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Introduction

• QUIC is a multiplexed transport-layer protocol over UDP, poised to be a 
foundational pillar of the next-generation Web infrastructures (e.g., HTTP/3)

• There are many researches on characterizing QUIC performance
• Using various QUIC implementations (customized vs. commercial), compute 

environments (mobile vs. desktop), and network conditions (wired vs. wireless)

• Running QUIC over high-speed networks
• High-speed wired links, WiFi 6/7, and 5G, (500 Mbps ~1 Gbps per connection)

• QUIC is slow over fast internet
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About QUIC

• QUIC is a user-space transport over UDP
• It was initially proposed and developed by Google (gQUIC)

• IETF working group was launched in 2016 to improve the original gQUIC design (IETF 
QUIC)

• HTTP/3 was structured to make the HTTP syntax as well as existing HTTP/2 
functionalities compatible with QUIC

• QUIC design
• Pro) 0/1-RTT fast handshake, stream multiplexing for the removal of head-of-line 

blocking, and connection migration

• Con) processing and copying data between the kernel space and user space
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NIC Offloading

• Optimization technique that reduces the CPU overhead in network operations
• Allowing the relevant protocol stack to transmit packets that are larger than the MTU
• With offloading, a network internet controller (NIC) splits large data chunks into 

smaller segments
• Without offloading, the segmentation is performed by the CPU, which creates an 

overhead

• Types
• Generic segmentation offload (GSO)

• Uses the TCP or UDP protocol to send large packets

• TCP segmentation offload (TSO)
• Uses the TCP protocol to send large packets

• Generic receive offload (GRO)
• Uses the TCP or UDP protocol to receive large packets
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Methodology

• Comparing the UDP+QUIC+HTTP/3 (QUIC) stack with the TCP+TLS+HTTP/2 
(HTTP/2) stack
• Set up the testbed to ensure a fair comparison, that is, the observed performance gaps 

originate solely from the differences in the protocol themselves

• Setting
• Server machine: Intel Xeon E5-2640 CPU 

• Client desktop: Intel Core i7-6700 CPU

• 1-Gbps Ethernet / only two hops away

• Ubuntu 18.04

• Congestion control algorithm: CUBIC

• Controlling bandwidth: Linux tc

• Buffer sizes: 10x the link’s bandwidth-delay product (BDP)

• Initial transport settings stay the same
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File Download on Lightweight Clients

• Two non-browser download tools: cURL and quic_client
• cURL: a command-line data transfer tool that supports both QUIC and HTTP/2

• quic_client: a standalone QUIC client implementation, built with the same QUIC stack 
as Chrome/Chromium

• Download files of different sizes, ranging from 50 MB to 1 GB
• cURL running HTTP/2 noticeably outperforms both QUIC clients, well utilizing the 1 

Gbps available bandwidth

• The CPU usage when running
QUIC is higher than HTTP/2
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File Download on Lightweight Clients (cont.)

• Limit the available network bandwidth from 50 Mbps to 1000 Mbps
• When the available bandwidth is low, QUIC and HTTP/2 exhibit similar performance

• But, beyond around 600 Mbps, QUIC’s actual throughput starts to be bottlenecked

• The CPU usage for quic_client is always high and that of cURL QUIC stays around 70%
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File Download on Real Browsers

• Experiments on real web browsers: Chrome browser

• Download files of different sizes, ranging from 50 MB to 1 GB
• The performance gap between QUIC and HTTP/2 is even larger than that in our prior 

lightweight client experiments

• Different from the lightweight clients, Chrome is a full-fledged web browser, so the 
CPU saturation issue is exacerbated, leading to even lower QUIC performance
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File Download on Real Browsers (cont.)

• Limit the available network bandwidth from 50 Mbps to 1000 Mbps
• QUIC fails to fully utilize the bandwidth starting earlier at approximately 500 Mbps

(< 600Mbps)

• Chrome with QUIC approaches 100% CPU usage when the throughput is only 200 
Mbps
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File Download on Real Browsers (cont.)

• Changing the CPU frequency (i.e., CPU clock speed)
• Intel Core i7-6700 CPU has a frequency of 3.40 GHz to 4.00 GHz, and i7-10700 has

~4.80 GHz

• Increasing CPU computing power can marginally narrow the performance gap between 
QUIC and HTTP/2

• Comparing different browsers
• All the browsers have worse performance when QUIC is enabled, with increased CPU usage
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Video Streaming Setting

• Adaptive bitrate (ABR) video streaming
• Method of video streaming over HTTP where the source content is encoded at 

multiple bit rates

• Using ffmpeg to encode a custom 4K video
• Generate six tracks at different bitrates

• 4K video streaming usually requires 35-100 Mbps (Achieved at 5G)

• Scale up the video bitrates with the top track bitrate reaching 200 Mbps (Median 
throughput of 5G)

