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Introduction

▪ Unknown Encrypted
▪ Encrypted malicious traffic detection is 

not well addressed

▪ Similar features to benign flow

▪ Diverse traffic patterns

▪ The existing encrypted traffic detection 
methods are supervised

▪ Unable to detect encrypted malicious 
traffic with unknown patterns

▪ Incapable of detecting both attacks 
constructed with and without 
encrypted traffic
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Keywords



Introduction

▪ Unknown Encrypted
▪ Encrypted malicious traffic detection is 

not well addressed

▪ Low-rate

▪ Diverse traffic patterns

▪ The existing encrypted traffic detection 
methods are supervised

▪ Unable to detect encrypted malicious 
traffic with unknown patterns

▪ Incapable of detecting both attacks 
constructed with and without 
encrypted traffic
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Keywords

▪ Real Time
▪ Encrypted malicious traffic involves 

multiple attack steps with different flow 
interactions among attackers and victims

▪ The interaction patterns are distinct 
from benign flow interaction patterns

▪ A graph to capture various flow interaction 
patterns

▪ The dependence explosion problem

▪ Reduce the density of the graph inspired 
by the flow size distribution study



Introduction

▪ The comparison with the existing methods of malicious traffic detection
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▪ Graph in HyperVision

Introduction

▪ Design Goals of HyperVison
▪ Generic detection

▪ Real time high-speed traffic processing

▪ Unsupervised
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HyperVision

A real time detection system that aims

to capture footprints of encrypted malicious traffic by analyzing interaction patterns among flows

Vertex; IP address Edge; Flows
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Step 1. Minimizing Edges
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Step 2. Minimizing Vertices
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Step 3. Unsupervised Machine Learning Method



Graph Construction

▪ Flow Classification
▪ Eliminate timeout threshold flows

▪ Classify the collected flows into short and long

▪ Short flows < Flow line

▪ Long flows > Flow line

▪ Obtain per-packet features

▪ Protocols, lengths, arrival intervals
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Objective of Graph Construction and Flow Classification

To efficiently analyze the flows on the internet,

need to avoid the dependency explosion among flows during the graph construction



Graph Construction

▪ The real-world flow features distribution 
of short and long flows
▪ 5.52% flows have Flow Completion Time 

(FCT) > 2.0s

▪ 93.7% packets in the dataset are long 
flows

▪ 97.64% proportion of short flows

▪ 2.36% proportion of long flows

▪ The proportion difference inspired that 
different flow collection strategies are 
needed
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Flow Classification



Graph Construction

▪ Most short flows have almost the same per-packet feature sequence
▪ e.g. Repetitive SSH cracking

▪ Requirements for short flow aggregation
▪ The flows have the same source and/or destination addresses

▪ The flows have the same protocol type

▪ The number of the flows is large enough

▪ The threshold AGG_LINE
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Short Flow Aggregation

Short flow aggregation to represent similar flows using one edge after the classification



Graph Construction

▪ An edge for the short flow preserves one feature sequence and four tuples
▪ Per-packet features

▪ Protocols, lengths, arrival intervals

▪ Four tuples

▪ Source and destination addresses, port numbers

▪ Four types of edges associated with short flows exist on the graph
▪ Source address aggregated

▪ Destination address aggregated

▪ Both address aggregated

▪ Without aggregation
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Short Flow Aggregation



Graph Construction

▪ Short flow aggregation to reduce the dense graph
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Short Flow Aggregation

▪ The diameter of a vertex indicates the 
number of addresses denoted by the 
vertex

▪ The color indicates the repeated edges

▪ The algorithm reduces 93.94% vertices 
and 94.04% edges

▪ The edge highlighted in green indicates 
short flows exploiting a vulnerability



Graph Construction

▪ Histogram is used to represent the per-packet feature distributions of a long flow
▪ A histogram to avoid preserving long per-packet feature sequences

▪ A hash table for each per-packet feature sequence in each long flow
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Feature Distribution Fitting For Long Flows

▪ Most packets in the long flows have 
similar packet lengths and arrival intervals
▪ On average, only 11 buckets were used to 

fit the distribution of packet length, most 
of the buckets collected more than 200 
packets



Graph Pre-Processing

▪ Split the graph by the components
▪ Most components contain few edges with similar interaction patterns

