Vertical and Horizontal Flow Controls for
TCP Optimization in the mobile Ad Hoc
Networks

Yongho Seok, Youngsam Park and Yanghee Choi
Seoul National University,
Seoul, Korea
{yhseok, yspark, yhchoi}@mmlab.snu.ac.kr

Abstract— In mobile ad hoc network (MANET), each end-
node operates as an end-host and as a router simultane-
ously. Thus differently from wired-network, the occurrence
of network congestion in end-host leaves much room for con-
sideration. In the case of MANET, we can improve TCP
throughput by using flow control algorithm that operates
between layers because that algorithm reduces packet drops
which caused by network congestion in end-hosts (source or
destination). In MANET, usually IEEE 802.11 MAC pro-
tocol is used in a link layer transmission of two neighbored
nodes for reliability and hidden terminal problem. But this
protocol does not offer flow control mechanism in link layer.
Link layer flow control can prevent packet drops caused by
buffer overflow that can occur just after packet transmission.
And in result, this prevention of packet drop can reduce the
waste of bandwidth and energy which are limited in wire-
less environment. In this paper, we propose two flow con-
trol algorithms called, respectively, vertical flow control and
horizon flow control. We show improved TCP throughput
and reduced power consumption in end-nodes through the
use of proposed two flow control algorithms in performance
evaluation.

I. INTRODUCTION

A mobile ad hoc network(MANET) [1] is a set of wire-
less mobile nodes forming a dynamic autonomous network
through a fully mobile infrastructure. This network is in-
dependent of any fixed infrastructure or centralized admin-
istration. A Node communicates directly with other nodes
within its wireless communication range without the inter-
vention of centralized access points or base stations.

Another feature of MANET is relatively lower through-
put compared to wired network. In order to improve the
throughput of MANET, several enhancements on transport
and link layer considering the multi-hop routing, wireless
channel and node mobility have been proposed. And re-
cently, as the bandwidth of wireless channel is increased
like in TEEE 802.11a (up to 54Mbps) and 802.11b (up to
11Mbps), the importance of flow control in the link and
transport layer is also increased. Through flow control
mechanism in link layer, nodes in MANET can prevent
packet drop when network congestion arises. IEEE 802.11
[2], currently the most popular link layer(or MAC) proto-
col used in wireless network, provides the solution for both
hidden terminal problem and reliability problem through

This work was supported in part by the Brain Korea 21 project of
Ministry of Education and in part by the National Research Labora-
tory project of Ministry of Science and Technology, 2003, Korea.

the RTS-CTS-DATA-ACK exchanges. But it never care-
fully considers flow control issue such as 802.3x.

Besides, MANET has a unique characteristic in that an
end-host participates in the process of packet forwarding
(i.e., relaying packets from one node to other node). When
too much traffic is forwarded through an end-host, some
of its own packets are dropped due to the buffer overflow.
But current IEEE 802.11 MAC protocol does not consider
this problem too.

In this paper, we propose two flow control algorithms
to improve the throughput of MANET in Section III.
Through simulation results using the NS-2 simulator, we
show that proposed flow control algorithms are able to in-
crease the throughput and also decease the power consump-
tion in Section IV.

II. RELATED WORK

We briefly review the IEEE 802.11 Distributed Coordi-
nated Function(DCF) [2]. As described in [2], a transmit-
ting mobile station must first sense an idle channel for a
time period of Distributed InterFrame Spacing(DIFS) af-
ter which it generates a random backoff timer chosen uni-
formly from the range [0, w — 1], where w is referred to as
the contention window. At the first transmission attempt,
w is set to CWinipn (minimum contention window). After
the backoff timer reaches 0, the mobile station transmits
a short request-to-send(RTS) message. If successfully re-
ceived, the receiving mobile station responds with a clear-
to-send(CTS) message. Any other mobile stations which
hear either the RTS or CTS packet uses the data packet
length information to update its Network Allocation Vec-
tor(NAV) containing the information of the period during
which the channel will remain busy. Thus, all mobile sta-
tions including hidden node can defer transmission suitably
to avoid collision. Finally, a binary exponential backoff
scheme is used such that after each unsuccessful transmis-
sion, the value of w is doubled, up to the maximum value
CWiae = 2™CWpin, where m is the number of unsuc-
cessful transmission attempts.

The IEEE 802.11 frame format is shown in Figure 1.
It shows the format of the MAC frame used for sending
unicast data packets in an ad-hoc network. The frame
control field carries frame identification information, such

Octets: 2 2 6 6 6 2 6 0-2312 4

Frame
Body

Duration/
1D

Frame
Control

Sequence

Addressl Control

Address2 Address3 Address4 FCs

; , MAC Header
Bits:15 14 0

0-32767
(usec)

Fig. 1. General MAC frame format

as the type of frame (e.g. management, control or data),
as well as protocol version information and control flags;
the duration field contains the time remaining (in us) until
the end of the packet transfer; the Address 3 is the unique
network identifier; sequence control is a sequence number
used to detect duplicate frames; and FCS is the frame check
sequence. The duration field contributes the key role to our
NCA; the period during transmission between given source
and destination makes possible for the neighbor nodes to
turn their power off resulting adaptive energy saving.

