
/ 35

Call Me By My Name: Simple, Practical Private
Information Retrieval for Keyword Queries

ACM CCS 2024

Honggeun Park

[2025.04.30] MMLAB Main Seminar – Private Information Retrieval (PIR)

Sofia Celi

Brave Software

Lisbon, Portugal

cherenkov@riseup.net

Alex Davidson

Universidade NOVA de Lisboa & Nova LINCS

Lisbon, Portugal

a.davidson@fct.unl.pt

/ 35

Table of Contents

1. Introduction & Background
1) Introduction

2) Private Information Retrieval (PIR)

2. Simple, Practical KWPIR: ChalametPIR
1) ChalametPIR

2) Binary Fuse Filter

3. Performance Evaluation

4. Conclusion & Discussion

2

/ 35

Introduction [1/2]

• Assume that client is going to query an element to database server
• To ensure privacy, secure communication channel like TLS is used

3

Introduction & Background

𝑣1

𝑣2

𝑣3

𝑣4

⋯

𝑣𝑛

Query

Response

TLS Channel

Want to get 𝑣𝑖 Here is 𝑣𝑖

Client DB Server

Eavesdropper

/ 35

Introduction [2/2]

• In practice, DB server might not be honest
• To ensure privacy, DB server should not know what client queries

4

Introduction & Background

𝑣1

𝑣2

𝑣3

𝑣4

⋯

𝑣𝑛

Query

Response

TLS Channel

Want to get 𝑣𝑖 Here is 𝑣𝑖

Client DB Server

Eavesdropper

/ 35

Private Information Retrieval (PIR) [1/3]

• Private Information Retrieval (PIR):
• Allows private queries on public DBs that are hosted by an untrusted server(s)

5

Introduction & Background

𝑣1

𝑣2

𝑣3

𝑣4

⋯

𝑣𝑛

Query

Response

Want to get 𝑣𝑖

Here is what you
queried for

Client Public
DB Server

Can’t know what
client queried for

/ 35

Private Information Retrieval (PIR) [2/3]

Two Types of PIR:

1. Computationally secure PIR (CPIR)
• PIR with single public DB server

• Uses homomorphic encryption

• Can be categorized into index-based CPIR and keyword-based CPIR

2. Information-Theoretically secure PIR (IT-PIR)
• PIR with multiple public DB servers

• Uses group of batched queries to hide what client wants

• e.g., query (𝑣1, 𝑣2) to server 1 and query (𝑣1, 𝑣2, 𝑣3) to server 2

6

Introduction & Background

/ 35

Private Information Retrieval (PIR) [3/3]

7

Introduction & Background

Index-based PIR (LWEPIR) Keyword-based PIR (KWPIR)

Want to get
𝒊th element

Want to get
data of keyword 𝒌

/ 35

Index-Based PIR – Overview

• Uses LWE-based Homomorphic Encryption
• Uses special homomorphic encryption which supports public inner-product

• Public inner-product: 𝐸𝑛𝑐LWE Ԧ𝑣 ⋅ 𝑤 = 𝐸𝑛𝑐LWE Ԧ𝑣 ⋅ 𝑤

8

Introduction & Background

Want to get 𝑖th element

1. Generate
Query vector

Ԧ𝑒 Ԧ𝑒

2. Generate
Response

𝑐

3. Decrypt
Response

𝑐𝑣𝑖

/ 35

Index-Based PIR – Detail [1/3]

1. Generates Query vector 𝒆
• Generates indicator vector which represent what client wants

• Encrypts each element in vector with homomorphic encryption

9

Introduction & Background

Want to get 3rd element

1 0

2 0

3 1

4 0

⋮ ⋮

𝑛 0

0

0

1

0

⋮

0

DB

𝑣1

𝑣2

𝑣3

𝑣4

⋮

𝑣𝑛

Encrypted Message

Query

0

0

1

0

⋮

0

𝒆 𝒆

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

⋮

Since DB server doesn’t know
private key, privacy is guaranteed

/ 35

Index-Based PIR – Detail [2/3]

