
Detecting Unknown Encrypted
Malicious Traffic in Real Time

via Flow Interaction Graph Analysis

Eunbee Hwang

Network and Distributed System Security (NDSS) Symposium 2023



/44

CONTENTS

1. Introduction

2. Overview

3. Graph Construction

4. Graph Pre-processing

5. Malicious Traffic Detection

6. Theoretical Analysis

7. Experimental Evaluation

8. Conclusion

2



Introduction

3

Keywords



Introduction

4

Keywords

1



Introduction

5

Keywords

1

2



Introduction

▪ Unknown Encrypted
▪ Encrypted malicious traffic detection is 

not well addressed

▪ Similar features to benign flow

▪ Diverse traffic patterns

▪ The existing encrypted traffic detection 
methods are supervised

▪ Unable to detect encrypted malicious 
traffic with unknown patterns

▪ Incapable of detecting both attacks 
constructed with and without 
encrypted traffic

6

Keywords



Introduction

▪ Unknown Encrypted
▪ Encrypted malicious traffic detection is 

not well addressed

▪ Low-rate

▪ Diverse traffic patterns

▪ The existing encrypted traffic detection 
methods are supervised

▪ Unable to detect encrypted malicious 
traffic with unknown patterns

▪ Incapable of detecting both attacks 
constructed with and without 
encrypted traffic

7

Keywords

▪ Real Time
▪ Encrypted malicious traffic involves 

multiple attack steps with different flow 
interactions among attackers and victims

▪ The interaction patterns are distinct 
from benign flow interaction patterns

▪ A graph to capture various flow interaction 
patterns

▪ The dependence explosion problem

▪ Reduce the density of the graph inspired 
by the flow size distribution study



Introduction

▪ The comparison with the existing methods of malicious traffic detection

8

Keywords



▪ Graph in HyperVision

Introduction

▪ Design Goals of HyperVison
▪ Generic detection

▪ Real time high-speed traffic processing

▪ Unsupervised

9

HyperVision

A real time detection system that aims

to capture footprints of encrypted malicious traffic by analyzing interaction patterns among flows

Vertex; IP address Edge; Flows



/44

Overview

10



/44

Overview

11

Step 1. Minimizing Edges



/44

Overview

12

Step 2. Minimizing Vertices



/44

Overview

13

Step 3. Unsupervised Machine Learning Method



Graph Construction

▪ Flow Classification
▪ Eliminate timeout threshold flows

▪ Classify the collected flows into short and long

▪ Short flows < Flow line

▪ Long flows > Flow line

▪ Obtain per-packet features

▪ Protocols, lengths, arrival intervals

14

Objective of Graph Construction and Flow Classification

To efficiently analyze the flows on the internet,

need to avoid the dependency explosion among flows during the graph construction



Graph Construction

▪ The real-world flow features distribution 
of short and long flows
▪ 5.52% flows have Flow Completion Time 

(FCT) > 2.0s

▪ 93.7% packets in the dataset are long 
flows

▪ 97.64% proportion of short flows

▪ 2.36% proportion of long flows

▪ The proportion difference inspired that 
different flow collection strategies are 
needed

15

Flow Classification



Graph Construction

▪ Most short flows have almost the same per-packet feature sequence
▪ e.g. Repetitive SSH cracking

▪ Requirements for short flow aggregation
▪ The flows have the same source and/or destination addresses

▪ The flows have the same protocol type

▪ The number of the flows is large enough

▪ The threshold AGG_LINE

16

Short Flow Aggregation

Short flow aggregation to represent similar flows using one edge after the classification



Graph Construction

▪ An edge for the short flow preserves one feature sequence and four tuples
▪ Per-packet features

▪ Protocols, lengths, arrival intervals

▪ Four tuples

▪ Source and destination addresses, port numbers

▪ Four types of edges associated with short flows exist on the graph
▪ Source address aggregated