• Encode the video into three different chunk durations, 1s, 2s, and 4s

• Bitrate adaptation algorithms:
• Buffer-Based (BB): Select bitrates with the goal of keeping the buffer occupancy high

• Rate-Based (RB): Select the highest bitrate below the bandwidth predicted from experienced 
throughputs during past chunk downloads

• Evaluate ABR video streaming under three types of network conditions
• Stream over [Ethernet, 5G, 4G]
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Video Streaming Experiment

• Measuring video chunk bitrate during the streaming process
• QUIC performs worse than HTTP/2 in Ethernet and 5G scenarios

• The bitrate reduction goes up to 9.8%

• For the slow 4G networks, the performance difference is not that significant
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Web Page Loading Setting

• Unlike bulk file download, loading a web page usually involves transferring 
multiple small objects
• Transferring can be either concurrent or sequential depending on object dependencies

• They conduct an experiment with Alexa’s top 100 websites

• First, using the original URLs to directly load the remote websites, with QUIC 
enabled on Chrome
• Note that, only 16 websites exhibit HTTP/3 traffic during page loads

• So download these 100 websites using SiteSucker and host them locally on 
our web server
• To make all the websites support HTTP/3
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Web Page Loading Experiment

• Comparing the page load performance of QUIC and HTTP/2 with three metrics 
• Content download time (CDT): The time to download all content needed to load the 

website

• Page load time (PLT): The rendering time of all components of the page is finished

• Time-to-first-byte (TTFB): The delay from sending the request to receiving the first 
byte of the response

• Page load tests for each website over Ethernet and 100 Mbps
• Data point greater than 1.0 means the corresponding timer is longer in QUIC tests

• On average, QUIC’s PLT is 3.0% longer than HTTP/2’s

15Web page loading results (HTTP/3 over HTTP/2)
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Packet Trace Analyses

• QUIC perceives much more packets than HTTP/2
• For QUIC, the number of packets received by the OS’s UDP stack is an order of 

magnitude higher than the number of packets received by the TCP stack during 
HTTP/2 downloads (744K vs 58K on average) 

• The numbers of transmitted packets are very close

• TCP (HTTP/2) uses generic receive offload (GRO)
• The link layer module in the OS combines multiple received TCP segments into a large segment 

of up to 64 KB

• However, despite the availability of UDP GRO, it is not used by QUIC

• QUIC has a much higher RTT dominated by local processing
• Though they have different ACK mechanisms, the average RTT for HTTP/2 download is 

1.9ms while QUIC’s RTT skyrockets to 16.2ms

• Since the ping RTT between the two machines is only 0.23ms, the endpoint packet 
processing takes most of the packet latency

• The performance bottleneck of QUIC appears to be on the receiver side
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Root Causes via Kernel Profiling

• Excessive receiver-side processing in the kernel
• Huge number of calls on netif_receive_skb which is invoked when a packet is received 

at the network interface
• 231K vs 15K (Corresponds to the difference in the number of received UDP and TCP packets) 

• Standard way to reduce packet processing overhead is to involve NIC offloading

• Challenge of offloading for QUIC
• The existing UDP GSO/GRO only supports offloading a train of UDP packets with identical lengths

• QUIC frames vary in size and are multiplexed after encryption

➔ If a train of UDP datagrams has different packet sizes, existing UDP GSO/GRO cannot offload them

• The diverse QUIC variants add complexity to realizing the QUIC offloading logic in NIC hardware
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Root Causes via User space Profiling

• Excessive receiver-side processing in the user space
• Table 4 provides a breakdown of the time spent by each packet processing stages

• QUIC consumes 8.7s in user space, and HTTP/2 consumes 4.1s
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Mitigation

• Adoption of UDP GRO on the receiver side
• Most importantly, UDP GRO needs to be deployed on the receiver side to reduce the 

number of packets handled by the UDP stack

• However, given the heterogeneity of today’s commodity hosts, wide deployment of 
UDP GRO can be challenging, not to mention supporting it in the NIC hardware

• QUIC-friendly improvements to the offloading solutions
• UDP GSO/GRO needs to support offloading a train of packets with different sizes

• Multi-threaded download
• Now, Chromium uses a single thread for receiving network data

• When fetching large files, using multi-threaded download (each thread running on a 
separate CPU core) can improve the receive-side performance
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Conclusion

• This study highlights, in environments like fast Internet, (>500 Mbps in 
experiments), QUIC’s performance may not always live up to its name (“quick”)

• Through comprehensive performance profiling, they reveal the root cause to 
be the pronounced receiver-side processing overhead

• The absence of certain offloading techniques like UDP GRO, and the user-
space nature of QUIC might complicate its deployment

• Nevertheless, QUIC is still in its early phase, the ongoing efforts and 
collaborations from multiple stakeholders in the Web ecosystem is needed
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Thank you for listening
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