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Introduction [1/2]

• Assume that client is going to query an element to database server
• To ensure privacy, secure communication channel like TLS is used
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Introduction [2/2]

• In practice, DB server might not be honest
• To ensure privacy, DB server should not know what client queries
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Private Information Retrieval (PIR) [1/3]

• Private Information Retrieval (PIR):
• Allows private queries on public DBs that are hosted by an untrusted server(s)
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Private Information Retrieval (PIR) [2/3]

Two Types of PIR:

1. Computationally secure PIR (CPIR)
• PIR with single public DB server

• Uses homomorphic encryption

• Can be categorized into index-based CPIR and keyword-based CPIR 

2. Information-Theoretically secure PIR (IT-PIR)
• PIR with multiple public DB servers

• Uses group of batched queries to hide what client wants

• e.g., query (𝑣1, 𝑣2) to server 1 and query (𝑣1, 𝑣2, 𝑣3) to server 2

6

Introduction & Background
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Private Information Retrieval (PIR) [3/3]
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Index-Based PIR – Overview

• Uses LWE-based Homomorphic Encryption
• Uses special homomorphic encryption which supports public inner-product

• Public inner-product: 𝐸𝑛𝑐LWE Ԧ𝑣 ⋅ 𝑤 = 𝐸𝑛𝑐LWE Ԧ𝑣 ⋅ 𝑤
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Index-Based PIR – Detail [1/3]

1. Generates Query vector 𝒆
• Generates indicator vector which represent what client wants

• Encrypts each element in vector with homomorphic encryption
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Index-Based PIR – Detail [2/3]

2. Generates Response 𝒄
• Multiplies each value in DB with each element in query vector Ԧ𝑒 to generate Ԧ𝑐
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Index-Based PIR – Detail [2/3]

2. Generates Response 𝒄
• Multiplies each value in DB with each element in query vector Ԧ𝑒 to generate Ԧ𝑐

• Adds all element in Ԧ𝑐 homomorphically to generate response 𝑐
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Index-Based PIR – Detail [3/3]

3. Decrypts Response 𝒄
• Decrypts response 𝑐 to get queried value 𝑣2
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Keyword-Based PIR – Naïve Approach [1/3]

• Extends index-based PIR with 2 steps

1. Retrieves the location of keyword in keywords
• Assume that keywords in DB are sorted in increasing order

• e.g., for 𝑘2 = banana, its location is 2

2. Performs index-based PIR to that location
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Keyword-Based PIR – Naïve Approach [2/3]

1. Retrieves the location of keyword in keywords
• Assume that keywords are sorted, and the number of keywords is 7

• Uses binary search to get location of keyword
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Keyword-Based PIR – Naïve Approach [3/3]

1. Retrieves the location of keyword in keywords → 𝑶 𝐥𝐨𝐠 𝒏
• Assume that keywords in DB are sorted in increasing order

2. Performs index-based PIR to that location → 1

• 𝑶 𝐥𝐨𝐠 𝒏 index-based PIRs are required!
• Too slow to use in practice 

• How to do better?
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Keyword-Based PIR – Better Approach [1/2]

• Uses probabilistic filter (PF) like Bloom Filter
• Probabilistic data structure for testing membership of data

• Operates by maintaining 𝑘 hash functions

• Only false positive exists with false positive rate 0 < 𝜖 < 1

• Usually used with finite set of items

16

Introduction & Background
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Keyword-Based PIR – Better Approach [2/2]

• Uses probabilistic filter (PF) like Bloom Filter
• 𝑂 log 𝑛  index-based PIRs → 1 index-based PIR with some false positive rate 𝜖
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ChalametPIR [1/2]

• ChalemetPIR : Simple & Practical KWPIR
• For simplicity, just combines Binary Fuse Filter (BFF) with LWEPIR

19

Simple, Practical KWPIR: ChalametPIR

Want to get data of 𝑘

1 0

2 1

3 1

4 0

⋮ ⋮

𝑚 1

1 𝑘1 𝑣1

2 𝑘2 𝑣2

3 𝑘3 𝑣3

4 𝑘4 𝑣4

⋮ ⋮ ⋮

𝑛 𝑘𝑛 𝑣𝑛

Key-value map DB

𝒌 BFF 𝐹

1. Generate Filter

2. Generate 
indicate vector 3. LWEPIR Query

4. LWEPIR Response



/ 35

Binary Fuse Filter [1/3]

• Static probabilistic filter based on XOR filter
• No insertion and deletion after filter construction

• More efficient than other probabilistic filters:
1. More than twice as fast as the construction of XOR filters

