definition of contribution is the actual up-
load bandwidth a node has served to the system, which is
measured in terms of the number of transmitted packets.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f d
is

tu
rb

an
ce

s

Oi
max

Climber-95
Climber-80

Fig. 5. Number of disturbances events vs. Omax
i . As Omax

i increases, a node has more random edges, which enhances the system resilience.

K. Park et al. / Computer Networks 54 (2010) 1316–1327 1323
Fig. 6 demonstrates the effectiveness of our incentive
mechanism. The number of disturbances of 3000 nodes
are plotted for each scheme after 10,000 s, depending on
a node’s total upload bandwidth. In Climber-95, if a node
contributes twice more than another node, the node
roughly experiences half the number of disturbances than
the other node. When we look at median values, a node
with 10,000 packets uploaded experiences 300 distur-
bances, while a node with 20,000 packets uploaded experi-
ences 150 disturbances. Similar trends can be also
observed in NICE-PRM because PRM utilizes random edges
as well. The reason why NICE-PRM has so many nodes with
little contribution is that the NICE application forms a
number of clusters, and a streaming data path is formed
 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 3

N
um

be
r o

f d
is

tu
rb

an
ce

s

Contributions (numbe

Fig. 6. Number of disturbance events vs. contributions. All peers in Climber and
more contributions experiences less disturbances. However, non-cluster leade
balances the load of contributions among peers.
via cluster leaders only. In NICE, a node located at the cen-
ter of other nearby nodes is likely to be a cluster leader
while the others serve as leaf nodes with high probability,
that is most of the nodes will make little contribution.
Fig. 6 also shows that the forwarding load and the number
of disturbances in SplitStream are spread across all partic-
ipating nodes.

4.5. Simplicity

To evaluate the signaling cost of each scheme, we mea-
sured the control overhead that is defined as the necessary
number of nodes to maintain a structure. For example, BT
needs O(logN) nodes to keep the structure for a new node,
0000 40000 50000 60000
r of transmitted packets)

Climber-95
SplitStream
NICE-PRM

BT

the cluster leaders in NICE-PRM show the similar trend that a peer with
rs in NICE-PRM cannot make more contribution by nature. SplitStream

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

C
on

tro
l o

ve
rh

ea
d

(a) Join operation

Climber-95
Climber-80

SplitStream
NICE-PRM

BT

 0

 5

 10

 15

 20

1 5 20

C
on

tro
l o

ve
rh

ea
d

(b) Churning rate (%)

Climber-95
Climber-80

SplitStream
NICE-PRM

BT

Fig. 7. Control overhead vs. membership change. The control overhead of Climber is much less than those of NICE-PRM and SplitStream.

1324 K. Park et al. / Computer Networks 54 (2010) 1316–1327
because a join request is simply forwarded downstream
until it reaches a node with a remaining outdegree for
the new node. Fig. 7 illustrates the control overhead per
node in each scheme. Since the main structure of Climber
is a tree, its control overhead is similar to that of BT.
NICE-PRM needs more nodes for maintaining the structure
because of its cluster structure. Since SplitStream is a set of
Scribe trees, built on Pastry, the maintenance cost is much
higher than Climber.

Fig. 7a is the cumulated amount of control overhead
when 3000 nodes join the overlay system one after an-
other. SplitStream distributes 16 substreams over 16
Scribes, each of which is an interior-node-disjoint tree.
Whenever a node joins or leaves the system, 16 trees
 0

 0.5

 1

 1.5

 2

 2.5

 3

0 1

N
um

be
r o

f r
an

do
m

 e
dg

es

Churni

Climber-95
Climber-80

SplitStream
NICE-PRM

BT

Fig. 8. Number of random edges vs. churning rate. As the churning rate increases
delivery rate.
should be updated. The NICE application forms a number
of clusters and the size of each cluster is maintained be-
tween 3 and 8 nodes. A split operation is performed if more
than 8 nodes join a cluster, which leads to high control
overhead. When the network churning rate is 5%, Clim-
ber-95 needs less control overhead than Climber-80, and
even less than BT. This is because when a node fails, nodes
in Climber-95 are less likely to be disrupted by employing
a larger number of random edges compared to Climber-80
and BT (no random edges). Therefore, climbing occurs
more frequently in Climber-95, where climbing usually
needs less control overhead than a rejoin operation. When
the network churning rate is increased to 20%, Climber-80
and Climber-95 generate considerable numbers of random
5 20
ng rate (%)

