
Let’s Downgrade Let’s Encrypt
Tianxiang Dai

ATHENE Center

Fraunhofer SIT

Germany

Haya Shulman

ATHENE Center

Fraunhofer SIT

Germany

Michael Waidner

ATHENE Center

TU Darmstadt & Fraunhofer SIT

Germany

ABSTRACT
Following the recent off-path attacks against PKI, Let’s Encrypt
deployed in 2020 domain validation frommultiple vantage points to

ensure security even against the stronger on-path MitM adversaries.

The idea behind such distributed domain validation is that even

if the adversary can hijack traffic of some vantage points, it will

not be able to intercept traffic of all the vantage points to all the

nameservers in a domain.

In this work we show that two central design issues of the dis-

tributed domain validation of Let’s Encrypt make it vulnerable to

downgrade attacks: (1) the vantage points are selected from a small

fixed set of vantage points, and (2) the way the vantage points select

the nameservers in target domains can be manipulated by a remote

adversary. We develop off-path methodologies, based on these ob-

servations, to launch downgrade attacks against Let’s Encrypt. The
downgrade attacks reduce the validation with ‘multiple vantage
points to multiple nameservers’, to validation with ‘multiple vantage
points to a single attacker-selected nameserver’. Through experi-

mental evaluations with Let’s Encrypt and the 1M-Let’s Encrypt-
certified domains, we find that our off-path attacker can successfully

launch downgrade attacks against more than 24.53% of the domains,

rendering Let’s Encrypt to use a single nameserver for validation

with them.

We then develop an automated off-path attack against the ‘single-

server’-domain validation for these 24.53% domains, to obtain fraud-

ulent certificates for more than 107K domains, which constitute

10% of the 1M domains in our dataset.

We also evaluate our attacks against other major CAs and com-

pare the security and efforts needed to launch the attacks, to those

needed to launch the attacks against Let’s Encrypt. We provide

recommendations for mitigations against our attacks.

CCS CONCEPTS
• Security and privacy → Network security.

KEYWORDS
PKI, BGP hijacks, DNS Cache Poisoning, Server Selection

ACM Reference Format:
Tianxiang Dai, Haya Shulman, and Michael Waidner. 2021. Let’s Down-

grade Let’s Encrypt. In Proceedings of the 2021 ACM SIGSAC Conference

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484815

on Computer and Communications Security (CCS ’21), November 15–19,
2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA, 20 pages.

https://doi.org/10.1145/3460120.3484815

1 INTRODUCTION
Identifying the legitimate owner of a domain plays a central role in

the security of Public Key Infrastructure (PKI). It prevents criminals

from obtaining fraudulent certificates for domains that they do not

own. Prior to issuing certificates the Certificate Authorities (CAs)

run domain validation (DV) against services in a domain that is

to be certified, to verify that the domain owner de-facto controls

the domain. To verify control a CA generates a challenge which

the domain owner should integrate into the selected service in a

domain, e.g., add the challenge in a TXT record to the zonefile of

the domain or add the challenge to a directory of the website in

the domain. The CA then checks the presence of the challenge

by querying the selected service in the target domain. Since the

challenge was sent to the domain, a genuine owner can receive it

and hence can respond correctly. In contrast, an off-path adversary

that does not control the domain, cannot receive the challenge and

therefore should not be able to respond correctly.

Domain validation from single vantage point is vulnera-
ble. Recently [14] showed an off-path attack against domain valida-

tion of popular CAs: the attacker hijacks the challenge sent by the

CA to the domain during the validation of control over the domain.

This allows the attacker to respond with the correct challenge and

demonstrate control over a domain that it does not legitimately

own. The significance of PKI for Internet security, coupled with the

risks that the attacks introduced, triggered efforts to improve the

security of domain validation.

Man-in-the-Middle secure distributed domain validation.
Let’s Encrypt was the first CA to react quickly to the disclosed

vulnerabilities. It initiated efforts to enhance the security of DV

even against on-path Man-in-the-Middle (MitM) adversaries, stan-

dardising a mechanism called ACME in 2019, [RFC8555] [13], and

in 2020 it deployed in production environment a mechanism called

multiVA [36] - domain validation with multiple Validation Author-

ities (VAs). Initially Let’s Encrypt set up four VAs, each running

a DNS resolver software for looking up resources in domains and

for validating control over domains. Upon request for a certificate,

the VAs perform lookup of the target domain by sending queries

to the nameservers and then concurrently validate control over

the domain. Each VA receives the set of nameservers and their IP

addresses from the parent domain. The VA then randomly selects a

nameserver to which the query is sent. If the majority of the VAs

receive the same results, DV succeeds, and the certificate is issued.

Otherwise, the request fails. Let’s Encrypt shows that their setup
with multiVA provides security for DV even against MitM adver-

saries: the intuition is that realistic MitM adversaries are limited in

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1421

https://doi.org/10.1145/3460120.3484815
https://doi.org/10.1145/3460120.3484815
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460120.3484815&domain=pdf&date_stamp=2021-11-13

their power, and can control or hijack some, but not many of the

Internet networks. Recently [15] performed simulations to show

that the diverse vantage points of multiVA allow to detect 94% of

the BGP prefix hijack attacks during DV, making more than 90% of

the ASes in the Internet topologically incapable of launching BGP

attacks against the majority of domains. This is in contrast to the

previous deployment of Let’s Encrypt, where most domains were

vulnerable to prefix hijacks during DV.

What about themultiple nameservers? In this workwe show
that in addition to considering the vantage points as in [14, 15], it

is important to also consider the domain side of domain validation.
The analysis in [15] used a single IP address for each domain. Nev-

ertheless, instead of intercepting the query from the vantage point,

the adversary can also intercept the response from the domain.

This appears to expose domains to practical attacks during DV. In

practice, however, hijacking the domain is challenging: domains

have multiple nameservers, in fact, some domains have even more

than 30 nameservers, see Figure 1 in Section 2. Hence the situation

becomes very complex even for a MitM adversary. To demonstrate

control over a target domain the attacker would need to hijack

multiple challenges, sent by the vantage points. To complicate the

situation further, these challenges are not sent all to the same name-

server, but each vantage point selects the nameserver, to which

the challenge is sent, uniformly at random. If the attacker cannot

anticipate which vantage point sends a query to which nameserver,

to beat the domain validation it would have to craft multiple differ-

ent responses. That indeed should make the attack against all the

vantage points for all the nameservers impractical, even for strong

on-path adversaries.

‘TheDowngrade’ attack. In this work we develop a downgrade
attack that reduces the multiVA validation against real domains

that have multiple nameservers, to a validation against domains

with a single nameserver. Our attack is based on two observations:

(1) a functionality in VAs, designed to enhance security and per-

formance, can be manipulated by network adversaries remotely

and (2) Let’s Encrypt uses a small and fixed set of VAs. The former

manipulates the server selection by the VAs, causing the multiVA
to execute against a single nameserver, one which all the VAs select

for validation and lookups. The latter allows launching targeted

efficient attacks against the VAs in advance, as a preprocessing step,

before initiating the attack to obtain fraudulent certificates.