2. Generates Response 𝒄
• Multiplies each value in DB with each element in query vector Ԧ𝑒 to generate Ԧ𝑐

10

Introduction & Background

Want to get 3rd element

DB

𝑣1

𝑣2

𝑣3

𝑣4

⋮

𝑣𝑛

Encrypted Message

0

0

1

0

⋮

0

𝒆

0

0

𝑣3

0

⋮

0

𝒄

𝑐 × 𝐸𝑛𝑐LWE 𝑥 = 𝐸𝑛𝑐LWE 𝑐𝑥

/ 35

Index-Based PIR – Detail [2/3]

2. Generates Response 𝒄
• Multiplies each value in DB with each element in query vector Ԧ𝑒 to generate Ԧ𝑐

• Adds all element in Ԧ𝑐 homomorphically to generate response 𝑐

11

Introduction & Background

Want to get 3rd element

DB

𝑣1

𝑣2

𝑣3

𝑣4

⋮

𝑣𝑛

Encrypted Message

0

0

1

0

⋮

0

𝒆

0

0

𝑣3

0

⋮

0

𝒄

𝒄 = 𝑬𝒏𝒄LWE 𝒗𝟑𝒄

/ 35

Index-Based PIR – Detail [3/3]

3. Decrypts Response 𝒄
• Decrypts response 𝑐 to get queried value 𝑣2

12

Introduction & Background

Want to get 3rd element

DB

𝑣1

𝑣2

𝑣3

𝑣4

⋮

𝑣𝑛

Encrypted Message

𝒄 = 𝑬𝒏𝒄LWE 𝒗𝟑𝒗𝟑

Decrypt

/ 35

Keyword-Based PIR – Naïve Approach [1/3]

• Extends index-based PIR with 2 steps

1. Retrieves the location of keyword in keywords
• Assume that keywords in DB are sorted in increasing order

• e.g., for 𝑘2 = banana, its location is 2

2. Performs index-based PIR to that location

13

Introduction & Background

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

⋮ ⋮ ⋮

𝑛 𝑘𝑛 𝑣𝑛

Key-value map DB

/ 35

Keyword-Based PIR – Naïve Approach [2/3]

1. Retrieves the location of keyword in keywords
• Assume that keywords are sorted, and the number of keywords is 7

• Uses binary search to get location of keyword

14

Introduction & Background

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

5 𝑘5 𝑣5

6 𝑘6 𝑣6

7 𝑘7 𝑣7

Key-value map DB
Want to get location of 𝑘3

Knows
𝑛 = 7

1st Query

2nd Query

3rd Query

1. Query 4th keyword

Respond 𝑘4

2. Query 2nd keyword

Respond 𝑘2

3. Query 3rd keyword

Respond 𝑘3

Client can know that 𝑘3 is 3rd keyword in DB

/ 35

Keyword-Based PIR – Naïve Approach [3/3]

1. Retrieves the location of keyword in keywords → 𝑶 𝐥𝐨𝐠 𝒏
• Assume that keywords in DB are sorted in increasing order

2. Performs index-based PIR to that location → 1

• 𝑶 𝐥𝐨𝐠 𝒏 index-based PIRs are required!
• Too slow to use in practice 

• How to do better?

15

Introduction & Background

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

⋮ ⋮ ⋮

𝑛 𝑘𝑛 𝑣𝑛

Key-value map DB

/ 35

Keyword-Based PIR – Better Approach [1/2]

• Uses probabilistic filter (PF) like Bloom Filter
• Probabilistic data structure for testing membership of data

• Operates by maintaining 𝑘 hash functions

• Only false positive exists with false positive rate 0 < 𝜖 < 1

• Usually used with finite set of items

16

Introduction & Background

Insertion Look up

Apple Banana

Example with 𝑘 = 2

ℎ1 ℎ2 ℎ1ℎ2

Apple

ℎ1 ℎ2

Orange

ℎ2ℎ1

False positive!!

