
SoK: A Comprehensive Analysis and Evaluation of Docker
Container Attack and Defense Mechanisms

HyeongUk Ko (huko@mmlab.snu.ac.kr)

2025.04.09

MMLAB Main Seminar

Md Sadun haq, Thien Duc Nguyen, Ali Saman Tosun, Franziska Vollmer, Turgay Korkmaz,
and Ahmad-Reza Sadeghi

2024 IEEE Symposium on Security and Privacy 2024 (S&P 24’)

4Evaluation

3A Taxonomy of Attack and Defense Mechanisms

1Introduction

Index

5Discussion & Conclusion

Attacks

Defenses

2Attack Scenarios

3 / 44

▪ A lightweight executable bundle of software encompassing code, system tools,
and other dependencies needed to run an application

What is Container?

4 / 44

▪ Container can provide isolation between various applications, offering effectivity
and portability

What is Container?

Lightweight

Doesn’t contain heavy data

5 / 44

▪ Container-based technology is increasingly used in developing and deploying
applications across various platforms
• 91% of organizations are using containers in production, according to Cloud Native

Computing Foundation (CNCF) 2024 annual survey [1]

▪ However, containers possess security risks due to their weak isolation from the
host OS compared to VMs
• Any successful attack within a container might compromise the entire host system

*Therefore, there is a need for understanding and systemizing diverse attack
vectors and defenses mechanisms

Two Sides of Container

4Evaluation

3A Taxonomy of Attack and Defense Mechanisms

1Introduction

Index

5Discussion & Conclusion

Attacks

Defenses

2Attack Scenarios

7 / 44

① Malicious image
• User downloads malicious images from a

public container repository (e.g., DockerHub)

• It can lead to various exploits – reverse shell,
exposing credentials, etc.

② Remote to container
• The vulnerable component or application is

located in the container by preexisting issues

9 Attack Scenarios

8 / 44

③ Container to container
• A container is attacked by the compromised

container

• Attacker can get vital information regarding
other containers and cause various exploits –
DoS, authentication bypass, etc.

④ Between container and host
• Container to host

• Host to container

9 Attack Scenarios

9 / 44

⑤ Container to container engine
• A container engine is attacked by the

compromised container

• Since the container engine usually runs with
root privileges, compromising it can grant
superuser access

⑥ Host to container engine
• Given malicious host, attacker exploits the

container engine

*Straightforward

9 Attack Scenarios

10 / 44

⑦ Application to container
• A container is attacked from an application

• Various attacks can be performed

⑧ Application to container engine
• A container engine is attacked from an

application

• It can impact associated containers and
orchestrators, leading to broader service
disruptions

9 Attack Scenarios

11 / 44

⑨ Remote to container engine
• The vulnerable component is in the container

engine

• The adversary scans for exposed ports, and if
found, he tries to gain privilege by exploiting
the preexisting vulnerability

*There are 9 combinable attack paths
associated with container architecture

9 Attack Scenarios

4Evaluation

3A Taxonomy of Attack and Defense Mechanisms

1Introduction

Index

5Discussion & Conclusion

Attacks

Defenses

2Attack Scenarios

13 / 44

5 Attack Types

Execute
Arbitrary Code Gain Privilege

Superuser

Disclose Credential
Information

Authentication
Bypass Denial of Service

14 / 44

▪ Definition
• Attacks which aim to send arbitrary commands to the victim to gain

unauthorized access or control of the system

▪ Return a shell
1. An adversary sends crafted commands to databases or web servers

2. It leads to opening a shell and creating a pathway for the adversary

*If returning a shell is unable, they may cause other issues – return-
oriented programming

▪ Example usage
• Make a target host download a malicious image or attack a target

container remotely

Execute Arbitrary Code

Execute
Arbitrary Code

15 / 44

▪ Definition
• Attacks which aim to gain superuser privileges by exploiting

▪ Escalation of privilege
• Modifications of memory and files can be used to escalate privilege by

buffer overflow or modifying the superuser’s password, respectively

*Privilege escalation that involves gaining root access by exploiting
vulnerabilities in the kernel is called kernel escalation

▪ Example usage
• Escalate from container to container engine

Gain Privilege

Superuser

Gain Privilege

16 / 44

▪ Definition
• Attacks which aim to involve unauthorized access and exposure of

credentials (e.g., usernames and passwords)

• Additionally, they also aim to gain the underlying information of
the systems, e.g., file names or directory structures

▪ Gain login credentials
• Having the contents of ’/etc/shadow’ or ’/etc/passwd’ files can

give an adversary unlimited access

*the adversary can also utilize side-channel attacks to acquire
sensitive information by analyzing CPU or other components