▪ Five features to profile the components
▪ The number of long flows

▪ The number of short flows

▪ The number of edges denoting short flows

▪ The number of bytes in long flows

▪ The number of bytes in short flows

▪ DBSCAN for density based clustering
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Connectivity Analysis



Graph Pre-Processing

▪ The abnormal components in the graph have massive vertices and edges
▪ Graph Neural Network (GNN) for real time is impossible
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Edge Pre-Clustering

▪ Extract eight and four graph 
structural features for the edges 
associated with short and long flow

▪ Most edges are adjacent to massive 
similar edges in the feature space

▪ DBSCAN for a pre-clustering



Malicious Traffic Detection

▪ Cluster edges connected to the same critical vertex and detects outliers as malicious 
traffic
▪ Clustering all edges directly is not efficient to learn the interaction patterns of the traffic

22

Identifying Critical Vertices

▪ Select a subset of all vertices in the 
connected component according to the 
following conditions
▪ The source and/or destination vertices of 

each edge in the component are in the 
subset

▪ The number of selected vertices in the 
subset is minimized



Malicious Traffic Detection

▪ Finding such a subset of vertices is an optimization problem and equivalent to the vertex 
cover problem, which was proved to be NP Complete (NPC)
▪ All edges and vertices on each component were selected to solve the problem

▪ Vertex cover problem was reformulated to Satisfiability Modulo Theories (SMT) problem

▪ SMT can be effectively solved by using Z3 SMT solver

▪ NPC can be solved in real time due to massive edge pre-clustering
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Identifying Critical Vertices



Malicious Traffic Detection

▪ Use the structural features and the flow 
features extracted from the per-packet 
feature sequences

▪ Use the lightweight K-Means algorithm to 
cluster the edges

▪ Calculate the clustering loss that indicates 
the degree of maliciousness for malicious 
flow detection
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Edge Feature Clustering for Detection

▪ To identify abnormal interaction patterns cluster the edges connected to each critical 
vertex
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Theoretical Analysis
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▪ Analysis
▪ Used metrics

▪ The amount of information
▪ The scale of data
▪ The density of information

▪ Typical types of flow recording modes
▪ Idealized mode that records and stores 

the whole per-packet feature sequence
▪ Event based mode
▪ Sampling based mode

To analyze the information preserved
in the graph of HyperVision for graph learning based detection

▪ Key Results

▪ HyperVision maintains more information 
using the graph than the existing methods

▪ HyperVision maintains near-optimal 
information using the graph

▪ HyperVision has higher information 
density than the existing methods



Experimental Evaluation

▪ Background traffic
▪ Real world backbone network traffic datasets from the vantage-G of WIDE MAWI project in 

AS2500, Tokyo, Japan, Jan. ~ Jun. 2020

▪ Malicious traffic
▪ Traditional brute force attack

▪ To verify its generic detection

▪ Encrypted flooding traffic

▪ Encrypted web malicious traffic

▪ Malware generated encrypted traffic
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Datasets

▪ Metrics
▪ F1

▪ F1 combines precision and recall into a 
single metric

▪ AUC
▪ AUC measures the performance of a

binary classification model by plotting
the true positive rate against the false 
positive rate



Experimental Evaluation

▪ HyperVision shows the highest accuracy
▪ Average F1 ranging between 0.927 and 

0.978

▪ Average AUC ranging between 0.974 and 
0.993

▪ HyperVision shows 35% and 13%
improvements over the best accuracy of 
the baselines
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Overview of Accuracy Evaluation



Experimental Evaluation

▪ Traditional Brute Force Attack
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Accuracy Evaluation



Experimental Evaluation

▪ Traditional Brute Force Attack
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Accuracy Evaluation

0.992 ~ 0.999 AUC



Experimental Evaluation

▪ Traditional Brute Force Attack
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Accuracy Evaluation

0.929 ~ 0.999 F1



Experimental Evaluation

▪ Traditional Brute Force Attack
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Accuracy Evaluation

H.V. shows 56.3% AUC Improvement



Experimental Evaluation

▪ Traditional Brute Force Attack
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Accuracy Evaluation

H.V. shows 11.6% AUC Improvement



Experimental Evaluation

▪ Traditional Brute Force Attack
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Accuracy Evaluation