▪ Destination address aggregated

▪ Both address aggregated

▪ Without aggregation

17

Short Flow Aggregation



Graph Construction

▪ Short flow aggregation to reduce the dense graph

18

Short Flow Aggregation

▪ The diameter of a vertex indicates the 
number of addresses denoted by the 
vertex

▪ The color indicates the repeated edges

▪ The algorithm reduces 93.94% vertices 
and 94.04% edges

▪ The edge highlighted in green indicates 
short flows exploiting a vulnerability



Graph Construction

▪ Histogram is used to represent the per-packet feature distributions of a long flow
▪ A histogram to avoid preserving long per-packet feature sequences

▪ A hash table for each per-packet feature sequence in each long flow

19

Feature Distribution Fitting For Long Flows

▪ Most packets in the long flows have 
similar packet lengths and arrival intervals
▪ On average, only 11 buckets were used to 

fit the distribution of packet length, most 
of the buckets collected more than 200 
packets



Graph Pre-Processing

▪ Split the graph by the components
▪ Most components contain few edges with similar interaction patterns

▪ Five features to profile the components
▪ The number of long flows

▪ The number of short flows

▪ The number of edges denoting short flows

▪ The number of bytes in long flows

▪ The number of bytes in short flows

▪ DBSCAN for density based clustering

20

Connectivity Analysis



Graph Pre-Processing

▪ The abnormal components in the graph have massive vertices and edges
▪ Graph Neural Network (GNN) for real time is impossible

21

Edge Pre-Clustering

▪ Extract eight and four graph 
structural features for the edges 
associated with short and long flow

▪ Most edges are adjacent to massive 
similar edges in the feature space

▪ DBSCAN for a pre-clustering



Malicious Traffic Detection

▪ Cluster edges connected to the same critical vertex and detects outliers as malicious 
traffic
▪ Clustering all edges directly is not efficient to learn the interaction patterns of the traffic

22

Identifying Critical Vertices

▪ Select a subset of all vertices in the 
connected component according to the 
following conditions
▪ The source and/or destination vertices of 

each edge in the component are in the 
subset

▪ The number of selected vertices in the 
subset is minimized



Malicious Traffic Detection

▪ Finding such a subset of vertices is an optimization problem and equivalent to the vertex 
cover problem, which was proved to be NP Complete (NPC)
▪ All edges and vertices on each component were selected to solve the problem

▪ Vertex cover problem was reformulated to Satisfiability Modulo Theories (SMT) problem

▪ SMT can be effectively solved by using Z3 SMT solver

▪ NPC can be solved in real time due to massive edge pre-clustering

23

Identifying Critical Vertices



Malicious Traffic Detection

▪ Use the structural features and the flow 
features extracted from the per-packet 
feature sequences

▪ Use the lightweight K-Means algorithm to 
cluster the edges

▪ Calculate the clustering loss that indicates 
the degree of maliciousness for malicious 
flow detection

24

Edge Feature Clustering for Detection

▪ To identify abnormal interaction patterns cluster the edges connected to each critical 
vertex



/44

Theoretical Analysis

25

▪ Analysis
▪ Used metrics

▪ The amount of information
▪ The scale of data
▪ The density of information

▪ Typical types of flow recording modes
▪ Idealized mode that records and stores 

the whole per-packet feature sequence
▪ Event based mode
▪ Sampling based mode

To analyze the information preserved
in the graph of HyperVision for graph learning based detection

▪ Key Results

▪ HyperVision maintains more information 
using the graph than the existing methods

▪ HyperVision maintains near-optimal 
information using the graph

▪ HyperVision has higher information 
density than the existing methods



Experimental Evaluation

▪ Background traffic
▪ Real world backbone network traffic datasets from the vantage-G of WIDE MAWI project in 

AS2500, Tokyo, Japan, Jan. ~ Jun. 2020

▪ Malicious traffic
▪ Traditional brute force attack

▪ To verify its generic detection

▪ Encrypted flooding traffic

▪ Encrypted web malicious traffic

▪ Malware generated encrypted traffic

26

Datasets

▪ Metrics
▪ F1

▪ F1 combines precision and recall into a 
single metric

▪ AUC
▪ AUC measures the performance of a

binary classification model by plotting
the true positive rate against the false 
positive rate