III. ProrPoSED TCP OPTIMIZATION ALGORITHM
A. Problem Definition

In MANET, each end-node performs 2 functions simul-
taneously. First, it operates as an end-host like the source
or the destination of connection and second, it operates
as a router which relays traffic between other sources and
destinations. Because of this feature, network congestion
in MANET must be handled differently from in wired net-
work. Usually, network congestion arises when aggregated
traffic exceeds the capacity of specific link. Network con-
gestion saturates buffer of intermediate node, and causes
packet drop. To cope with this problem, congestion control
algorithm like TCP is used in each end-host. However, in
wireless multi hop network, network congestion in end-host
can arise more frequently than in wired network, since an
end-host can act as a router simultaneously. Existing TCP
does not consider this kind of network congestion seriously.

v

&5

Background 1 TCP .7 G
Flow ’

TCP
Destlnatlon

Background 2 g

Flow -'F

Fig. 2. Simple topology of mobile ad hoc network

Fig. 2 shows simple topology of mobile ad hoc network.
In Fig. 2, node C operates as a router which relays cross
traffics from node A to node E and from node F to node
G. Simultaneously, node C operates as a TCP source which
sends traffic to TCP destination, node E. As this topology
shows, 3 flows of traffic are concentrated at node C. If a
large quantity of cross traffic is generated and thus makes
the IFQ of node C full, TCP packets generated by node

C will be dropped and retransmitted after timeout. Be-
cause TCP does not check the state of the IFQ, it gen-
erates as many packets as the size of congestion window.
Such packet drop and retransmission occurring in a TCP
source node is just meaningless, and even could be an over-
head which causes reduction of throughput. Also, this kind
of packet drop and retransmission may increase power con-
sumption.

3)DATA
() 5

C
M (5) When IFQ isfull,

packet isdropped.

Fig. 3. Packet transmission using RTS/CTS

Fig. 3 shows the process of data transmission in the orig-
inal IEEE 802.11 which uses RTS/CTS exchange. If node
B wants to send packet to other node, that is node C in Fig.
3, it sends RTS message first. Then node C receives RTS
message if it is within communication range of node B, and
if it is not communicating with other node, it sends CTS
message to node B. On receiving CTS message from node
C, node B sends data packet to node C, and node C sends
ACK packet to node B. But when node C suffers from net-
work congestion, this process of packet transmission causes
some inefficiency. If the IFQ of node C is full, even though
node B receives CTS from node C, data packet from node
B to node C will be dropped. This kind of packet drop
could be another waste of bandwidth and power energy.

To solve these problems, we propose two flow control
algorithms: One is the vertical flow control that operates
between layers in an end-node, and the other one is the hor-
izontal flow control that operates between two neighbored-
nodes.

B. Vertical Flow Control

According to protocol layering architecture, TCP does
not consider lower layers. Typically, TCP tries to send as
many packets as possible irrespective of the state of the
IFQ. But as referred before, in MANET, network conges-
tion arises more frequently than in wired network. Thus
the IFQ of an end-host suffers from overloaded packets fre-
quently, which may be transmitted from higher layer of
that node or from other node. If TCP tries to send packets
when its the IFQ is full, packet drop will occur at the IFQ
of the end-host. These packet drops happen rarely in wired
network for its high bandwidth, however in ad-hoc network,
these could be a serious problem as mentioned before. As
a solution for these problem, we modified existing TCP to
check the state of the IFQ. Whenever TCP attempts to
send packets, it would send only as many packets as the
IFQ can hold by checking the state of the IFQ. Algorithm.
1 describes the scheme.

nPacket is the number of packets sent from TCP in
one try of packet transmission. the IF'Q.Length() and the

Algorithm 1 Vertical Flow Control
1: nPacket < 0;

2: if thelFQ.Length() < theIFQ.Limit() then
3: Mazxburst — min{Mazburst,thel FQ.Limit() —
theI FQ.Length()};

4: else

5: M azburst < 0;

6: end if

7: while Seq_-Number < Highest_ ACK + cwnd do
8: if Maxburst == nPacket then
9: break;

10: end if

11: Send_packet();

12: nPacket + +;

13: Seq-Number + +;

14: end while

IFQ.Limit() are functions which return current length of
the IFQ and maximum length of the IFQ. Mazburst is the
maximum number of packets TCP can send at a time, and
usually is set to infinity in most TCP. seq_number means
last sequence number of packet sent by TCP, and high-
est_ack is last sequence number of ACK packet received by
TCP.