We show that combining our two observations the network ad-

versaries can eliminate the multiple VAs to multiple nameservers
effect, creating a ‘multiple VAs to single nameserver’ situation...

which is no longer secure against MitM adversaries. In the course

of the attack we cause the VAs to eliminate the nameservers from

the list of usable servers, leaving only a single available name-

server. Worse, we show that the attacker can not only reduce the

validation to one arbitrary nameserver, but force all the VAs to

query a specific nameserver of attacker’s choice, one which has

a vulnerability that can be exploited by the attacker, e.g., server

with unpatched software or server that can be attacked with side

channels or fragmentation, [18, 46]. In this work, as an example,

we select servers whose BGP prefix the attacker can hijack via

sub-prefix hijack attacks.

Off-path attacks against Let’s Encrypt. The core issues which
expose domains to downgrade attack are a side effort of server

selection functionality of Let’s Encrypt. To exploiting them against

a specific victim domain the adversary needs to introduce a pattern

into the responses from the nameservers. When the VAs receive a

certain pattern of missing responses they block the nameservers.

We explain that there are different ways to exploit this vulnerability

and introduce a pattern into the responses, e.g., with a compromised

router which selectively drops or manipulates some specific packets.

We show how to exploit this vulnerability even with an off-path
adversary.

We develop ‘server-elimination’ methodologies to introduce

losses according to specific intervals, causing all the VAs to query

just one nameserver, selected by the attacker. Some of our method-

ologies assume specific properties in domains, such as rate limiting,

and hence can be launched only against the domains which have

these properties, e.g., 24.53% of Let’s Encrypt-certified domains, see

Section 3. We also developed a generic server-elimination method-

ology, which applies to all the domains. This method however

requires generating much more traffic than the other methods. Fur-

thermore, as we mentioned the vulnerability in the CAs that allows

downgrading the number of nameservers in a domain can also be

exploited with stronger adversaries.

Fraudulent Let’s Encrypt certificates. After downgrading val-

idation with domains to a single nameserver, we launch attacks to

prove control over domains that off-path adversaries do not own

and obtain fraudulent certificates for these domains.

We compare the security of Let’s Encrypt to that of other pop-
ular CAs and show that the downgrade attack eliminates the se-

curity benefits introduced by multiVA. In fact, we found all the

CAs equally vulnerable to our attacks. This implies that the vali-

dation of all the CAs in our dataset can be downgraded to a single

server in any Internet domain. We run a complete attack against

the domains in our dataset that have properties which allow our

off-path server-elimination, and force the validation to run against

a single nameserver, which sub-prefix can be hijacked. This con-

stitutes 10.6% of our 1M dataset. We proceed to obtain fraudulent

certificates for these 108K domains.

Ethical considerations. Our attacks, evaluations and measure-

ments were ethically carried out against CAs and domains in our

dataset. We notified Let’s Encrypt about the downgrade attacks.
Contributions.We make the following technical contributions:

• We develop a taxonomy of nameserver elimination method-

ologies which force the VAs of Let’s Encrypt to query a nameserver

of attacker’s choice. One methodology is generic, it uses low-rate

bursts to cause packet loss and applies to any nameserver in any
domain. We did not evaluate this methodology in the Internet since

it adversely affects communication from other sources with the

nameservers. The other two methodologies require that the name-

servers apply rate-limiting or fragment responses, and generate less

traffic. We evaluate them on our dataset of domains to show that

more than 20% of 1M-top Alexa domains
1
and 24.5% Let’s Encrypt

domains are vulnerable. We show that our methodologies, with

slight modifications, apply also to other popular CAs. Our server

elimination methodologies potentially have a wider application

scope. For instance, they can be applied to redirect clients to the

1
Of 1M-top Alexa domains, 857K-top domains were responsive, without errors.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1422

wrong server, introducing traffic fluctuations to the load balancing

that the CDNs and cloud platforms use.

• Our server-elimination methodologies exploit properties in

nameserver selection of DNS implementations. We perform anal-

ysis of nameserver selection in Unbound, ‘reverse engineer’ its

behaviour and show that it can be remotely manipulated to cause

DNS resolvers to block nameservers.

•To evaluate our attacks ethicallywe develop a two-sidedmethod-

ology. In contrast to prior work which performed simulations or

evaluated attacks only in a lab setup, our evaluation methodol-

ogy allows to launch and validate real attacks in two steps. We

first attack the target CA with a victim domain that we own. Our

adversarial host, located on a different network than the victim

domain, obtains a fraudulent certificate for the victim domain. This

allows us to evaluate the vulnerability and applicability of the attack

against Let’s Encrypt, yet without issuing fraudulent certificates

for real victim domains. In a second step, we reproduce the setup of

Let’s Encrypt on our networks, with all the relevant components,

and launch automated attacks against our dataset of Let’s Encrypt-
certified victim domains, issuing fraudulent certificates for these

domains with a CA controlled by us. This second step allows us to

identify victim domains to which our attacks apply. If the attack

applies in both steps, it also applies when launched against the CA

and the victim domain in real life. Our evaluation methodology

has wider applicability, it can enable ethical evaluations of other

attacks yet without causing damage to real victims. For instance, it

can be used to evaluate different types of Denial of Service (DoS)

attacks, such as fragmentation based DoS attacks.

• Our work shows that validation from multiple locations, al-

though the right way to go, is not trivial, and requires care to avoid

pitfalls. We provide recommendations for preventing our attacks.

Organisation. In Section 2 we develop our downgrade attack

against Let’s Encrypt. We develop and evaluate nameserver elim-

ination methodologies in Section 3. In Section 4 we demonstrate

attacks against Let’s Encrypt to issue fraudulent certificates and

evaluate them against a dataset of 1M domains certified by Let’s
Encrypt. We provide recommendations for countermeasures in Sec-

tion 5. Comparison to related work is in Section 6. We conclude

this work in Section 7.

2 THE DOWNGRADE ATTACK
We develop a downgrade attack against Let’s Encrypt to reduce

the ‘multiple VAs to multiple nameservers’ validation to ‘multiple

VAs to attacker selected nameserver’ validation. Our attack is based

on an observation that a functionality in VAs, which is used to

increase security and performance, can be manipulated by a re-

mote adversary. Specifically, the DNS software at each VA selects

uniformly at random the nameserver to which queries are sent.

This is required in order to distribute the load from all the VAs

evenly among all the nameserver as well as to create unpredictable

selection of nameservers by the VAs, and finally, to ensure good

performance by avoiding poorly performing nameservers.