Experimental Evaluation

▪ HyperVision shows the highest accuracy
▪ Average F1 ranging between 0.927 and 

0.978

▪ Average AUC ranging between 0.974 and 
0.993

▪ HyperVision shows 35% and 13%
improvements over the best accuracy of 
the baselines

27

Overview of Accuracy Evaluation



Experimental Evaluation

▪ Traditional Brute Force Attack

28

Accuracy Evaluation



Experimental Evaluation

▪ Traditional Brute Force Attack

29

Accuracy Evaluation

0.992 ~ 0.999 AUC



Experimental Evaluation

▪ Traditional Brute Force Attack

30

Accuracy Evaluation

0.929 ~ 0.999 F1



Experimental Evaluation

▪ Traditional Brute Force Attack

31

Accuracy Evaluation

H.V. shows 56.3% AUC Improvement



Experimental Evaluation

▪ Traditional Brute Force Attack

32

Accuracy Evaluation

H.V. shows 11.6% AUC Improvement



Experimental Evaluation

▪ Traditional Brute Force Attack

33

Accuracy Evaluation

Kitsune and DeepLog cannot afford high speed backbone traffic



Experimental Evaluation

▪ Encrypted Flooding Traffic
▪ HyperVision achieves 0.856 ~ 0.981 F1 and 

0.917 ~ 0.998 AUC

▪ 58.7% F1 and 25.3% AUC accuracy 
improvement over the baselines

▪ HyperVision can accurately detect the link 
flooding traffic

▪ HyperVision can identify slow and persisted 
password attempts for the channels

▪ HyperVision maintains the interaction 
patterns of attackers using the graph 

34

Accuracy Evaluation



Experimental Evaluation

▪ Encrypted Web Malicious Traffic
▪ HyperVision achieves 0.985 average AUC 

and 0.957 average F1

35

Accuracy Evaluation



Experimental Evaluation

▪ Encrypted Web Malicious Traffic
▪ HyperVision achieves 0.985 average AUC 

and 0.957 average F1

36

Accuracy Evaluation

H.V. shows 2.8% AUC Improvement

H.V. shows 75.2% F1 Improvement



Experimental Evaluation

▪ Encrypted Web Malicious Traffic
▪ HyperVision achieves 0.985 average AUC and 

0.957 average F1

▪ The flow based ML detection cannot detect web 
encrypted malicious traffic

▪ Single flow patterns are almost same to 
benign web access flows

▪ HyperVision can accurately detect the encrypted 
web malicious traffic, because it captures the 
traffic from the frequent interactions

37

Accuracy Evaluation



Experimental Evaluation

▪ Encrypted Malware Traffic

38

Accuracy Evaluation

▪ Encrypted malware traffic is hard to detect for the baselines, because it is slow and 
persistent

▪ HyperVision accurately detects the malware campaigns at least 0.964 AUC and 0.891 F1



Experimental Evaluation

▪ Throughput
▪ Graph construction throughput

▪ 28.21 Gb/s

▪ Max construction throughput

▪ 32.43 ~ 39.71 Gb/s

▪ Graph detection throughput

▪ 121.64 Gb/s

▪ Stable detection throughput

▪ 80.6 ~ 148.9 Gb/s

39

Performance Results



Experimental Evaluation

▪ Latency
▪ HyperVision has 1.09 ~ 1.04s average 

construction latency with an upper bound 
of 1.93s

▪ The Receive Side Scaling (RSS) on the 
Intel NIC is unbalanced on the threads

▪ Construct latency composition

▪ Flow classification 50.95%

▪ Short flow aggregation 35.03%

▪ Long flow distribution fitting 14.0%

40

Performance Results



Experimental Evaluation

▪ Latency
▪ Graph detection latency

▪ 0.83s latency on average with a 99th

percentile of 4.48s

▪ Detection latency composition

▪ 75.8% of the latency comes from pre-
clustering

▪ Pre-clustering step reduces the 
processing overhead of the 
subsequent processing