/ 35

Keyword-Based PIR – Better Approach [2/2]

• Uses probabilistic filter (PF) like Bloom Filter
• 𝑂 log 𝑛 index-based PIRs → 1 index-based PIR with some false positive rate 𝜖

17

Introduction & Background

Want to get data of 𝑘3

1 0

2 1

3 1

4 0

⋮ ⋮

𝑚 1

0

1

1

0

⋮

1

Query

𝒆

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

𝑬𝒏𝒄LWE

⋮

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

⋮ ⋮ ⋮

𝑛 𝑘𝑛 𝑣𝑛

Key-value map DB

𝒌𝟑

𝒉𝟐

𝒉𝟑

𝒉𝟏

𝐹

Filter Generation

/ 35

1. Introduction & Background
1) Introduction

2) Private Information Retrieval (PIR)

2. Simple, Practical KWPIR: ChalametPIR
1) ChalametPIR

2) Binary Fuse Filter

3. Performance Evaluation

4. Conclusion & Discussion

18

/ 35

ChalametPIR [1/2]

• ChalemetPIR : Simple & Practical KWPIR
• For simplicity, just combines Binary Fuse Filter (BFF) with LWEPIR

19

Simple, Practical KWPIR: ChalametPIR

Want to get data of 𝑘

1 0

2 1

3 1

4 0

⋮ ⋮

𝑚 1

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

⋮ ⋮ ⋮

𝑛 𝑘𝑛 𝑣𝑛

Key-value map DB

𝒌 BFF 𝐹

1. Generate Filter

2. Generate
indicate vector 3. LWEPIR Query

4. LWEPIR Response

/ 35

Binary Fuse Filter [1/3]

• Static probabilistic filter based on XOR filter
• No insertion and deletion after filter construction

• More efficient than other probabilistic filters:
1. More than twice as fast as the construction of XOR filters

2. Query speed comparable to that of XOR filters

3. Low memory usage per key
• Bloom filter : 1.44𝛼

• XOR filter : 1.23𝛼

• Binary Fuse Filter : 1.075𝛼 ~ 1.125𝛼

20

Simple, Practical KWPIR: ChalametPIR

/ 35

1 0

2 1

3 1

4 0

⋮ ⋮

𝑚 1

Binary Fuse Filter [2/3]

• Given : 𝑘 = 3, 4 hash functions & fingerprint function fptϵ

• Goal : Construct filter 𝐹 such that
𝐹 ℎ1 𝑘 + 𝐹 ℎ2 𝑘 + 𝐹 ℎ3 𝑘 = fptϵ 𝑘 ||𝑣 𝑚𝑜𝑑 𝑝

21

Simple, Practical KWPIR: ChalametPIR

Want to get data of 𝑘

𝒌 BFF 𝐹

𝒉𝟐

𝒉𝟑

𝒉𝟏

LWEPIR Query

෍

𝒊

𝑬𝒏𝒄LWE 𝑭 𝒉𝒊 𝒌 = 𝑬𝒏𝒄LWE 𝐟𝐩𝐭𝛜 𝒌 ||𝒗

LWEPIR Response
& Decrypt

𝐟𝐩𝐭𝛜 𝒌 ||𝒗

/ 35

Binary Fuse Filter [3/3]

• Main Idea:
1. Picks a random index from ℎ1 X , ℎ2 X , ℎ3 X → ℎ3 X

2. Encodes that block as 𝐹 ℎ3 X = (fptϵ X | 𝑣 − 𝐹 ℎ1 X − 𝐹 ℎ2 X

22

Simple, Practical KWPIR: ChalametPIR

6 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

6 0 0 0 0 0 14 0 0

1 2 3 4 5 6 7 8 9

Picks 7 from 1, 4, 7 , and encodes 𝐹 7 as following:
𝐹 7 = (fptϵ X | 𝑣 − 𝐹 1 − 𝐹 4 = 4 − 6 − 0 = −2 ≡ 14 𝑚𝑜𝑑 16

Assumptions : 𝑝 = 16 & X
ℎ1,ℎ2,ℎ3

1, 4, 7 & fptϵ(X)||𝑣 = 4

/ 35

ChalametPIR [2/2]

