Scrappy: SeCure Rate Assuring Protocol with PrivacY

Kosei Akama, Yoshimichi Nakatsuka, Masaaki Sato, Keisuke Uehara

Summarized and reorganized by

Seokwon Oh (swoh@mmlab.snu.ac.kr)

2023-04-18

Network and Distributed System Security (NDSS) Symposium 2024 26 February - 1 March 2024, San Diego, CA, USA ISBN 1-891562-93-2 https://dx.doi.org/10.14722/ndss.2024.24445 www.ndss-symposium.org

Overview

- ➤Introduction to rate-limiting concept
- Existing major rate-limiting techniques
- ➤ Introduction to Scrappy, a new rate-limiting technique
- ➤ Design/Implementation
- **≻**Evaluation

Introduction to Rate-Limiting [1/3]

Introduction to Rate-Limiting [2/3]

보안 절차*

프로그램을 이용한 자동 개설을 방지하기 위해서 보안절차를 거치고 있습니다. 인쪽 이미지를 보이는 대로 입력해주세요.

전책 동의*

카페 개인정보보호정책에 동의합니다.

카페를 상거래 목적으로 운영하는 경우, 전자상거래법에 따라 사업자정보를 표시해야 합니다.

자세히보기

만들기

취소

Introduction to Rate-Limiting [3/3]

- >Online service users access their resources at a moderate rate
 - Malicious users attempt to exceed these limits
 - Online service providers employ techniques to slow down the users
- >There are scenarios where rate-limiting plays an important role
 - Online polls and product ratings
 - Services using third-party APIs
 - Services with free trials
 - Preventing dictionary attacks
 - Online crawlers

Existing Major Rate-Limiting Techniques [1/6]

>SMS authentication

- Authentication via phone numbers
- Originally not for the rate-limiting purpose

≻CAPTCHA

- Completely automated public Turing test to tell Computers and Humans apart
- Originally not for the rate-limiting purpose

> Shortcomings

- Privacy issue
- Degradation of user experience

Existing Major Rate-Limiting Techniques [2/6]

- ➤ CAP (Cryptographic Attestation of Personhood)
 - Users are asked to use their authenticator to sign a challenge
 - The private key is protected by the authenticator's secure element

≻Shortcomings

- The security relies on the security of the authenticator's secure element which is a hardware device
- The secret key is replicated
- Protecting the secret key within the secure element is crucial

[48] T. Meunier. (March, 2021) Humanity wastes about 500 years per day on CAPTCHAs. It's time to end this madness. Cloudflare Inc. [Online]. Available: https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/

Existing Major Rate-Limiting Techniques [3/6]

- ➤ CACTI (CAPTCHA Avoidance via Client-side TEE)
 - It utilizes client-side TEE (Trusted Execution Environment)
 - The TEE provides rate proofs that allow the server to understand the number of user actions conducted in the given time window with a counter

> Shortcoming

 An adversary is able to forge rate-proofs once the secret key is extracted from the TEE

[51] Y. Nakatsuka, E. Ozturk, A. Paverd, and G. Tsudik, "{CACTI}: Captcha Avoidance via Client-side {TEE} Integration," in 30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 2561–2578.

Existing Major Rate-Limiting Techniques [4/6]

➤ Privacy Pass

- It allows users to obtain anonymous cryptographic tokens for each task
- The tokens are implemented using blind signature scheme
- A user spends each token for each task

≻Shortcoming

 It is vulnerable to time correlation attacks, which use the time difference between the generation and usage of tokens

Figure 1: Privacy pass redemption and issuance protocol interaction

[16] C. A. W. Alex Davidson, Jana Iyengar. (2022, October) draft-ietfprivacypass-architecture-08 - The Privacy Pass Architecture. Internet Engineering Task Force. [Online]. Available: https://datatracker.ietf.org/doc/draft-ietf-privacypass-architecture/

Existing Major Rate-Limiting Techniques [5/6]

- ➤ Opaak (OPen Anonymous Authentication framework)
 - It provides rate-limiting for mobile phone users
 - A user obtains an anonymous credential upon presenting the phone number

≻Shortcomings

- It assumes that a user cannot possess many phone numbers
- It encrypts the private key using a user-defined password
- The private key gets exposed to untrusted memory

[47] G. Maganis, E. Shi, H. Chen, and D. Song, "Opaak: using mobile phones to limit anonymous identities online," in Proceedings of the 10th international conference on Mobile systems, applications, and services, 2012, pp. 295–308.