, Climber increases the number of random edges per node to maintain the

 0

 200

 400

 600

 800

 1000

 1200

0 1 5 20

D
el

ay
 (m

se
c)

Churning rate (%)

Climber-95
Climber-80

SplitStream
NICE-PRM

BT

Fig. 9. Delay vs. churning rate. NICE-PRM achieves the lowest delay since it forms the tree considering proximity among peers. SplitStream shows the worst
delay since all the 16 substreams should be delivered to restore the original stream. When the churning rate is changed from 5% to 20%, the delay in Climber
is reduced due to self-improvement leveraging random edges.

K. Park et al. / Computer Networks 54 (2010) 1316–1327 1325
edges and the control overhead of both schemes is greater
than BT (each random edge generation is counted as 1 unit
of control overhead).

4.6. Redundancy

Climber provides resilience at the cost of adding ran-
dom edges. Fig. 8 exhibits the number of random edges re-
quired to satisfy the given level of QoS Q. When the
network churning rate is 5%, Climber-95 needs 1.2 random
edges per node while Climber-80 needs 0.4 random edges
on average. Climber generates a small number of random
edges (the minimum value of kt is set to 0.01) even if there
are no node failures, to cope with a sudden node failure in
the future. Climber-95 has many more random edges than
Climber-80, to provide more resilient services. NICE-PRM
has a fixed number of random edges (0.03 on average);
SplitStream and BT do not have any random edges. In Clim-
ber, only the sequence numbers of streaming packets are
forwarded through random edges and therefore less net-
work bandwidth is consumed.

4.7. Delay

Fig. 9 shows the average delay from a root node to a
non-root node. Throughout our simulation, NICE-PRM
keeps the average delay around 200 ms at the cost of large
maintenance overhead. Although SplitStream exploits the
proximity of nodes in Pastry, the actual delay of a packet
is quite long. This is because a stream is partitioned into
16 substreams, and each node must wait for the last sub-
stream to restore the original packet. Climber self-im-
proves the structure (or shortens its delay) by using
random edges. Since Climber-95 has more random edges
than Climber-80, the average delay of Climber-95 is smal-
ler than Climber-80. It is interesting to observe that the
average delay of Climber-95 is reduced when the network
churning rate is changed from 5% to 20%, and a similar
trend is observed in Climber-80. This can be explained
from Fig. 8, where the number of random edges increases
more than twice as the churning rate increases from 5%
to 20%. Meanwhile, when the network churning rate is
changed from 1% to 5%, the number of random edges is
not enough to allow self-improvement and thus the aver-
age delay is not reduced.

5. Related work

P2P live streaming solutions can be broadly classified
into two categories depending on the overlay structures:
tree-based and mesh-based approaches. The tree-based
approach implements a single or multiple distribution
trees, where a root node is the source of the stream. In a
tree, each node always receives streaming packets from a
parent and hands down to its child nodes. Due to the
well-defined ‘‘parent–child” relationships, the signaling
overhead is marginal. However, its performance can be se-
verely degraded as the churning rate increases.

SplitStream [7] splits the original stream into k stripes
and forwards each stripe via one of separate k trees built
using Scribe [25] on the top of Pastry [26]. Scribe trees
form a forest of interior-node-disjoint multicast trees that
allow the forwarding load distribution among all partici-
pating peers. If SplitStream can leverage appropriate
stream encoding techniques (such as Multiple Description
Coding (MDC) [18]), SplitStream can become robust to the
failures because MDC allows a peer to restore the original
stream despite packet losses (clearly, the quality will be
degraded as packet losses increase). Although SplitStream
exploits nodes’ proximity features of Pastry to reduce
root-to-peer delay, a node should wait for all k stripes for
the best quality, which increases the overall delay.

1326 K. Park et al. / Computer Networks 54 (2010) 1316–1327
Maintaining k independent multicast trees also incurs sig-
nificant signaling overhead. If a catastrophic failure hap-
pens (i.e., numerous nodes fail almost simultaneously),
SplitStream will suffer from handling a lot of signaling
messages to be stabilized.