2. Query speed comparable to that of XOR filters

3. Low memory usage per key
• Bloom filter : 1.44𝛼

• XOR filter : 1.23𝛼

• Binary Fuse Filter : 1.075𝛼 ~ 1.125𝛼

20

Simple, Practical KWPIR: ChalametPIR
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Binary Fuse Filter [2/3]

• Given : 𝑘 = 3, 4 hash functions & fingerprint function fptϵ

• Goal : Construct filter 𝐹 such that 
𝐹 ℎ1 𝑘 + 𝐹 ℎ2 𝑘 + 𝐹 ℎ3 𝑘 = fptϵ 𝑘 ||𝑣 𝑚𝑜𝑑 𝑝
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Simple, Practical KWPIR: ChalametPIR
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Binary Fuse Filter [3/3]

• Main Idea:
1. Picks a random index from ℎ1 X , ℎ2 X , ℎ3 X → ℎ3 X

2. Encodes that block as 𝐹 ℎ3 X = (fptϵ X | 𝑣 − 𝐹 ℎ1 X − 𝐹 ℎ2 X

22

Simple, Practical KWPIR: ChalametPIR
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ChalametPIR [2/2]

• In practice, fptϵ 𝑘 ||𝑣 is longer than log 𝑝
• Divides fptϵ 𝑘 ||𝑣 into log 𝑝-bits blocks
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Simple, Practical KWPIR: ChalametPIR
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Metrics [1/2]

• Goal of ChalametPIR : making simple and practical KWPIR
• Simplicity: just combines BFF and LWEPIR

• How to define practicality?
• Practicality: amount of expenses which server should cover

1. Bandwidth Costs (query size, response size)

2. Online Performance (runtime for query, response, parsing)

3. Online Costs (cost, rate, throughput)

25

Performance Evaluation
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Metrics [2/2]

3. Online Costs : Comparison with other KWPIR
• Performance metrics for deploying ChalametPIR server in AWS

1) Cost (USD) : current AWS financial cost for running a server in “c5.9xlarge”

• CPU per-hour : $1.53/36 = $0.0425 per hour

• Download cost : $0.09 per GB

• Upload cost : $0 per GB (no cost)

2) Rate : ratio of retrieved record size to response size

• How small the response 𝑬𝑵𝑪LWE(𝐟𝐩𝐭𝛜 𝒌 | 𝒗  is compared to record 𝒗

3) Throughput (MB/s) : ratio of database size to server’s online computation time

• How fast server can deal with database

26

Performance Evaluation



/ 35

Experiment Setup

• Baseline LWEPIR : {FrodoPIR, SimplePIR}
• FrodoPIR : Response size is much smaller than query size

• SimplePIR : Response size and query size are similar

• Server Specification : {t2.2xlarge, c5.9xlarge, Macbook M1 Max}

• Database Parameters :
1) Key-value map size 𝑚 : {216, 217, 218, 219, 220}

2) Value size 𝑤 : {256B, 1kB, 30kB, 100kB}

3) Modular value 𝑝 : {29, 210}

4) Number of hash functions for BFF : {3, 4}

27

Performance Evaluation
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Bandwidth Costs [1/2]

• For FrodoPIR based ChalametPIR,
• Query size depends on the number of keys in DB

• Response size depends on the size of value

28

Performance Evaluation

|KV|
# keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = FrodoPIR

𝑚 ↑

216 × 1kB 287 276 3.2 3.2

217 × 1kB 579 553 3.2 3.2

218 × 1kB 1157 1106 3.2 3.2

219 × 1kB 2314 2212 3.56 3.56

220 × 1kB 4628 4424 3.56 3.56

𝑤 ↑

220 × 256B 4628 4424 0.89 0.89

217 × 30kB 579 553 96 96

214 × 100kB 72 69 291 291

# keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = SimplePIR

216 × 1kB 31.89 31.17 31.89 31.17

217 × 1kB 44.65 43.64 44.65 43.64

218 × 1kB 63.78 62.34 63.78 62.34

219 × 1kB 90.36 88.32 90.36 88.32

220 × 1kB 127.56 124.68 127.56 124.68

220 × 256B 63.78 62.34 63.78 62.34

217 × 30kB 256.18 250.4 256.18 250.4

214 × 100kB 180.71 176.63 180.71 176.63
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Bandwidth Costs [2/2]

• For SimplePIR based ChalametPIR,
• Query size and response size depend on total size of DB 𝑚 × 𝑤