• In practice, fptϵ 𝑘 ||𝑣 is longer than log 𝑝
• Divides fptϵ 𝑘 ||𝑣 into log 𝑝-bits blocks

23

Simple, Practical KWPIR: ChalametPIR

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

⋮ ⋮ ⋮

𝑛 𝑘𝑛 𝑣𝑛

Key-value map DB

BFF 𝐹
(∈ ℤ𝑝

𝑚×𝑑)

Generate Filter

1 𝐹 1 1 𝐹 1 2 ⋯ 𝐹 1 𝑑

2 𝐹 2 1 𝐹 2 2 ⋯ 𝐹 2 𝑑

3 𝐹 3 1 𝐹 3 2 ⋯ 𝐹 3 𝑑

4 𝐹 4 1 𝐹 4 2 ⋯ 𝐹 4 𝑑

⋮ ⋮ ⋮ ⋱ ⋮

𝑚 𝐹 𝑚 1 𝐹 𝑚 2 ⋯ 𝐹 𝑚 𝑑

/ 35

1. Introduction & Background
1) Introduction

2) Private Information Retrieval (PIR)

2. Simple, Practical KWPIR: ChalametPIR
1) ChalametPIR

2) Binary Fuse Filter

3. Performance Evaluation

4. Conclusion & Discussion

24

/ 35

Metrics [1/2]

• Goal of ChalametPIR : making simple and practical KWPIR
• Simplicity: just combines BFF and LWEPIR

• How to define practicality?
• Practicality: amount of expenses which server should cover

1. Bandwidth Costs (query size, response size)

2. Online Performance (runtime for query, response, parsing)

3. Online Costs (cost, rate, throughput)

25

Performance Evaluation

/ 35

Metrics [2/2]

3. Online Costs : Comparison with other KWPIR
• Performance metrics for deploying ChalametPIR server in AWS

1) Cost (USD) : current AWS financial cost for running a server in “c5.9xlarge”

• CPU per-hour : $1.53/36 = $0.0425 per hour

• Download cost : $0.09 per GB

• Upload cost : $0 per GB (no cost)

2) Rate : ratio of retrieved record size to response size

• How small the response 𝑬𝑵𝑪LWE(𝐟𝐩𝐭𝛜 𝒌 | 𝒗 is compared to record 𝒗

3) Throughput (MB/s) : ratio of database size to server’s online computation time

• How fast server can deal with database

26

Performance Evaluation

/ 35

Experiment Setup

• Baseline LWEPIR : {FrodoPIR, SimplePIR}
• FrodoPIR : Response size is much smaller than query size

• SimplePIR : Response size and query size are similar

• Server Specification : {t2.2xlarge, c5.9xlarge, Macbook M1 Max}

• Database Parameters :
1) Key-value map size 𝑚 : {216, 217, 218, 219, 220}

2) Value size 𝑤 : {256B, 1kB, 30kB, 100kB}

3) Modular value 𝑝 : {29, 210}

4) Number of hash functions for BFF : {3, 4}

27

Performance Evaluation

/ 35

Bandwidth Costs [1/2]

• For FrodoPIR based ChalametPIR,
• Query size depends on the number of keys in DB

• Response size depends on the size of value

28

Performance Evaluation

|KV|
keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = FrodoPIR

𝑚 ↑

216 × 1kB 287 276 3.2 3.2

217 × 1kB 579 553 3.2 3.2

218 × 1kB 1157 1106 3.2 3.2

219 × 1kB 2314 2212 3.56 3.56

220 × 1kB 4628 4424 3.56 3.56

𝑤 ↑

220 × 256B 4628 4424 0.89 0.89

217 × 30kB 579 553 96 96

214 × 100kB 72 69 291 291

keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = SimplePIR

216 × 1kB 31.89 31.17 31.89 31.17

217 × 1kB 44.65 43.64 44.65 43.64

218 × 1kB 63.78 62.34 63.78 62.34

219 × 1kB 90.36 88.32 90.36 88.32

220 × 1kB 127.56 124.68 127.56 124.68

220 × 256B 63.78 62.34 63.78 62.34

217 × 30kB 256.18 250.4 256.18 250.4

214 × 100kB 180.71 176.63 180.71 176.63

/ 35

Bandwidth Costs [2/2]