NICE [29] is an application-layer multicast protocol
which creates a hierarchical and cluster-based control
topology. NICE creates a hierarchical topology with multi-
ple levels, and nodes at each level are partitioned into a set
of clusters. Nodes in each cluster elects a cluster leader that
has the smallest maximum distance (or RTT) to all the
other nodes in the cluster. The cluster leader performs a
merge or split operation to maintain its cluster size be-
tween k and 3k� 1. Streaming packets are delivered
through hierarchically-connected cluster leaders and
therefore it can significantly reduce delay from a root node
to peers along the overlay. However, due to the overhead
for keeping clusters and their leaders, more frequent
merge or split operations will be triggered as the churning
rate increases. That is, the topology maintenance cost is
relatively large especially for high churn. The authors of
NICE also proposed PRM [28] to effectively recover node
failures and to improve data delivery rate. PRM uses ran-
domized forwarding among peers to effectively recover
node failures and to improve data delivery rate. Each node
in PRM chooses a constant number of nodes randomly
(which are similar to prospective child nodes in Climber)
and forwards data to each of them with a low probability.
However, since PRM maintains a fixed number of random
edges, disruption events occur more often as the churning
rate increases. In contrast, Climber adaptively changes the
number of random edges in order to satisfy a target level of
resilience.

On the other hand, in the mesh-based approach, a peer
has flat connectivity to neighbor peers. Each peer pulls a
number of chunks from a subset of the neighbor. Control
messages are exchanged among the peers in order to locate
and pull the chunks throughout the mesh. Since each peer
relies on a subset of the neighbor peers to receive stream-
ing packets, this approach offers better resilience to mem-
bership dynamics than the tree-based approach. However
timely delivery to all the peers and efficient management
of large buffers are difficult issues since the streaming
packets are generated by a live source at short intervals.
Peers in Coolstreaming [8] and Chainsaw [10] maintain a
list of neighbors, and periodically exchange data availabil-
ity information with the neighbors. Each peer notifies
neighbors of data arrivals and employs a pulling mecha-
nism to receive chunks. In [30], push algorithms are used
to quickly disseminate chunks to a well-defined set of
peers (a fraction of all peers). The remaining peers which
have not received the chunks use the pull mechanism to
distribute the chunks amongst themselves. Although the
distribution structure is built on top of a pastry-like over-
lay structure, which ensures a logarithmic diameter and
robustness, high maintenance cost is inevitable compared
to Climber.

There have been a number of proposals that consider
incentives for P2P live streaming. [15] uses an internal cur-
rency called points to quantify a peer’s contribution. Peers
compete for good parents in a first-price auction-like pro-
cedure using their points. In [13], a peer’s contribution
determines its score and its relative ranking in the system,
which in turn determines its priority in selecting good
peers for better streaming quality. [31] employs time-con-
strained tit-for-tat exchanges which seek to allocate an
equal share of a node’s upload bandwidth to each of its
neighbors. Only nodes with sufficiently large contributions
to the system are able to fully receive live streams. In con-
trast, uncooperative (or selfish) nodes cannot properly re-
ceive the streams as they are unable to fill their buffers
in time. Consequently, incentivizing a fair sharing of re-
sources can be achieved. In [14], every node maintains a
record of the previous interactions with other peers. Peers
choose their neighbors based on their history records,
which consequently optimizes the system performance.
Also, a taxation model such as [23] has been proposed,
where resource-rich peers contribute more bandwidth to
the system, and subsidize for the resource-poor peers. To
sum up, incentives are given to users as the priority to re-
ceive more or faster data from other peers. Since the up-
load bandwidth of a peer is a scarce resource and usually
a bottleneck in a system, it is reasonable for peers with
more contribution to get more rewards. However, the
above incentive mechanisms focus on how to retrieve
more data steadily from good neighbors – as in file-sharing
applications, and therefore these are less effective in live
streaming.
6. Conclusion