In Algorithm 1, we tried to prevent packet drops by con-
trolling Maxburst adequately. When TCP tries to send
packets, it check the state of the IFQ first. If current length
of the IFQ is shorter than the maximum (or limit) length
of the IFQ, Mazburst is set to the difference of those two
values (Algorithm 1 line 3). The difference of the max-
imum length of the IFQ and current length of the IFQ
means available length of the IFQ, and by setting Mazburst
to available length of the IFQ, TCP cannot send packets
more than the IFQ can accept. And if current length of
the IFQ is not smaller than the maximum length of the
IFQ, Mazxburst is set to 0, which means that TCP does not
send a packet since the IFQ is already full (Algorithm 1
line 5). After setting the value of Mazburst, TCP starts to
send packets. The maximum number of packets that can
be sent by TCP is the smaller number of Mazburst and
cwnd (Algorithm 1 line 7 - 14).

C. Horizontal Flow Control

To prevent sending packets when the IFQ of next-node
is full, we use RTS/CTS control message on different pur-
pose. When an end-node wants to send a packet to next-
node, it sends RTS first. In original IEEE 802.11, if next-
node is free to communicate with other node, it receives
RTS message and sends CTS message to inform that it
is free to communicate. We modified this process of ex-
changing RTS-CTS messages. On receiving RTS message
from previous-node, next-node checks the state of its own
the TFQ. After checking the state of the IFQ, if the IFQ
has available space, next-node sends CTS message just like
as original IEEE 802.11. When the IFQ is full, we can
choose one of following two methods. First method is not
sending CTS in response of RTS to prevent previous node
from sending data packets. This simple method can pre-
vent packet drop that may occur in the IFQ of next-node,
but this causes retransmission of RTS up to 7 times and

followed by link layer packet drop [3]. This may results in
worse effect on TCP throughput and power consumption.
So we choose the other method: Sending flagged CTS in-
dicating that next-node’s IFQ is full. On receiving flagged
CTS, previous node which wants to send data packet rec-
ognizes that the IFQ of next-node is full. Then previous
node postpones sending data packets until the next time
when TCP tries to send packets. This scheme showed in
Fig. 4.

e . &
4—)& When IFQ isfull

Send Flagged CTS'

Fig. 4. Horizontal flow control for TCP optimization

This flow control algorithm can diminish predictable
packet drops, however it is undesirable to apply this algo-
rithm to all types of packets. For example, reliable trans-
mission of TCP ACK may degrade the throughput rather
than unreliable transmission of TCP ACK since it is cumu-
lative ACK [4]. Also UDP designed for unreliable transmis-
sion can be an another case like that. It would be better
to transmit delay-sensitive UDP packets of short length
without flow control even if some of them are dropped in
a congested receiver. So applying this algorithm only to
TCP data packet with reasonable size is rather better than
applying all types of packets.

Ideally, we should classify the packets according to their
types and determine whether horizontal flow control algo-
rithm will be applied or not. But in real, it is impossible to
look into all packets flowed through a node due to limited
resources. Thus instead of ideal method, we approximate
the ideal approach by classifying the packets according to
their length. Approximating the idal approach means that
this algorithm will be applied only to packets whose length
are longer than RTS_Threshold. TCP ACK that has rela-
tively small length by nature will not be controlled by this
algorithm thus it will be transmitted without considering
network congestion. On the other hand, TCP packets that
have sufficient length will be controlled so that the waste
of bandwidth and power could be minimized. Although
TCP packets that have small length are not controlled, it
is trivial since retransmission of small packets results in
relatively little waste of bandwidth and power. By apply-
ing this algorithm only to packets whose length are longer
than RTS_Threshold, we can avoid unnecessary flow con-
trol for small packets like TCP ACK and delay-sensitive
UDP packets with relatively small size. The scheme above
is described in Algorithm 2.

When an end-node wants to send data packet to next-
node, it check the size of that packet first. (Algorithm
2 SendPacket() line 2). If the size of packet to be sent
is smaller than RTS_Threshold, then an end-node sends
packet immediately without RTS-CTS exchanging. (Algo-

Algorithm 2 Horizontal Flow Control

SendPacket() {
if PacketSize > RT'S_Threshold then
SendRT'S();
if ReceivedNormalCTS() then
SendDataPacket() ;
else if RecedvedFlaggedCTS() then
HoldPacket();
end if
9: else
10: SendDataPacket();
11: end if
12: }

1: ReceiveRT SPacket() {

2: if thelFQ.Length() < theIFQ.Limit() then
3: SendNormalCT S();

4: else

5: SendFlaggedCTS();