The fact that the VAs are selected from a small and a fixed set of

nodes, which is known to the attacker, allows the attacker to manip-

ulate the server selectionmechanism in advance, prior to requesting

a fraudulent certificate for domain that it does not control. As a

result, the validation of control over the victim domain, during the

certificate issuance, is performed against a single attacker-selected

nameserver.

In this section we explain the server selection mechanism (Sec-

tion 2.1), and its implementation in the VAs of Let’s Encrypt (Section
2.2). Surprisingly, we show that off-path adversaries can influence

the server selection function at the VAs. To manipulate the server

selection we develop a server-elimination attack, forcing all the VAs

of Let’s Encrypt to query a nameserver of attacker’s choice (Section

2.3). Server-elimination attack not only reduces the entropy from

server selection, but also forces all the VAs to communicate with a

server of attacker’s choice.

0 5 10 15 20 25 30
Number of Nameservers

0%

20%

40%

60%

80%

100%

C
D

F

Let's Encrypt
Alexa Top-1M
All

Figure 1: Number of nameservers per domain.

2.1 Server Selection
Traditionally, there were up to 13 nameservers in each domain,

to fit DNS responses in 512 bytes UDP packet. After the adoption

of EDNS [RFC6891] [25] the limit on number of nameservers per

domain was removed, allowing each domain to configure arbitrary

number of nameservers. Our measurements show that on average

domains have more than 3 unique IP addresses and that there are

domains with more than 30 nameservers, Figure 1.

To ensure performance as well as to balance the load of queries

among the nameservers, the DNS resolver implementations use

different logic for selecting the nameservers in the target domain.

The implementations typically prefer most available servers with

low latency. To select the server the DNS resolver monitors the

performance of each nameserver in a domain and applies a compu-

tation over the responsiveness of individual nameservers as well as

the latency.

A number of studies explore the impact of DNS server selection

on load distribution [59, 61] and attempt to optimise performance

by only selecting fast nameservers and quickly reacting to changes

in nameserver performance [26]. Server selection also has implica-

tions for security of DNS, making it more difficult to launch cache

poisoning attacks since an off-path adversary cannot anticipate

which nameserver a target resolver will query [RFC5452] [34].

2.2 Analysis of Let’s Encrypt Server Selection
We perform an analysis of server selection behaviour of the VAs by

triggering queries to our domain and record the query behaviour

of the VAs. We then reproduce the same experiment in a lab envi-

ronment using popular DNS software and compare produced DNS

requests pattern to the one exhibited by the DNS software on the

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1423

VAs of Let’s Encrypt. We then can determine the software used on

the VAs.

2.2.1 Experiment with Let’s Encrypt. We describe the setup, our

evaluation and the results.

Setup. In this experiment we use 20 domains that we registered.

We set up 5 nameservers, and configure each domain with these

5 nameservers. Each nameserver has 20 zonefiles, one for each

domain. The nameservers are placed in different regions: NS1 on our

AS 1, registered under RIPE NCC, NS2 on region USAwest (Oregon),

NS3 on region USA west (north California), NS4 on region Canada

(central) and NS5 on region USA east (Ohio). The latencies between

the VAs of Let’s Encrypt to our nameservers ranges between 50ms

and 200ms. We set the TTL (Time to Live) of our nameservers to

10 seconds.

Evaluation.We use the Certbot to request certificates for our

20 domains and monitor the DNS requests received on our name-

servers. This causes the four VAs
2
of Let’s Encrypt to issue DNS

lookups to our nameservers and then to perform validation against

our domains with DNS TXT/CAA. We repeat the evaluation 20

times, one iteration for each domain, and continually monitor the

requests from the VAs on our nameservers. The evaluation is carried

out in two phases. In the first phase we evaluate server selection

during normal conditions. In the second phase we introduce losses

and additional latency (between 300ms and 500ms) to responses of

some of the nameservers. We monitor the DNS requests from the

VAs on the nameservers. After the 20 iterations are concluded we

analyse the queries sent by each of the VAs to the nameservers in

our domains.

Results. Our findings are that the queries are distributed among

the nameservers independent of the geo-location and of the net-

work block on which the nameservers are placed. During the first

phase, each VA sends a query to each of the nameservers with

equal probability, and each of the nameservers receives roughly

an equivalent portion of the queries from each VA. During the sec-

ond phase, we observe that the VAs distribute the queries among

the nameservers which have latency below 400ms uniformly at

random. VAs avoid querying poor performing nameservers (with

latency above 400ms) as well as nameservers from which a VA ex-

perienced two-three consecutive packet losses. These nameservers

are avoided for more than 10 minutes. Afterwards, the VAs probe

the nameserver again to see if its performance improved. We also

find that the DNS software on the VAs of Let’s Encrypt imposes

an upper bound of 60 seconds on the cached records, irrespective

of the TTL on the DNS records that the nameservers return. This,

however, does not impact the time that the DNS software avoids

querying poorly performing nameservers, since this information is

stored in a different cache, called the infrastructure cache, as we

explain below.

2.2.2 Analysis on Experimental Platform. In this section we com-

pare the queries pattern in our experiment with Let’s Encrypt to
patterns generated by popular DNS software, to identify the soft-

ware used by Let’s Encrypt. We reproduce our experiments against

2Let’s Encrypt currently requires responses to only three out of four VAs for a DV and

lookup to be successful.

Let’s Encrypt described in Section 2.2.1 in a controlled environ-

ment using the DNS maze
3
open-source platform, which offers a

reproducible test environment for DNS servers. We set up the name-

servers with the same zonefiles as we used in our experiment with

Let’s Encrypt. We also set up 4 DNS resolvers (that correspond to

the 4 VAs of Let’s Encrypt). We use network emulator
4
to introduce

latencies and losses to responses from the nameservers (identical

to our experimental evaluation with Let’s Encrypt). During the

executions we run the same set of queries as we did against Let’s
Encrypt.

We execute the tests in an automated way, each time using

a different DNS resolver software on the VAs (using Knot, Bind,

Unbound, PowerDNS and MS DNS). The results are listed in Table

1. The query distribution, the blocking time, and the distribution

of queries to poorly performing nameservers provides a distinct

fingerprint allowing to identify the DNS resolver software. We

found that the Unbound DNS had the exact same pattern of queries

and server selection as those exhibited by the VAs of Let’s Encrypt.

DNS Software Query distribution to servers Block % queries to
(min) t.o. servers

Unbound queries all 𝑛 servers with <400ms 15 1%

with probability 1/𝑛
Knot >35% queries to fastest server 10 5%

& 10% to others

Bind >95% queries to fastest server 30 1%

& 1% to others

PowerDNS >97% queries to fastest server 3 1%

& 1% to others

Windows DNS uniform query distribution <1 1%

to available servers

Table 1: Server selection in popular DNS implementations.