This paper introduces Climber, an adaptive peer-to-peer
live streaming system with incentives for resilience. We fo-
cus on efficiency and incentive in P2P live streaming. The
main structure of Climber is a tree for simple and efficient
stream distribution. To address the problem of dynamic
membership, we add random edges to the tree; the num-
ber of random edges are dynamically adjusted to maintain
service quality. Climber also embodies an incentive mech-
anism, which allows a peer with more contributions to
experience less disruptions. Analytical modeling verifies
the effectiveness of random edges; the number of dis-
rupted nodes is bounded even if the number of total nodes
in the system increases exponentially. It is shown that
Climber successfully keeps the target resilience (or deliv-
ery rate) despite a time-varying churning rate, while Split-
Stream and NICE-PRM exhibit high fluctuation of the
delivery rates and lack adaptiveness to the changing
churning rate. The incentive mechanism of Climber
achieves another desirable statistical property: the amount
of contributions of a node is inversely proportional to the
number of disturbances that the node experiences. Fur-
thermore, Climber incurs significantly low control over-
head to be stabilized in case of high churn, compared to
SplitStream and NICE-PRM.
Acknowledgements

This work was supported by the Korea Research Foun-
dation Grant funded by the Korean Government (MOEHRD,
Basic Research Promotion Fund) (KRF-2007-331-D00267)

K. Park et al. / Computer Networks 54 (2010) 1316–1327 1327
and the IT R&D program of MKE/IITA (2008-F-034-02). The
ICT at Seoul National University provides research facilities
for this study.
References

[1] K. Park, S. Pack, T. Kwon, Climber: an incentive-based resilient peer-
to-peer system for live streaming services, in: IPTPS 2008, 2008.

[2] Akamai, 2009. <http://www.akamai.com>.
[3] AOL, 2007. <http://press.aol.com/index.cfm>.
[4] MSN, 2007. <http://liveearth.msn.com>.
[5] P. Gilmore, How Akamai works, in: 10th UK Network Operators’

Forum, 2008.
[6] Y. Chu, S.G. Rao, S. Seshan, H. Zhang, A case for end SystemMulticast, in:

Measurement and Modeling of Computer Systems, 2000, pp. 1–12.
[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, A. Singh,

Splitstream: high-bandwidth multicast in cooperative
environments, in: ACM SOSP 2003, 2003.

[8] X. Zhang, J. Liu, B. Li, T. Yum, DONet/CoolStreaming: a data-driven
overlay network for live media streaming, in: IEEE Infocom 2005,
2005.

[9] V. Venkataraman, P. Francis, J. Calandrinoz, Chunkyspread: Multi-
tree unstructured peer-to-peer multicast, in: IPTPS 2006, 2006.

[10] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, A. Mohr, Chainsaw:
eliminating trees from overlay multicast, in: IPTPS 2005, 2005.

[11] B. Cohen, Incentives build robustness in bittorrent, in: 1st Workshop
on Economics of Peer-to-Peer Systems, 2003.

[12] K.G. Anagnostakis, M.B. Greenwald, Exchange-based incentive
mechanisms for peer-to-peer file sharing, in: ICDCS 2004, 2004.

[13] A. Habib, J. Chuang, Service differentiated peer selection: an
incentive mechanism for peer-to-peer media streaming, in: IEEE
Transactions on Multimedia, vol. 8, 2006, pp. 610–621.

[14] F. Pianese, D. Perino, J. Keller, E. Biersack, Pulse: an adaptative,
incentive-based, unstructured P2P live streaming system, in: IEEE
Transactions on Multimedia, vol. 9, 2007, pp. 1645–1660.

[15] G. Tan, S. Jarvis, A payment-based incentive and service
differentiation scheme for peer-to-peer streaming broadcast, in:
IEEE Transactions on Parallel and Distributed Systems, vol. 19, 2008,
pp. 940–953.

[16] W. Montgomery, Techniques for packet voice synchronization, IEEE
Journal on Selected Areas on Communications 1 (1983) 1022–1028.

[17] J. Byers, M. Luby, M. Mitzenmacher, A digital fountain approach to
asynchronous reliable multicast, IEEE Journal on Selected Areas in
Communications 20 (2002) 1528–1540.

[18] V.K. Goyal, Multiple description coding: compression meets the
network, IEEE Signal Processing Magazine 18 (2001) 74–94.

[19] H. Schwarz, D. Marpe, T. Wiegand, Overview of the scalable video coding
extension of the h.264/avc standard, in: IEEE Transactions on Circuits
and Systems for Video Technology, vol. 17, 2007, pp. 1103–1120.

[20] M. Karczewicz, R. Kurceren, The sp- and si-frames design for h.264/
avc, in: IEEE Transactions on Circuits and Systems for Video
Technology, vol. 13, 2003, pp. 637–644.