• Query size and response size are equal for same setting

29

Performance Evaluation

|KV|
# keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = FrodoPIR

𝑚 ↑

216 × 1kB 287 276 3.2 3.2

217 × 1kB 579 553 3.2 3.2

218 × 1kB 1157 1106 3.2 3.2

219 × 1kB 2314 2212 3.56 3.56

220 × 1kB 4628 4424 3.56 3.56

𝑤 ↑

220 × 256B 4628 4424 0.89 0.89

217 × 30kB 579 553 96 96

214 × 100kB 72 69 291 291

# keys ×|value| Query (kB) Response (kB)

(𝑚 × 𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = SimplePIR

216 × 1kB 31.89 31.17 31.89 31.17

217 × 1kB 44.65 43.64 44.65 43.64

218 × 1kB 63.78 62.34 63.78 62.34

219 × 1kB 90.36 88.32 90.36 88.32

220 × 1kB 127.56 124.68 127.56 124.68

220 × 256B 63.78 62.34 63.78 62.34

217 × 30kB 256.18 250.4 256.18 250.4

214 × 100kB 180.71 176.63 180.71 176.63
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Online Performance

• FrodoPIR based ChalametPIR 
with 𝑘 = 3 hash functions
• Client runtime (Query & Parsing)

• Server runtime (Response)

• For server to generate response, 
it takes up to 1846 ms

30

Performance Evaluation

Unit : ms
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Online Costs

• Comparison with other KWPIR, SparsePIR
• Server: AWS EC2 c5.9xlarge

• ■ : most optimal case

• ■ : second-most optimal case

• In most cases, ChalametPIR is better
1) Online Runtime : 6×-11× faster

2) Financial Cost : 3.75×-11.4× less

• Due to cost structure of AWS

31

Performance Evaluation
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Conclusion

• ChalametPIR is simple KWPIR scheme
• ChalametPIR consists of Binary Fuse Filter and LWEPIR scheme

• ChalametPIR is more efficient than state-of-the-art KWPIR scheme
• 6×-11× faster in server’s online runtime

• Requires 3.75×-11.4× less cost when deploying 

33
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Discussion

• ChalametPIR can be more efficient
• In this paper, authors do not use several optimizing techniques

• Experiment setup appears to be designed to highlight FrodoPIR based 
ChalametPIR
• Since upload cost is 0 in AWS instance, minimizing response size is optimal

• FrodoPIR based ChalametPIR uses more bandwidth costs in total

34

Conclusion & Discussion
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Thank you
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ORAM vs. PIR

• For DB servers who deal with sensitive data, they store encrypted data
• To prevent some leakages, Oblivious RAM (ORAM) is used

• For DB servers who store public data, they cannot encrypt their data
• Encrypting each data element with client’s key is inefficient

• To ensure privacy, PIR can be used

36

Introduction & Background
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Binary Fuse Filter – Peeling [1/3]

• Order of insertion is very important due to cycle
𝑋 → ℎ1 𝑋 = 1, ℎ2 𝑋 = 4, ℎ3 𝑋 = 7
𝑌 → ℎ1 𝑌 = 1, ℎ2 𝑋 = 5, ℎ3 𝑋 = 9

37

Appendix
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0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9

Inserting X 𝐹 7 = fptϵ X ||𝑣X − 𝐹 1 − 𝐹 4 = 𝟒 − 0 − 0 = 𝟒

0 0 0 0 0 0 4 0 0

1 2 3 4 5 6 7 8 9

𝐹 1 = fptϵ Y ||𝑣Y − 𝐹 5 − 𝐹 9 = 𝟔 − 0 − 0 = 𝟔

6 0 0 0 0 0 4 0 0

1 2 3 4 5 6 7 8 9

Inserting Y

𝐹 1 + 𝐹 4 + 𝐹 7 = 𝟔 + 0 + 𝟒 = 𝟏𝟎 ≠ 𝟒 = fptϵ X ||𝑣Y
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Binary Fuse Filter – Peeling [2/3]

• Since insertion requires multiple filter blocks, order is important

• X
ℎ1,ℎ2,ℎ3

1, 4, 7 , Y
ℎ1,ℎ2,ℎ3

1, 5, 9

38

Appendix

1 2 3 4 5 6 7 8 9

X X X

Y Y Y

Insertion
Order

Since 𝐹 1 is changed after inserting X,
𝐹 1 ′ + 𝐹 4 + 𝐹 7
= 𝐹 1 ′ + 𝐹 4 + (fptϵ X | 𝑣 − 𝐹 4 − 𝐹 7
= 𝐹 1 ′ − 𝐹 1 + fptϵ X ||𝑣 ≠ fptϵ X ||𝑣
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Binary Fuse Filter – Peeling [3/3]

• X (1, 4, 7), Y (1, 5, 9), Z (1, 4, 6)

39

Simple, Practical KWPIR: ChalametPIR

1 2 3 4 5 6 7 8 9

X, Y, Z X, Z Y Z X Y

Y Y Y

X X X

Z Z Z

Insertion
Order

Decision
Order
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Comparison with LWEPIR

• Almost similar with its baseline LWEPIR scheme

40

Performance Evaluation
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