• For SimplePIR based ChalametPIR,
• Query size and response size depend on total size of DB 𝑚 × 𝑤

• Query size and response size are equal for same setting

29

Performance Evaluation

|KV|
keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = FrodoPIR

𝑚 ↑

216 × 1kB 287 276 3.2 3.2

217 × 1kB 579 553 3.2 3.2

218 × 1kB 1157 1106 3.2 3.2

219 × 1kB 2314 2212 3.56 3.56

220 × 1kB 4628 4424 3.56 3.56

𝑤 ↑

220 × 256B 4628 4424 0.89 0.89

217 × 30kB 579 553 96 96

214 × 100kB 72 69 291 291

keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = SimplePIR

216 × 1kB 31.89 31.17 31.89 31.17

217 × 1kB 44.65 43.64 44.65 43.64

218 × 1kB 63.78 62.34 63.78 62.34

219 × 1kB 90.36 88.32 90.36 88.32

220 × 1kB 127.56 124.68 127.56 124.68

220 × 256B 63.78 62.34 63.78 62.34

217 × 30kB 256.18 250.4 256.18 250.4

214 × 100kB 180.71 176.63 180.71 176.63

/ 35

Online Performance

• FrodoPIR based ChalametPIR
with 𝑘 = 3 hash functions
• Client runtime (Query & Parsing)

• Server runtime (Response)

• For server to generate response,
it takes up to 1846 ms

30

Performance Evaluation

Unit : ms

/ 35

Online Costs

• Comparison with other KWPIR, SparsePIR
• Server: AWS EC2 c5.9xlarge

• ■ : most optimal case

• ■ : second-most optimal case

• In most cases, ChalametPIR is better
1) Online Runtime : 6×-11× faster

2) Financial Cost : 3.75×-11.4× less

• Due to cost structure of AWS

31

Performance Evaluation

/ 35

1. Introduction & Background
1) Introduction

2) Private Information Retrieval (PIR)

2. Simple, Practical KWPIR: ChalametPIR
1) ChalametPIR

2) Binary Fuse Filter

3. Performance Evaluation

4. Conclusion & Discussion

32

/ 35

Conclusion

• ChalametPIR is simple KWPIR scheme
• ChalametPIR consists of Binary Fuse Filter and LWEPIR scheme

• ChalametPIR is more efficient than state-of-the-art KWPIR scheme
• 6×-11× faster in server’s online runtime

• Requires 3.75×-11.4× less cost when deploying

33

Conclusion & Discussion

/ 35

Discussion

• ChalametPIR can be more efficient
• In this paper, authors do not use several optimizing techniques

• Experiment setup appears to be designed to highlight FrodoPIR based
ChalametPIR
• Since upload cost is 0 in AWS instance, minimizing response size is optimal

• FrodoPIR based ChalametPIR uses more bandwidth costs in total

34

Conclusion & Discussion

/ 35

Thank you

/ 35

ORAM vs. PIR

• For DB servers who deal with sensitive data, they store encrypted data
• To prevent some leakages, Oblivious RAM (ORAM) is used

• For DB servers who store public data, they cannot encrypt their data
• Encrypting each data element with client’s key is inefficient

• To ensure privacy, PIR can be used

36

Introduction & Background

/ 35

Binary Fuse Filter – Peeling [1/3]

• Order of insertion is very important due to cycle
𝑋 → ℎ1 𝑋 = 1, ℎ2 𝑋 = 4, ℎ3 𝑋 = 7
𝑌 → ℎ1 𝑌 = 1, ℎ2 𝑋 = 5, ℎ3 𝑋 = 9