2.2.3 Code Analysis of Unbound DNS. The server selection proce-

dure of UnboundDNS software is defined in function iter_server_selection

of iter_util.c. Unbound implements timeout management with

exponential backoff and keeps track of average and variance of the

response times. For selecting a nameserver, Unbound implements

an algorithm in [RFC2988]: it randomly selects any server whose

smoothed RTT is between the lowest one and the lowest one +

400ms. If a nameserver becomes unresponsive, a probing phase is

performed where a couple of queries probe that nameserver. If time-

out occurs, the nameserver is blocked for 900 seconds (infra-ttl)

and re-probed with one query after that time interval. We provide a

more detailed explanation of server selection in Appendix, Section

D.1, Figure 14.

2.3 Downgrade by Elimination
Our downgrade attack is carried out by reducing the number of

available servers each VA of Let’s Encrypt can query, leaving just a

single nameserver.

The attacker uses Certbot to request a certificate. This triggers

lookups from the DNS resolvers at the four VAs of Let’s Encrypt
to the nameservers in the target domain. The attacker causes the

requests to all the nameservers except one nameserver to timeout

- we explain how to do this in next Section. Following a timeout

3
https://gitlab.nic.cz/knot/maze/

4
NetEm tc qdisc.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1424

the VAs go into exponential backoff, and the DNS requests are

retransmitted after RTO, i.e., 376ms. The attacker repeats the attack

every 376ms. After 2 consecutive losses the nameserver is moved to

infra_cache and its infra_ttl is set to 900sec. The attacker causes

the VAs to block the 𝑛−1 nameservers, and to only send the queries

to the one nameserver of attacker’s choice.

Challenge: how to hit the correct nameserver? Each time a VA sends

or resends a query the attacker does not know to which nameserver

the query is sent. Hence, the attacker needs to cause the queries

to 𝑛 − 1 nameservers to timeout, except the queries sent to the

one nameserver that the attacker wants the VAs to be forced to

select. After experiencing a timeout the VAs go into exponential

backoff, and will resend the queries after RTO
5
(2 ·376ms in the case

of Let’s Encrypt); for detailed explanation of RTO see Appendix,

Section D.2. The strategy of the attacker is therefore to launch the

attack every RTO, in order to cause the queries to timeout every

RTO=376ms. This strategy always ‘hits’ the queries from all the

VAs, both from VAs that are in exponential backoff as well as from

VAs that are sending queries for the first time to a nameserver and

not as a result of a retry attempt.

Challenge: how many attack iterations required? How many times

should the attack be repeated to block 𝑛 − 1 servers and how many

queries are required until all the𝑛−1 nameservers are removed from

the list of usable servers at all the VAs? To answer these questions

we analyse the query retransmission behaviour in Unbound, see

Appendix, Section D.2, Figure 15. We find that with a single query

the attacker can generate up to 32 timeouts, which result in 32

retries by the DNS software, and can be used to block 6 nameservers

in a domain. Since 95% of the domains have up to 6 nameservers,

a single query suffices to block nameservers of most domains. In

addition, since each VA sends at least two DNS requests (for TXT

and CAA records) during each certificate request invocation
6
, with

a single certificate request the attacker can block 12-13 nameservers

per domain. To block domains with more nameservers the attacker

can submit more certificate requests.

Challenge: how to cause responses to timeout? In the next section

we develop methodologies that enable even weak off-path attackers

to eliminate nameservers in domains during validation with Let’s
Encrypt. The idea is to make it appear as if the target server has poor

connectivity. In one methodology we use IP fragment reassembly

to cause mis-association of IP fragments [32, 55]. The resulting

(reassembled) UDP packet is discarded by the target resolver itself.

Nevertheless, this event is perceived as packet loss by the resolver.

In anothermethodologywe use the rate-limiting of the nameservers,

to cause the query from the resolver to be filtered. We find both

these properties (fragmented DNS responses and rate limiting)

in 24.53% of Let’s Encrypt-certified domains. We also develop a

generic methodology, which does not assume any properties in the

nameservers nor domains. The idea is to send low rate bursts to

5
The RTO is the timeout including the exponential backoff. It is used for server selection

and as a timeout for the transmitted request.

6
Each VA can also send more queries and the exact upper bound of queries depends on

the responses from the nameservers. For instance, if the nameserver sends a response

with the NS type records with hostnames of the nameservers but without the A type

records. The resolver will issue a subsequent request for the A records with the IP

addresses of the nameservers.

cause packet loss at the router which requests of the target resolver

traverse.

3 SERVER-ELIMINATION METHODOLOGIES
Our key contribution in this section is a taxonomy of methodolo-

gies that we develop for off-path server elimination. These method-

ologies introduce packet losses on the communication between

the nameservers and the VAs. The lost packets signal to the DNS

software at the VA connectivity problems at the nameserver. The

nameserver is then blocked by the VA for 900 seconds. We use these

methodologies to launch downgrade attacks against Let’s Encrypt.
One methodology is generic and applies to any domain and all

nameservers without assuming any properties. The idea is to send

bursts to the router that connects the network of the nameserver to

the Internet. The traffic bursts never reach the nameserver network,

so the attack is stealthy and cannot be detected. We evaluated this

methodology ethically in a controlled environment that we set

up. The other two methodologies require less traffic but assume

that the nameservers in a domain have specific properties. One

methodology requires that the nameserver enforces rate limiting

on the inbound DNS requests. The other assumes that the responses

of the nameserver can be fragmented. We experimentally evaluated

these two methodologies against our dataset of domains and found

that they apply to 24% of Let’s Encrypt-certified domains and 20%

of 857K-top Alexa domains.

Since the evaluation is carried out against a large set of almost

2M domains, we automate it. This automated evaluation provides a

lower bound on the number of vulnerable domains, since it misses

out potentially vulnerable domains; we explain this in Section 3.6

below.

3.1 Dataset
Our dataset contains domains certified with Let’s Encrypt as well
as 1M-top Alexa domains; the dataset is listed in Table 2. Out of

1M-top Alexa domains only 857K domains were valid with respon-

sive nameservers. We use these 875K-top Alexa domains in the

rest of our work. In our study we use domains with Let’s Encrypt
certificates to infer the fraction of vulnerable customers of Let’s
Encrypt. We use the popular Alexa domains to infer the overall

attack surface of vulnerable domains. The Let’s Encrypt and Alexa

domains have only a small overlap of 12K domains.

#Domains #Nameservers #ASes Vuln.
Let’s Encrypt 1,014,056 98,502 8,205 24.53%

Alexa 856,887 171,656 15,899 20.92%

Total 1,858,165 227,734 17,864 22.76%

Table 2: Dataset of domains.