[21] E. Zegura, K. Calvert, S. Bhattacharjee, How to model an
internetwork, in: IEEE Infocom 1996, 1996.

[22] S. Fahmy, M. Kwon, Characterizing overlay multicast networks and
their costs, in: IEEE/ACM Transactions on Networking, vol. 15, 2007,
pp. 373–386.

[23] Y. Chu, J. Chuang, H. Zhang, A case for taxation in peer-to-peer
streaming broadcast, in: ACM PINS 2004, 2004.

[24] I. Keidar, R. Melamed, A. Orda, EquiCast: Scalable multicast with
selfish users, in: ACM PODC 2006, 2006.

[25] A. Rowstron, A. Kermarrec, M. Castro, P. Druschel, SCRIBE: the design
of a large-scale event notification infrastructure, in: NGC 2001, 2001.

[26] A. Rowstron, P. Druschel, Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems, in: IFIP/ACM
Middleware 2001, 2001.

[27] FreePastry, 2009. <http://freepastry.org/FreePastry/>.
[28] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan, Resilient multicast
using overlays, in: IEEE/ACM Transactions on Networking, vol. 14,
2006, pp. 237–248.

[29] S.Banerjee, B. Bhattacharjee, C. Kommareddy, Scalable application
layer multicast, in: ACM SIGCOMM 2002, 2002.

[30] T. Locher, R. Meier, S. Schmid, R. Wattenhofer, Push-to-pull peer-to-
peer live streaming, in: 21st International Symposium on
Distributed Computing (DISC), 2007.

[31] T. Locher, R. Meier, R. Wattenhofer, S. Schmid, Robust live media
streaming in swarms, in: 19th International Workshop on Network
and Operating Systems Support for Digital Audio and Video
(NOSSDAV), 2009.

Kunwoo Park received his B.S. in computer
science from Korea Advanced Institute of
Science and Technology (KAIST) in 2004.
Currently, he is working towards a Ph.D.
degree at the School of Computer Science and
Engineering, Seoul National University. His
research interests include peer-to-peer net-
works, overlay streaming, IPv6, and mobility
management.
Sangheon Pack received the B.S. (magna cum

laude) and Ph.D. degrees from Seoul National
University, Seoul, Korea, in 2000 and 2005,
respectively, both in computer engineering.
Since March 2007, he has been an Assistant
Professor with the School of Electrical
Engineering, Korea University, Seoul. From
2005 to 2006, he was a Postdoctoral Fellow
with the Broadband Communications
Research Group, University of Waterloo,
Waterloo, ON, Canada. He was the recipient of
IEEE ComSoc APB Outstanding Young

Research Award in 2009 and a Student Travel Grant Award at the 2003
IFIP Personal Wireless Conference (PWC). From 2002 to 2005, he was a
recipient of the Korea Foundation for Advanced Studies Computer Science

and Information Technology Scholarship. In 2003, he was a Visiting
Researcher at Fraunhofer Institute for Open Communication Systems
(FOKUS), Berlin, Germany. His research interests include mobility man-
agement, wireless multimedia, vehicular networks, and Future Internet.

Ted ”Taekyoung” Kwon is an associative
professor in the school of computer science
and engineering, Seoul National University
(SNU) since 2004. Before joining SNU, he was
a post-doctoral research associate at UCLA
and at City University New York (CUNY). He
obtained B.S., M.S., and Ph.D. degree from the
department of computer engineering, SNU, in
1993, 1995, and 2000, respectively. During his
graduate program, he was a visiting student at
IBM T. J. Watson research center and Univer-
sity of North Texas. His research interest lies

in sensor networks, wireless networks, IP mobility, and ubiquitous
computing.

http://www.akamai.com
http://press.aol.com/index.cfm
http://liveearth.msn.com
http://freepastry.org/FreePastry/

	An adaptive peer-to-peer live streaming system with incentives for resilience
	Introduction
	Climber
	System model
	Topology construction
	Handling churn
	Adaptation
	Incentives

	Disruption rate analysis
	Simulation results
	Methodology
	Tree depth parameter l
	Adaptation
	Incentive
	Simplicity
	Redundancy
	Delay

	Related work
	Conclusion
	Acknowledgements
	References