37

Appendix

37

0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

Inserting X 𝐹 7 = fptϵ X ||𝑣X − 𝐹 1 − 𝐹 4 = 𝟒 − 0 − 0 = 𝟒

0 0 0 0 0 0 4 0 0

1 2 3 4 5 6 7 8 9

𝐹 1 = fptϵ Y ||𝑣Y − 𝐹 5 − 𝐹 9 = 𝟔 − 0 − 0 = 𝟔

6 0 0 0 0 0 4 0 0

1 2 3 4 5 6 7 8 9

Inserting Y

𝐹 1 + 𝐹 4 + 𝐹 7 = 𝟔 + 0 + 𝟒 = 𝟏𝟎 ≠ 𝟒 = fptϵ X ||𝑣Y

/ 35

Binary Fuse Filter – Peeling [2/3]

• Since insertion requires multiple filter blocks, order is important

• X
ℎ1,ℎ2,ℎ3

1, 4, 7 , Y
ℎ1,ℎ2,ℎ3

1, 5, 9

38

Appendix

1 2 3 4 5 6 7 8 9

X X X

Y Y Y

Insertion
Order

Since 𝐹 1 is changed after inserting X,
𝐹 1 ′ + 𝐹 4 + 𝐹 7
= 𝐹 1 ′ + 𝐹 4 + (fptϵ X | 𝑣 − 𝐹 4 − 𝐹 7
= 𝐹 1 ′ − 𝐹 1 + fptϵ X ||𝑣 ≠ fptϵ X ||𝑣

/ 35

Binary Fuse Filter – Peeling [3/3]

• X (1, 4, 7), Y (1, 5, 9), Z (1, 4, 6)

39

Simple, Practical KWPIR: ChalametPIR

1 2 3 4 5 6 7 8 9

X, Y, Z X, Z Y Z X Y

Y Y Y

X X X

Z Z Z

Insertion
Order

Decision
Order

/ 35

Comparison with LWEPIR

• Almost similar with its baseline LWEPIR scheme

40

Performance Evaluation

	Default Section
	슬라이드 1: Call Me By My Name: Simple, Practical Private Information Retrieval for Keyword Queries
	슬라이드 2: Table of Contents
	슬라이드 3: Introduction [1/2]
	슬라이드 4: Introduction [2/2]
	슬라이드 5: Private Information Retrieval (PIR) [1/3]
	슬라이드 6: Private Information Retrieval (PIR) [2/3]
	슬라이드 7: Private Information Retrieval (PIR) [3/3]
	슬라이드 8: Index-Based PIR – Overview
	슬라이드 9: Index-Based PIR – Detail [1/3]
	슬라이드 10: Index-Based PIR – Detail [2/3]
	슬라이드 11: Index-Based PIR – Detail [2/3]
	슬라이드 12: Index-Based PIR – Detail [3/3]
	슬라이드 13: Keyword-Based PIR – Naïve Approach [1/3]
	슬라이드 14: Keyword-Based PIR – Naïve Approach [2/3]
	슬라이드 15: Keyword-Based PIR – Naïve Approach [3/3]
	슬라이드 16: Keyword-Based PIR – Better Approach [1/2]
	슬라이드 17: Keyword-Based PIR – Better Approach [2/2]
	슬라이드 18
	슬라이드 19: ChalametPIR [1/2]
	슬라이드 20: Binary Fuse Filter [1/3]
	슬라이드 21: Binary Fuse Filter [2/3]
	슬라이드 22: Binary Fuse Filter [3/3]
	슬라이드 23: ChalametPIR [2/2]
	슬라이드 24
	슬라이드 25: Metrics [1/2]
	슬라이드 26: Metrics [2/2]
	슬라이드 27: Experiment Setup
	슬라이드 28: Bandwidth Costs [1/2]
	슬라이드 29: Bandwidth Costs [2/2]
	슬라이드 30: Online Performance
	슬라이드 31: Online Costs
	슬라이드 32
	슬라이드 33: Conclusion
	슬라이드 34: Discussion
	슬라이드 35: Thank you

	Appendix
	슬라이드 36: ORAM vs. PIR
	슬라이드 37: Binary Fuse Filter – Peeling [1/3]
	슬라이드 38: Binary Fuse Filter – Peeling [2/3]
	슬라이드 39: Binary Fuse Filter – Peeling [3/3]
	슬라이드 40: Comparison with LWEPIR