41

Performance Results



Experimental Evaluation

▪ Resource Consumption
▪ The increasing rate of memory for 

maintaining the graph is only 13.1 MB/s

▪ HyperVision utilizes 1.78 GB memory to 
maintain the flow interaction patterns 
extracted from 2.82 TB ongoing traffic

▪ Graph storage usages

▪ HyperVision achieves 8.99%, 55.7%, 
98.1% storage reduction over the 
baselines

42

Performance Results

Raw packet header
Suricata



/44

Conclusion

▪ HyperVision is an ML based real time detection system for encrypted malicious traffic 
with unknown patterns

▪ HyperVision uses two different strategies to represent the interaction patterns 
generated by short and long flows and aggregates the information of these flows

▪ HyperVision is unsupervised graph learning method to detect the traffic by utilizing the 
connectivity, sparsity, and statistical features in the graph

43



Thank you



Appendix



/44

Features of Edges Used in HyperVision

46



/44

Hyper-Paramter Configuration

47



/44

Details of Malicious Traffic Datasets

48



/44

Five Generic Malicious Traffic Detection Methods

▪ Jaqen
▪ Sampling based recording and signature based detection

▪ FlowLens
▪ Sampling based recording and ML based detection

▪ Supervised learning

▪ Whisper
▪ Flow-level features and ML based detection

▪ Kitsune
▪ Packet-level features and DL based detection

▪ Unsupervised learning

▪ Deeplog
▪ Event based recording and DL based detection

49


	슬라이드 1: Detecting Unknown Encrypted Malicious Traffic in Real Time via Flow Interaction Graph Analysis
	슬라이드 2: CONTENTS
	슬라이드 3: Introduction
	슬라이드 4: Introduction
	슬라이드 5: Introduction
	슬라이드 6: Introduction
	슬라이드 7: Introduction
	슬라이드 8: Introduction
	슬라이드 9: Introduction
	슬라이드 10: Overview
	슬라이드 11: Overview
	슬라이드 12: Overview
	슬라이드 13: Overview
	슬라이드 14: Graph Construction
	슬라이드 15: Graph Construction
	슬라이드 16: Graph Construction
	슬라이드 17: Graph Construction
	슬라이드 18: Graph Construction
	슬라이드 19: Graph Construction
	슬라이드 20: Graph Pre-Processing
	슬라이드 21: Graph Pre-Processing
	슬라이드 22: Malicious Traffic Detection
	슬라이드 23: Malicious Traffic Detection
	슬라이드 24: Malicious Traffic Detection
	슬라이드 25: Theoretical Analysis
	슬라이드 26: Experimental Evaluation
	슬라이드 27: Experimental Evaluation
	슬라이드 28: Experimental Evaluation
	슬라이드 29: Experimental Evaluation
	슬라이드 30: Experimental Evaluation
	슬라이드 31: Experimental Evaluation
	슬라이드 32: Experimental Evaluation
	슬라이드 33: Experimental Evaluation
	슬라이드 34: Experimental Evaluation
	슬라이드 35: Experimental Evaluation
	슬라이드 36: Experimental Evaluation
	슬라이드 37: Experimental Evaluation
	슬라이드 38: Experimental Evaluation
	슬라이드 39: Experimental Evaluation
	슬라이드 40: Experimental Evaluation
	슬라이드 41: Experimental Evaluation
	슬라이드 42: Experimental Evaluation
	슬라이드 43: Conclusion
	슬라이드 44: Thank you
	슬라이드 45: Appendix
	슬라이드 46: Features of Edges Used in HyperVision
	슬라이드 47: Hyper-Paramter Configuration
	슬라이드 48: Details of Malicious Traffic Datasets
	슬라이드 49: Five Generic Malicious Traffic Detection Methods