▪ Example usage
• Exploit container or host and expose credentials

Disclose Credential Information

Disclose Credential
Information

17 / 44

▪ Definition
• Attacks which aim to gain unauthorized access without

providing correct credentials exploiting authentication systems

▪ Password bypass
• Adversary can bypass the password authentication method and

gain access to a person’s online account or database

• SQL injection or integer overflow

▪ Example usage
• Exploit the vulnerable application in container or attack flawed

design in container/host authentication mechanisms

Authentication Bypass

Authentication
Bypass

18 / 44

▪ Definition
• Attacks which aim to disrupt normal system functionalities

▪ Consume excessive resources
• It focuses on three resources: CPU, Memory, and Network

▪ Example usage
• Excessive resource consumption by one container can lead to

starvation in others

Denial of Service

Denial of Service

19 / 44

*More detailed table [2]

A Taxonomy of Attack Types and Techniques

Attack Types Attack Techniques Attack Types Attack Techniques

Execute Arbitrary
Code

Return a shell

Authentication Bypass

Password bypass

Return-oriented
programming

Reduced security
attributes

Remote code execution Integer overflow

Gain Privilege

Escalation of privilege

Denial of Service

Crash the application

Kernel escalation
Consume excessive

resources

Disclose Credential
Information

Gain login credentials Brute-force

File system access Spoofing

File name access DoS overflow

Channel attacks Redirect traffic

4Evaluation

3A Taxonomy of Attack and Defense Mechanisms

1Introduction

Index

5Discussion & Conclusion

Attacks

Defenses

2Attack Scenarios

21 / 44

4 Defense Mechanism Groups

Static Scanning

Security Policies &
Practices

Dynamic Anomaly
Detection

Image Hardening

22 / 44

▪ Definition
• The mechanisms which use scanning tools to seek known vulnerabilities

in containers

▪ Property
• Can detect vulnerabilities in non-updated/poisoned/malicious images,

and even insecure configurations

▪ Limitations
• Cannot detect run-time attacks

• Can suffer from inconsistencies and false positives

• Cannot detect zero-day attacks

Static Scanning

Static Scanning

23 / 44

▪ Definition
• The mechanisms which remove unnecessary packages to reduce the

attack surface or build an application with a minimal base image

▪ Property
• Can reduce the attack surface in container

▪ Limitation
• Removing unnecessary packages is not straightforward and can

hamper the execution of applications

Image Hardening

Image Hardening

24 / 44

▪ Definition
• The mechanisms which provide certain policies and practices

to prevent breaches through containers

▪ Property
• Can increase security by providing rigid access to system calls,

capabilities, and privileges

▪ Limitation
• Hard to implement in practice and may prevent a container

from functioning correctly

• Incur an increase in overhead

Security Policies & Practices

Security Policies &
Practices

25 / 44

▪ Definition
• The mechanisms which use machine learning algorithms to detect

anomalies in the runtime

▪ Property
• A model learns very many data and, consequentially, it can

determine whether the running container has anomaly or not

• Some defenses use supervised approaches, some other defenses
use unsupervised approaches

▪ Limitation
• Building a robust detection model is difficult due to the scarcity of

training data and the absence of a benchmark

Dynamic Anomaly Detection

Dynamic Anomaly
Detection

4Evaluation

3A Taxonomy of Attack and Defense Mechanisms

1Introduction

Index

5Discussion & Conclusion

Attacks

Defenses

2Attack Scenarios

27 / 44

Evaluation Framework

28 / 44

▪ Dataset
• Existing dataset: includes the system calls for 41 exploits which are from existing dataset

• New dataset: includes the system calls for 10 exploits which authors had generated

• The exploits are carried out at the fourth minute – the data collected in the first three
minutes is labeled as benign, while the rest is labeled as malicious

▪ Training and testing scenarios
• Reorganizing dataset according to when the subset of the dataset was published

✓ d1 (oldest, 34 exploits), d2 (middle, 9 exploits), d3 (newest, 8 exploits)

• 3 different scenarios
✓ S1 (train dataset == test dataset), S2 (train dataset != test dataset), S3 (train dataset == test dataset, each

dataset is entire dataset)

Evaluation Framework

29 / 44

Evaluation Framework

30 / 44

Evaluation: Static Analysis

None of the tools provide a detection
rate above 50%, even when combining
multiple scanning tools (48.9%)

6.67%

42.20%

28.90%

42.20%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Clair Trivy Snyk Grype

D
et

ec
ti

o
n

 R
at

e

Scanning Tool

The inconsistencies in container scanning
results with existing works emphasize the
necessity for enhanced detection tools