6: end if

7

}

rithm 2 SendPacket() line 10). And if the size of packet is
larger than RTS_Threshold, then an end-node sends RTS
message to next-node and waits for CTS message. (Algo-
rithm 2 SendPacket() line 3) When next-node receives RTS
message, it checks the state of its the IFQ. If the IFQ has
available space for another packets, next-node send Nor-
malCTS and if not, it sends flaggedCTS to inform its the
IFQ is full. (Algorithm 2 ReveiveRTSPacket() line 2-5)
And finally, an end-node which sent RTS receives CTS mes-
sage from next-node. If CTS from next-node is NormalCTS
it sends data packet and if not, it postpones sending data
packet. (Algorithm 2 SendPacket() line 4-7)

IV. PERFORMANCE EVALUATION

We simulated the proposed flow control algorithms
,called vertical and horizontal flow control algorithms, to
measure throughput and power consumption gains over
original TCP IEEE 802.11 MAC protocol. Simulation was
conducted on simple topology of mobile ad hoc network,
Fig. 2 using ns — 2 simulator. In simulation, the data
rate of Background 1 Traffic from node A to node E was
fixed to 1Mbps CBR. And the data rate of Background 2
Traffic from node F to node G was increased from 200Kbps
to 600Kbps by 50Kbps. Since Background 2 Traffic passes
through node C, the level of network congestion in node C
can be controlled by varying the data rate of Background
2 Traffic.

Fig. 5 shows throughput of TCP flow from node C to
node E either when vertical and horizontal flow control
algorithms are applied or not. As the bandwidth of Back-
ground 2 Traffic is increased, throughput of TCP with ver-
tical and horizontal flow controls as well as throughput of
original TCP is decreased too. But throughput of TCP
with vertical and horizontal flow controls decreases with
relatively lower rate. From this graph, we can see that
with the higher level of congestion, the more throughput
gain could be obtained through our flow control algorithms.
It is because vertical and horizontal flow control algorithm
diminishes packet drops which could arises by predictable

Throughput Comparison of TCP(Kbps)
200 T T

briginal Tcp ——

TCP With Vertical and Horizontal Flow Controls -

Throughput (Kbps)

200 250 300 350 400 450 500 550 600
Bandwidth of Background 2 Flow (Kbps)

Fig. 5. Comparison of the TCP throughput between original TCP
and TCP with Vertical and Horizontal flow control

network congestions.

Power Conparison of all nodes(W)

' briginal TcP ——
TCP With Vertical and Horizontal Flow Controls -
5.8

5.6

54 1
5.2 1

5 — o

Power (W)

4.8

4.6

200 250 300 350 400 450 500 550 600
Bandwidth of Background 2 Flow (Kbps)

Fig. 6. Comparison of the overall power consumption between orig-
inal TCP and TCP with Vertical and Horizontal flow control

Fig. 6 shows overall power consumption of simple topol-
ogy of mobile ad hoc network, Fig. 2. Because TCP is
designed for reliable transmission, the dropping of TCP
packet causes end-to-end packet retransmission, and in re-
sult this wastes power energy which is a critical resource in
wireless network like MANET. Proposed vertical and hor-
izontal flow control algorithms prevent predictable packet
drop followed by packet retransmission. In MANET, re-
duction of power consumption has as important meaning
as throughput enhancement does. This result shows that
we can reduce power consumption by using proposed flow
control algorithms since they reduce packet drops and re-
transmissions.

V. CONCLUSION

In this paper, we have presented vertical and horizontal
flow control algorithms for TCP optimization in the mobile
ad hoc network(MANET). The key function of vertical flow
control is to prevent TCP from sending packet meaning-
lessly by checking the state of the IFQ. This prevent pre-

dictable packet drop in its own node. And the key function
of horizontal flow control is to prevent an end-node from
sending packet when the IFQ of next-node is full by check-
ing the state of next-node’s IFQ. In this purpose, we modi-
fied RTS/CTS control messages. We evaluated vertical and
horizontal flow control algorithms using ns — 2 simulator.
The evaluation results show we can achieve better through-
put and less power consumption through our proposed al-
gorithms.

REFERENCES

[1] Charles E. Perkins, “Ad Hoc Networking,” Addison Wesley,
2000.

[2] IEEE Computer Society, “802.11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications,” June
1997.

[3] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, “The
Impact of Multihop Wireless Channel on TCP Throughput and
Loss,” to appear in IEEE INFOCOM 2003.

[4] E. Altman and T. Jimenez, “Improving TCP over multihop net-
work using delayed ACK,” to appear in MADNET 2003.

[5] Datasheet for ORINOCO 11 Mbit/s Network Interface Cards,
2001. ftp://ftp.orinocowireless.com/pub/docs/ORINOCO/.