3.2 Elimination via Fragmentation
IP fragmentation allows routers to adjust packets to the maximum

size that the networks support. Packets that exceed the maximum

transmission unit (MTU) are fragmented into smaller fragments

by the source or by the routers enroute. The receiver reassembles

the fragments back into the original IP packets. To identify the

fragments that belong to the same IP packet the receiver uses a 16

bit IP identifier (IP ID) in the IP header of the fragments.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1425

Figure 2: Nameserver elimination via (a) fragmentation, (b) rate-limiting, (c) low-rate bursts.

3.2.1 Attackmethodology. The idea is to create fragments-misassembly:

the attacker injects a spoofed fragment which the IP layer at the VA

reassembles with a genuine fragment, sent by the nameserver. The

attacker ensures that the resulting IP packet is invalid and hence is

discarded by the VA. This can be done by violating the resulting

length or the transport-layer checksum. The genuine second frag-

ment from the nameserver does not have a matching first fragment,

and hence is discarded after a timeout of 30 seconds. This causes

the pending query to timeout, and is perceived by the DNS software

on the VA as a loss event.

Elimination via fragmentation is illustrated in Figure 2 (a). In

step A○ we send a fragment to the VA, from a spoofed IP address

of the nameserver. This fragment can be even one byte long. We

set the offset of this fragment so that it fits as a second fragment

in the sequence of fragments sent by the nameserver. In step B○
this fragment is stored in IP defragmentation cache and stays there

for 30 seconds (the default value supported by popular operating

systems, such as Linux, FreeBSD and Windows). In step C○ we send

a request for a certificate for the target domain. This causes the VA

to initiate DNS lookup requests in step D○. For simplicity assume

that the nameserver returns a response in two fragments, in step

E○. In step F○ the first genuine fragment enters the IP defragmen-

tation cache and is reassembled with the second fragment from

the adversary that was waiting in the IP defragmentation cache.

For both fragments to be reassembled the spoofed fragment needs

to contain the correct IP ID value. The transport-layer processing

and checks on the reassembled packet. Since our spoofed second

fragment has a different payload than the genuine second fragment,

it alters the transport-layer checksum of the packet, which results

in an invalid value. The packet is discarded in step G○. In step H○
the second genuine fragment enters the cache; after 30 seconds it

is evicted if no matching first fragment arrives. In step I○ timeout

is triggered and a loss is registered. The query is resent.

Servers that fragment responses. To cause the nameservers

to send fragmented responses we use an ICMP fragmentation

needed packet (type: 3, code: 4) indicating that the path to the

DNS resolver has a smaller MTU. The nameserver then fragments

the response according to the MTU in the ICMP error message

and returns it in smaller fragments. Using ICMP error messages

with UDP header and ICMP echo reply, we identified that 3% of the

domains in our dataset can be forced to fragment responses.

Servers with predictable IP ID. We find 13% of the name-

servers with predictable IP ID allocation. For these nameservers

the attacker can predict the value of IP ID that the nameservers

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

70.0%

80.0%

90.0%

100.0%

C
D

F

Let's Encrypt
Alexa Top-1M
All

Figure 3: Nameservers per domain vulnerable to frag.

assign to the responses, and use it in the spoofed fragments. We

explain how we match the IP ID in the spoofed fragment and how

we measured IP ID assignment algorithms in servers in Appendix,

Section E.

3.2.2 Measurements. We find that 1.88% of Let’s Encrypt-certified
domains, and 4.39% of 857K-top Alexa domains fragment responses;

the results are plotted in Figure 3. The x axis plots the fraction

of nameservers per domain that are vulnerable to elimination via

fragmentation.

3.3 Elimination via Rate Limiting
Nameservers enforce rate limiting on queries to reduce load and

to make it not attractive to abuse them in reflection attacks: after

inbound queries
7
exceed a predefined threshold the nameserver

starts dropping packets.

Attack methodology. We devise a methodology that uses ‘rate limit-

ing nameservers’ to cause the nameserver to filter requests from the

victim DNS resolver. The victim DNS resolver perceives the lack of

responses as an indication of poor performance of the nameserver

and avoids querying it. Elimination via rate limiting is illustrated

in Figure 2 (b). The attacker sends multiple requests to the target

nameserver using a spoofed IP address of the victim resolver in

step A○. The nameserver starts filtering the requests from the DNS

resolver. In step B○ the attacker requests a certificate of the tar-

get domain. In step C○ the DNS resolver sends DNS query to the

nameserver.

7
Nameservers can apply rate limiting per IP address or overall independent of the IP

address.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1426

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

70.0%

80.0%

90.0%

100.0%

C
D

F

Rate Limiting
Fragmentation
Vulnerable

Figure 4: Nameservers per domain vulnerable to frag or rate-
limiting.

The nameserver filters that request in step D○. After a timeout is

reached, the loss event is registered in step E○, and the resolver re-

transmits the query. After three consecutive losses, the nameserver

is blocked for 15 minutes and will not be queried.

We conduct a study of the nameservers in Alexa domains that

limit the rate at which the clients can send DNS requests.We explain

our measurement methodology and then report the results.

0% 20% 40% 60% 80% 100%
Ratio of Vulnerable Nameservers

70.0%

80.0%

90.0%

100.0%

C
D

F

Let's Encrypt
Alexa Top-1M
All

Figure 5: Nameservers per domain vulnerable to rate-limiting.

3.3.1 Measurement of rate limiting. To identify servers that apply

rate limiting we use the same setup as described in [46] and perform

a similar experiment. Since response rate limiting (RRL) is applied

per query per /24 block we capture all the nameservers that start

filtering traffic from the victim IP address. In our experiment we

send requests with the same query for an A record in the domain of

the nameserver concatenated with a non-existent subdomain. Using

the same query name reduces the processing overhead imposed on

the nameserver and does not cause the nameserver to block other

clients sending queries to that domain. We send to each nameserver

4K queries distributed over a time period of a second. We use 4K

packet per second (pps), which is roughly 2.5Mbps, to reduce the

imposed load on the servers. Recent measurements of traffic rate to

servers show that 4K pps is an ethical traffic rate that does not affect

the operation of nameservers [46]. We use the overall packet loss

as an indicator for rate limit, setting the threshold at 66%, which

suffices to cause the nameserver to filter queries from a victim

resolver.

We find that the rate limit is typically reached within a second

and is enforced in the following 15 seconds. Even with this modest

rate of 4K pps, we find that more than 24% of the nameservers

in TLDs (Top Level Domains), as well as 23% of the nameservers

in Let’s Encrypt-certified domains and 17% of the nameservers in

857K-Alexa domains, are vulnerable to elimination via rate limiting

attack. We plot the results for our dataset of domains in Figure 5.

3.4 Elimination via Low Rate Bursts
If the packets arrive at the router faster than they can be transmitted,

they are buffered. Routers are configured for best-effort packet

forwarding and typically the packets are processed using first come

first served model. A packet loss in networks occurs due to queuing

of packets in routers and overflowing routers’ buffers.