Existing Major Rate-Limiting Techniques [6/6]

	Privacy issue	User experience	Private key storage	Timing-corr attack	HW dependency
CAPTCHA		X			
SMS	X	X			
CAP					X
CACTI					X
Privacy Pass				X	
Opaak			X		
Scrappy					

Scrappy

> Scrappy

- A new rate-limiting protocol this paper proposes
- An acronym of SeCure Rate Assuring Protocol with PrivacY

➤ Security requirements of Scrappy

- Rate-limiting
- Unforgeability
- Unlinkability

➤ Base techniques under Scrappy

- Group signature scheme
- Direct Anonymous Attestation (DAA)
- Trusted Platform Module (TPM)

Scrappy Protocol Overview [1/2]

Scrappy Protocol Overview [2/2]

Group Signature Scheme

- >Group signature allows signers to prove group membership
 - There are multiple private keys with a single public key
 - Signers cannot be distinguished by their signatures
 - It consists of group manager, signer, verifier

Direct Anonymous Attestation

- ➤ Direct Anonymous Attestation (DAA) is a group signature scheme with additional properties
 - It provides anonymity, unlinkability, and pseudonymity
 - It is adopted by Trusted Computing Group in the TPM specification

Direct Anonymous Attestation: Setup, Join

Scrappy Protocol: Initialization

Scrappy Protocol: Rate-Limiting

Implementation

➤ Browser extension

• It receives/sends the data between the verifier server, and signer application

➤ Signer application

- It is implemented in Golang (high performance, memory safety)
- It uses SQLite
- It uses a modified version of the go-tpm library

➤ Verifier server

- It is implemented in Golang
- It uses SQLite
- It is set to allow one access per minute
- It sends the data necessary for the rate-assuring proof

Performance Evaluation

➤ Latency evaluation

- It is reasonable as Scrappy uses a resource-limited TPM
- CAP is excluded as it requires physical action
- Opaak is excluded as its latency drastically varies across environments

Work	Proof generation [ms]	Proof verification [ms]	
Scrappy	243.16	84.1	
CACTI	211.9	27.3	
Privacy Pass (N tokens)	341.48 + 180.87 * N	57.8	

➤ Storage evaluation

- 100,000 entries in the verifier side log: 6.64 MB
- It stores a small amount for a large log

Security Evaluation [1/3]

Unforgeability	Unlinkability	
Signature forgery attacks	Signer tracking via proofs	
Timestamp forgery attacks	Signer tracking via t	
Device reset attacks	The use of basenames in Scrappy and its privacy implications	
	Violating signer privacy via side-channel attacks	
	Rogue GM	
	GM with only one member	
	Signature forgery attacks Timestamp forgery attacks	

Security Evaluation [2/3]

- ➤ Signature forgery attacks
 - A malicious signer may attempt to generate a fake rate-assuring proof
 - It is impossible for signers to receive a valid cred from GM without TPM
- ➤ Signer tracking via t
 - A malicious verifier gives a long t
 - The malicious verifier gives t` that overlaps with t
 - It is detectable since the signer observes overlapping time windows

Security Evaluation [3/3]

- ➤ Compromised devices
 - Malicious signers may attempt to extract the EK, usk from TPM
 - Unforgeability, and unlinkability properties are violated
 - The verifier will accept a proof generated by either adversary or victim

Usability Analysis

≻Installation

- It requires browser extension, and signer application to be downloaded
- It can be improved with integrating the logic directly into the browser

➤ Signer-perceived latency

- It is comparable to other rate-limiting systems
- It does not degrade user experience

➤ Signer involvement

- It is not required
- Still, it improves security
- We can give the signers the choice

Conclusion

- There are various techniques to ensure rate-limiting
- The paper proposes Scrappy, a new rate-limiting protocol
- >Scrappy is unforgeable, and privacy-preserving
- ➤ Scrappy utilizes DAA protocol, supported by TPM
- >Scrappy does not rely on the security of the hardware device

Appendix 1: TPM (Trusted Platform Module)

- >TPM is an embedded computer chip that can securely store artifacts
 - It includes passwords, certificates, or encryption keys
 - The embedded endorsement key proves the uniqueness of the platform
 - It also provides security-related functions such as *TMP2_Sign*
 - It was conceived by Trusted Computing Group
- >TPM is the first choice for Scrappy
 - It supports DAA by default
 - Microsoft officially announced that the Window 11 OS requires it

Appendix 2: Other Implementations