Kitsune and DeepLog cannot afford high speed backbone traffic



Experimental Evaluation

▪ Encrypted Flooding Traffic
▪ HyperVision achieves 0.856 ~ 0.981 F1 and 

0.917 ~ 0.998 AUC

▪ 58.7% F1 and 25.3% AUC accuracy 
improvement over the baselines

▪ HyperVision can accurately detect the link 
flooding traffic

▪ HyperVision can identify slow and persisted 
password attempts for the channels

▪ HyperVision maintains the interaction 
patterns of attackers using the graph 
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Accuracy Evaluation



Experimental Evaluation

▪ Encrypted Web Malicious Traffic
▪ HyperVision achieves 0.985 average AUC 

and 0.957 average F1
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Accuracy Evaluation



Experimental Evaluation

▪ Encrypted Web Malicious Traffic
▪ HyperVision achieves 0.985 average AUC 

and 0.957 average F1
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Accuracy Evaluation

H.V. shows 2.8% AUC Improvement

H.V. shows 75.2% F1 Improvement



Experimental Evaluation

▪ Encrypted Web Malicious Traffic
▪ HyperVision achieves 0.985 average AUC and 

0.957 average F1

▪ The flow based ML detection cannot detect web 
encrypted malicious traffic

▪ Single flow patterns are almost same to 
benign web access flows

▪ HyperVision can accurately detect the encrypted 
web malicious traffic, because it captures the 
traffic from the frequent interactions
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Accuracy Evaluation



Experimental Evaluation

▪ Encrypted Malware Traffic
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Accuracy Evaluation

▪ Encrypted malware traffic is hard to detect for the baselines, because it is slow and 
persistent

▪ HyperVision accurately detects the malware campaigns at least 0.964 AUC and 0.891 F1



Experimental Evaluation

▪ Throughput
▪ Graph construction throughput

▪ 28.21 Gb/s

▪ Max construction throughput

▪ 32.43 ~ 39.71 Gb/s

▪ Graph detection throughput

▪ 121.64 Gb/s

▪ Stable detection throughput

▪ 80.6 ~ 148.9 Gb/s
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Performance Results



Experimental Evaluation

▪ Latency
▪ HyperVision has 1.09 ~ 1.04s average 

construction latency with an upper bound 
of 1.93s

▪ The Receive Side Scaling (RSS) on the 
Intel NIC is unbalanced on the threads

▪ Construct latency composition

▪ Flow classification 50.95%

▪ Short flow aggregation 35.03%

▪ Long flow distribution fitting 14.0%
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Performance Results



Experimental Evaluation

▪ Latency
▪ Graph detection latency

▪ 0.83s latency on average with a 99th

percentile of 4.48s

▪ Detection latency composition

▪ 75.8% of the latency comes from pre-
clustering

▪ Pre-clustering step reduces the 
processing overhead of the 
subsequent processing

41

Performance Results



Experimental Evaluation

▪ Resource Consumption
▪ The increasing rate of memory for 

maintaining the graph is only 13.1 MB/s

▪ HyperVision utilizes 1.78 GB memory to 
maintain the flow interaction patterns 
extracted from 2.82 TB ongoing traffic

▪ Graph storage usages

▪ HyperVision achieves 8.99%, 55.7%, 
98.1% storage reduction over the 
baselines
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Performance Results

Raw packet header
Suricata
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Conclusion

▪ HyperVision is an ML based real time detection system for encrypted malicious traffic 
with unknown patterns

▪ HyperVision uses two different strategies to represent the interaction patterns 
generated by short and long flows and aggregates the information of these flows

▪ HyperVision is unsupervised graph learning method to detect the traffic by utilizing the 
connectivity, sparsity, and statistical features in the graph
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Thank you



Appendix
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Features of Edges Used in HyperVision
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Hyper-Paramter Configuration
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Details of Malicious Traffic Datasets
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Five Generic Malicious Traffic Detection Methods

▪ Jaqen
▪ Sampling based recording and signature based detection

▪ FlowLens
▪ Sampling based recording and ML based detection

▪ Supervised learning

▪ Whisper
▪ Flow-level features and ML based detection

▪ Kitsune
▪ Packet-level features and DL based detection

▪ Unsupervised learning

▪ Deeplog
▪ Event based recording and DL based detection
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