3.4.1 Attack methodology. The idea is to cause packet loss on a

router that connects the nameserver to the Internet, slightly before

the arrival of the DNS request at the nameserver. We create loss by

sending low-rate bursts to the router that connects the nameserver

to the Internet. Targeting the router allows that attacker to avoid

detection. To identify the target router the attacker runs traceroute

to the nameservers. Nameserver elimination via low rate bursts

is illustrated in Figure 2 (c). After requesting a certificate for the

victim domain, step A○, the attacker sends a burst of packets to

the target router at the estimated time that the request from the

DNS resolver is sent to the nameserver in step B○ and C○. The burst

causes the request to be discarded.

3.4.2 Synchronising the bursts with the queries. A crucial aspect of

the accuracy of this methodology is to compute the exact time point

when the burst should be sent. We measure the latencies between

the attacker and the VA (Δ𝐴−𝑉𝐴) by pinging the services of Let’s
Encrypt, and the attacker and the target nameserver (Δ𝐴−𝑁𝑆) by

querying the nameserver. We need to infer the processing delays

at Let’s Encrypt.
Inferring processing delay at Let’s Encrypt. The time be-

tween the submission of the request with Certbot and the time

when the queries from the VAs arrive to the nameserver of the at-

tacker is:Δ𝐴−𝑉𝐴−𝑁𝑆𝐴 . Since this is the nameserver of the attacker, it

holds: Δ𝐴−𝑉𝐴 == Δ𝑉𝐴−𝑁𝑆𝐴 . Since the attacker knows Δ𝐴−𝑉𝐴 and

Δ𝑉𝐴−𝑁𝑆𝐴 , the attacker can estimate the processing delays incurred

at Let’s Encrypt: 𝑡𝑑𝑒𝑙𝑎𝑦 = Δ𝐴−𝑉𝐴−𝑁𝑆𝐴 − Δ𝐴−𝑉𝐴 − Δ𝑉𝐴−𝑁𝑆𝐴 = 𝜖 .

When to send the burst. Next, the attacker measures the la-

tency to the nameserver in a target domain 2Δ𝐴−𝑉𝐴−𝑁𝑆 . The time

at which the attacker needs to send the burst is: Δ𝐴−𝑉𝐴−𝑁𝑆 =
2·Δ𝐴−𝑉𝐴−𝑁𝑆−𝜖

2
= Δ𝐴−𝑉𝐴−𝑁𝑆 − 𝜖 , which the attacker can compute

since it knows 𝜖 and 2 · Δ𝐴−𝑉𝐴−𝑁𝑆 .

Let 𝑥 = Δ𝐴−𝑉𝐴−𝑁𝑆 − Δ𝐴−𝑁𝑆 . If 𝑥 < 0, the attacker waits 𝑥ms

and then sends the burst. Alternately, if 𝑥 > 0 attacker sends the

burst 𝑥ms at Δ𝐴−𝑉𝐴−𝑁𝑆 − 𝑥 .

3.4.3 Measuring burst size. The burst size is a function of the buffer
size on the router as well as communication from other sources

that traverses the router. Since we carry out ethical experiments we

do not send bursts to the routers in the Internet. Our evaluation is

performed in a controlled environment on a platform that we set up,

using default buffer sizes on popular routers. These measurements

provide a worst-case analysis. In practice the other communication

that goes through the router will keep the buffer on the router also

occupied, which means that even a smaller burst can achieve a

similar effect.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1427

We compare the effectiveness of bursts when sent from one host,

from two hosts and from three hosts. We also evaluate the impact

of packet sizes on the loss rate.

Setup. Our setup is illustrated in Figure 6. For our experiment

we set up a platform, with five end hosts, each on a different net-

work, connected to the Internet via a router. One host is a DNS

resolver that sends DNS requests, the other is a DNS nameserver.

The three remaining hosts are used to generate traffic bursts. We set

up a router which connects all the clients and servers. This router

simulates the Internet and is connected with 100Gbps links, all the

other devices are connected through 10Gbps output links. Since

the transmission rates on the router, that simulates the Internet,

are ten times higher than the transmission rates on the routers

that connect the end devices (i.e., 100Gbps vs 10Gbps), it will not

experience packet loss. This ensures that the only packet loss can

occur on the routers that connect the end hosts to the Internet.

All the routers are configured to add latency to every packet on

outbound interface. The latency is selected at random in the range

between 30ms and 50ms. This results in an RTT (round trip time)

between 60ms and 100ms; similar to the typical RTT in the Internet.

To add latency we use NetEm tc qdisc.

Figure 6: Simulated evaluation setup.

Experiments.Wemeasure the optimal burst size that causes the

arriving packets to be discarded. We also aim to infer the maximal

sequence of packets that will be discarded after a given burst. What

burst size and characteristics will result in the largest sequence

of packets to be discarded. Our evaluations are performed using

different buffer sizes, listed in Table 3. The timing of the attack

bursts are illustrated in Figure 7.

Figure 7: RTO timeline with low-rate bursts.

We test sending the burst from one vs two vs three hosts. Ad-

ditionally, we create bursts using packets of: (1) identical size of

500 bytes, (2) randomly selected sizes between 68 and 1500 bytes,

and (3) packets of two sizes 68 or 1500 bytes, both sizes are selected

with equal probability.

The DNS resolver is sending a set of queries to the nameserver

and the nameserver responds. To generate traffic bursts from the

attacking hosts we use iperf3. During the experiment the three

attacker hosts synchronise and send a burst of packets to the name-

server. The loss rate depends on the buffer sizes that are on the

routers as well as the additional traffic from other sources. Since

in our experiment there is no additional traffic from other clients,

our evaluation provides a lower bound. In practice in the Internet

the burst would be much more effective due to traffic from other

sources which also traverses the router.

Our experiment showed that the higher the latency variance is

between the packets, the more overhead the burst introduces on the

processing, resulting in higher loss ratio. We also find that (3) re-

sulted in the largest sequence of packets dropped one after another,

it is 7 times as large as the sequence of packets lost in experiments

with bursts (1) and (2). Furthermore, bursts from multiple clients

result in a packet loss more effectively. In fact our evaluations show

that the load on the system and the period of time during which

additionally arriving packets will be dropped is proportional to the

number of attacking hosts that send the burst. Namely, the same

burst volume split among multiple end hosts is more effective than

when sent from a single client. This is due to the fact that when

sent concurrently from different sources the inter-packet delay in a

burst is reduced.

Routers Buffer sizes Burst size Loss rate
Brocade MLXe 1MB >1550 packets 100%

Cisco Nexus 3064X 9MB >10
4
packets 100%

Juniper EX4600 12MB >15 · 103 packets 92%

Cisco 6704 16MB 18 · 103 packets 89%

Table 3: Burst evaluation on popular routers.