31 / 44

▪ Supervised algorithms – (Random Forest, RF)

Evaluation: Dynamic Analysis – Anomaly Detection

For S2, the TPR falls under 60%
(testing with unseen data)

32 / 44

▪ Supervised algorithms – (Decision Tree, DT)

Evaluation: Dynamic Analysis – Anomaly Detection

For S2_d2d3, the TPR and FPR is
around 50%

DT performs well except for S2_d2d3

33 / 44

▪ Supervised algorithms – (AdaBoost, AB)

Evaluation: Dynamic Analysis – Anomaly Detection

AB performs very bad

34 / 44

▪ Supervised algorithms – (K-nearest-neighbor, KNN)

Evaluation: Dynamic Analysis – Anomaly Detection

KNN does not perform well

35 / 44

▪ Supervised algorithms – (Multi-layer-perceptron, MLP)

Evaluation: Dynamic Analysis – Anomaly Detection

MLP does not perform well

36 / 44

▪ Supervised algorithms – summary
• Critical properties

✓ RF and DT seem to classify the anomaly class better than other algorithms

✓ However, neither RF nor DT provide consistent TPRs across the different scenarios, with results falling in S2

*Room for improvement

• Improvement examples
✓ Performing dimensionality reduction before conducting the classification

✓ Separating the scenarios based on the application and fine-tuning the algorithms

Evaluation: Dynamic Analysis – Anomaly Detection

37 / 44

▪ Unsupervised algorithms – (AutoEncoder)

Evaluation: Dynamic Analysis – Anomaly Detection

At the 40th percentile, the true positive
rate is 62%, and the false positive rate is
54% (8%p difference)

AutoEncoder performs very poorly in
detecting anomalies

38 / 44

▪ Unsupervised algorithms – (K-means)

Evaluation: Dynamic Analysis – Anomaly Detection

At the 4th percentile, the true positive
rate is 25%, and the false positive rate is
18% (7%p difference)

K-means performs very poorly in
detecting anomalies

39 / 44

▪ Unsupervised algorithms – summary
• Critical properties

✓ The unsupervised algorithms perform very poorly in detecting anomalies, maybe due to their lack of labeled
data

✓ Even though they perform better than some supervised algorithms (higher TPR), they also give rise to FPR,
which means that the algorithms can’t accurately separate the anomaly class from the benign class

Evaluation: Dynamic Analysis – Anomaly Detection

40 / 44

▪ 1: Execute arbitrary code
• None of the models can accurately detect this type of

attack

▪ 2: Gain privilege
• None of the models can accurately detect this type of

attack

▪ 3: Disclose credential information
• DT detects around 60% for this type of attack

Evaluation: Dynamic Analysis – Attack Type Detection

41 / 44

▪ 4: Authentication bypass
• None of the models can accurately detect this type of

attack

▪ 5: Denial of service
• RF, DT, and AB can detect Denial Of Service attacks

with high TPRs

*DT performs best for all attack types

Evaluation: Dynamic Analysis – Attack Type Detection

4Evaluation

3A Taxonomy of Attack and Defense Mechanisms

1Introduction

Index

5Discussion & Conclusion

Attacks

Defenses

2Attack Scenarios

43 / 44

▪ Static scanning
• Problem: None of the scanning tools achieve a detection rate greater than 50%

• Improvement 1: Don’t use scanning tools solely but combine with other mechanisms

• Improvement 2: Enhance effectiveness and reduce the delay of scanning tools by utilizing
collaborative learning for real-time vulnerability updates

▪ Dynamic Anomaly Detection
• Problem: All the anomaly detection algorithms have poor performance

• Improvement 1: Dimensionality reduction might provide better results for both supervised
and unsupervised algorithms, as this might reduce the chance of overfitting

• Improvement 2: Improve existing anomaly detection using dynamic approaches by training
and tuning different models with diverse and up-to-date data

Discussion of Potential Improvements

44 / 44

▪ This paper presents a systematic and comprehensive study of existing attacks and
defense mechanisms for containers
• 9 attack scenarios, 5 attack types, 4 defense mechanism groups

▪ We evaluate two defense mechanisms and find shortcomings: “Static Scanning”
and “Dynamic Anomaly Detection”

▪ As neither of the defenses can fully protect containers against state-of-the-art
attacks according to our findings, further works to secure container-based
applications are needed
• We suggested some improvements

Conclusion

Thank you!

46 / 44

▪ [1] https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf

▪ [2] https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646668 TABLE 1

References

https://www.cncf.io/wp-content/uploads/2025/04/cncf_annual_survey24_031225a.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10646668

47 / 44

Appendix 1: Dataset