Our results are listed in Table 3. For effective packet loss the

bursts can be even smaller in volume than the buffer size - packets

are nevertheless discarded.

Buffer sizes. Typically routers with large buffers are used in the

core of the Internet where cross traffic can cause large queues, but

routers that connect networks to the Internet have smaller buffers,

sufficient for a 10 Gbps traffic rates. The reason for avoiding large

buffers is ‘bufferbloat’ which is too high latency that results due

to network devices buffering too much data, leading to link under-

utilisation. Typical buffer sizes is megabytes of buffer per 10Gbps

port and for 10Gbps links, 10Mb of buffers, [11]. In our experiment

we evaluate bursts on popular routers with default buffers’ sizes

that are set by the vendors, these of course can be resized to smaller

sizes by the operators. Our set of routers covers typical routers that

connect networks to the Internet as well as large routers at the

Internet core.

3.5 Applicability of Frag. & Rate-Limit
We find that 22.76% of the domains in our dataset are vulnerable

to either fragmentation or rate-limiting nameserver-elimination

methodologies, see Table 2. We also find that in 15% of the domains

more than 50% of the nameservers enforce rate limiting or return

fragmented responses, and hence are vulnerable to either elimina-

tion via rate limiting or via IP defragmentation cache poisoning;

the results are plotted in Figure 4.

3.6 No False Positives, Some False Negatives
Our automated evaluation provides a lower bound on the number of

vulnerable domains since it may miss out potentially vulnerable do-

mains. This introduces false negatives, namely, domains which are

vulnerable to our off-path server-elimination methodologies, but

we have not detected this. The reason is that automated evaluation

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1428

is not sensitive to slightly different behaviours or implementations.

For instance, by manually adjusting the IP ID value prediction (see

more details in Appendix, Section E) the attacker has a higher suc-

cess rate to hit the correct IP ID value. An automated evaluation

may not predict the IP ID correctly, due to, say sudden change in

outbound traffic rate from the nameserver. Similarly, nameservers

employ different methodologies for limiting the rate of incoming

queries, e.g., per query, or per source IP, or may simply require a

slightly higher rate of incoming packets. Furthermore, our evalua-

tion against each domain is performed once, to avoid interfering

with the normal functionality of the domain. Our attacker host per-

ceives any losses or noise as a failed evaluation, without repeating

it again.

We do not have false positives. We only mark a successful down-

grade attack in the event when all the VAs in our setup are querying

a single nameserver which our attacker selected.

4 ATTACKS AGAINST LET’S ENCRYPT
In this section we combine the off-path downgrade attack with BGP

same- and sub-prefix hijacks, to obtain fraudulent certificates of

Let’s Encrypt for victim domains. To launch our attacks against

real Internet targets we develop an ethical ‘two-sided’ evaluation

methodology. In Section 4.1 we introduce our experimental setup.

Then, in Section 4.2, we launch our combined attack to issue fraudu-

lent Let’s Encrypt certificates for our own victim domains (whichwe

registered for that purpose). This demonstrates the vulnerabilities

in Let’s Encrypt. Second, in Section 4.3, we evaluate our combined

attack against our dataset of domains (Section 3.1). Since these are

real domains, in order to evaluate the attack against them ethically

we reproduce the exact setup of Let’s Encrypt in a controlled ex-

perimental environment set up by us. We create our own CA, issue

certificates for the domains in our dataset with our CAs, and then

launch the combined attack to obtain fraudulent certificates signed

by our CA for those domains. This enables us to identify domains

with which the VAs of Let’s Encrypt can be forced to query a server

of attacker’s choice, such that, that nameserver can either be same-

or sub-prefix hijacked by the attacker; because it is hosted on a

network block that can be sub-prefix hijacked, or because of a topo-

logical proximity between the attacker and the target nameserver.

The hijacking BGP announcements are sent locally only to the

router that connects the network with our CA to the Internet, and

are not distributed in the Internet, to avoid impacting the global

routing.

We extend our automated experimental evaluation in Section 3,

and as a next step to the evaluations in 3, we also evaluate prefix

hijack attacks of the nameservers that the VAs query, to obtain

fraudulent certificates, signed by our CA for the victim domains.

We then compare the security of Let’s Encrypt to other popular

CAs in the PKI ecosystem, in Section 4.4. We show that the down-

grade attacks apply to all other CAs. Although, in contrast to Let’s
Encrypt, the other CAs do not guarantee security against MitM

adversaries, our attack nevertheless makes it easier to attack them

even for off-path adversaries.

In Appendix, Section G we show how to exploit fraudulent cer-

tificates signed by our own CA to launch attacks against Email

servers and Web clients.

4.1 Control Setup
We prepare a control plane setup for experimental evaluation of

all our attacks in this section. Our setup of the control plane with

the relevant entities and components is illustrated in Figure 8. We

purchase under RIPE NCC two ASes: AS 1 and AS 6. AS 1 is as-

signed prefix 2.2.4.0/22 and AS 6 is assigned 6.6.6.0/24
8
. AS 6 is the

network controlled by our attacker, which we use for hijacking

the prefix of the network on which the nameserver of our victim

domain is installed. The victim domain has three nameservers, two

nameservers, NS2 and NS3, are on AWS cloud and one nameserver

NS1 is hosted on 2.2.4.0/22. We also set up an Unbound 1.6.7 DNS

resolver on Linux 4.14.11 on 2.2.4.0/22.

From layer 3 point of view AS 6 is connected with a BGP router

to DE-CIX routeserver in Frankfurt through which we have peering

with many (mostly) small partners. AS 1 is connected via a different

upstream provider to the Internet. We configured the BGP routers

on both AS 1 and AS 6 as follows: the BGP router is a Dell run-

ning Ubuntu OS. The router is setup to handle 10Gbps traffic, the

NICs are prepared for XDP (eXpress Data Path), which enables it to

process tens of millions of packets per second per core with com-

modity hardware. We installed Bird 2 on both BGP servers since it

is configurable and provides MRT files (BGP message dumps) that

are easy to dump. We set up BGP sessions, such that the router for

AS 1 announces 2.2.4.0/22 and the router for AS 6 is announcing

the attacker’s prefix 6.6.0.0/24. The Validation Authorities (VAs) of

Let’s Encrypt are located on different network prefixes assigned to

two ASes: AS 16509 and AS 13649. Without the prefix hijack, the

traffic from AS 1 flows to Let’s Encrypt (AS 16509).

Issuing fraudulent Let’s Encrypt certs for our victim domains.

Figure 8: Experimental setup.

4.2 Fraudulent Let’s Encrypt Certificate for Our
Victim Domain

In this section we launch attacks against Let’s Encrypt using our
victim domains.

4.2.1 Setup. We setup a victim domain with three nameservers:

two nameservers NS2 and NS3 are on AWS cloud and one name-

server NS1 is hosted on 2.2.4.0/22, see Figure 8.

4.2.2 Attack. The attack proceeds in three steps. We illustrate the

conceptual components of the attack in Figure 13 in Appendix, Sec-

tion B. In step (A) the adversary applies methodologies in Section 3

to force all the VAs of Let’s Encrypt to perform lookups and domain

8
The network prefixes used in the paper are anonymised.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1429

1000 1200 1400 1600 1800 2000 2200 2400
Latency

0%

20%

40%

60%

80%

100%

C
D

F

VA-Primary
VA-EU
VA-US-EAST
VA-US-WEST

Figure 9: Obtaining fraudulent certs with each VA in Let’s Encrypt
(ms).

validation against a nameserver of its choice. In our evaluation

we select NS 1, on prefix 2.2.0.0/16 (this is the network which we

own and control). In second step (B) the adversary uses Certbot to

submit request for a certificate for our victim domain. Notice that

step (A) is also initiated with a certificate request for the victim

domain. However, since Figure 13 illustrates logical steps of the

attack, we omit this from the illustration; these steps are described

in detail in Section 3. In step (C) the attacker launches BGP prefix

hijacks to redirect the DNS packets to the attacker’s network (AS

6). The attacker concludes the validation and receives a fraudulent

certificate for our victim domain.

4.2.3 Evaluation. We ran multiple executions of the attack against

our victim domains. Our plot of the duration of the attack in Figure

9 shows that in 99% of the evaluations the attack completes within

2 seconds. The plot measures the time from the issuance of a hi-

jacking BGP announcement and until the fraudulent certificate is

received. The attack, starting with a certificate request submission

with Certbot (after the attacker eliminated the nameservers from

the list of usable nameservers at the VAs) and until the certificate

is received is automated. The duration of the attack is dominated

by the propagation of the malicious BGP announcement and the

convergence delays.

To understand the delays involved in propagation of BGP updates

and routing convergence and their contribution to the overall attack

duration, in addition to evaluations in the wild, we also evaluate

convergence of BGP updates on common routing platforms in a

controlled environment in Section 4.5.

4.2.4 Measurements. All the VAs of Let’s Encrypt are located on

prefixes smaller than /24, which makes them vulnerable to sub-

prefix hijack attacks. We plot the CAs and the domains vulnerable

to sub-prefix hijacks in Figure 10; ‘LE VAs’, in legend, refer to VAs of

Let’s Encrypt, ‘Other CAs’ refer to CAs we evaluated in Section 4.4,

‘LE Domains’ refer to Let’s Encrypt-certified domains, and ‘Alexa

Domains’ refer to our list of 857K-top Alexa domains. Sub-prefix

hijacks succeed deterministically irrespective of the location of

the attacker, however, since they affect the Internet globally they

are more visible. Nevertheless, such attacks often stay under the

radar over long time periods [2, 28]. Since our hijacks are short-

lived, their risk of exposure is significantly reduced. For details on

sub-prefix hijacks see Appendix, Section A.

4.3 Attacking Let’s Encrypt-Certified Domains
In previous section we executed attacks against Let’s Encrypt and
issued fraudulent certificates for our own victim domains. During

the evaluation we showed that off-path adversaries can bypass the

validation of the multiVA of Let’s Encrypt, by eliminating name-

servers in a victim domain and forcing all the VAs to perform the

lookup and validation against the attacker-selected nameserver. In

this section we ask do our attacks apply against customer domains
of Let’s Encrypt? In particular, do the domains have the properties

needed for our attacks?

To answer these questions we develop an automated attack to

assess the attack surface of the domains that have certificates with

Let’s Encrypt. We execute our automated attack to perform the first

large scale evaluation of the domains for which off-path adversaries

can issue fraudulent certificates with Let’s Encrypt using our attack
methodologies. The challenge is, however, to develop and evaluate

real attacks, yet ethically, without issuing fraudulent Let’s Encrypt
certificates for real customer domains of Let’s Encrypt. To perform

a realistic execution of our attacks yet consistent with the ethics

we reproduce the deployment of Let’s Encrypt using only the com-

ponents that are relevant to validation and issuance of certificates.

In that setup we configure DNS resolvers on the VAs which we

control. We use these DNS resolvers to execute attacks against real

domains in an ethical way. We explain the setup below.

4.3.1 Setup. On the three
9
VAs we set up an Unbound 1.6.7 DNS

resolver on Linux 4.14.11. The VAs are placed on three distinct pre-

fixes, that belong to AS 1. We setup an open-source Boulder ACME

(Automated Certificate Management Environment) implementa-

tion [13] used by Let’s Encrypt. ACME is used by Let’s Encrypt to
automate certificate issuance and management. The components of

Boulder relevant for our evaluation are Registration Authority (RA),

Validation Authority (VA) and Certificate Authority (CA). During

certificate issuance the client (we use Certbot [29]) submits a re-

quest for a certificate. The RA forwards the request to VAs. The

VAs perform validation and return the result to the RA. If validation

succeeds, RA requests the CA to sign the certificate. The RA returns

either a failure, if validation did not succeed, or a signed certificate

to the client that sent the request.

To simulate Let’s Encrypt and issue our own certificates to real

domains we need to set up a CA. We do this with step-ca10, which
is an online CA supported by ACME. This enables us to use ACME

APIs to issue certificates from our own private CA. To set up the

ACME client we configure the URL and our root certificate. The

certificate issuance is similar to Let’s Encrypt: ACME client creates

an account with ACME server, and uses Certbot to request a certifi-

cate. Our client uses Certbot to send a certificate request to the RA.

The RA performs the domain validation using our three VAs.

4.3.2 Dataset. We search domains that have certificates of Let’s
Encrypt in CT (Certificate Transparency) with crt.sh

11
, checking

for CA commonName: R3. We only collect certificates issued in a

single day, by limiting the search to ValidityNotBefore >= 01.04.2021

9Let’s Encrypt uses one primary and three remote VAs and validation succeeds when

correct responses are received at three VAs. Hence, in our evaluation of attacks three

VAs reflect the success of the attacks against the setup of Let’s Encrypt.
10
https://github.com/smallstep/certificates

11
https://crt.sh/

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1430

00:00:00 and ValidityNotBefore < 02.04.2021 00:00:00. This resulted

in 1,014,056 domains issued by Let’s Encrypt on a single day in April.
We then extract the commonNames in the certificates and lookup

the nameservers for each commonName. For each nameserver we

map its IP address to the IP prefix and origin AS, using the BGP

updates in BGPStream of CAIDA [20] on 1 April.

4.3.3 Attack. The adversary receives a list of domains with name-

servers in an input. For each nameserver in each domain we include

information to which attacks (from Section 3) the nameserver is

vulnerable, the latency to each nameserver, and if the nameserver

is vulnerable to sub-prefix hijack attacks.

For each domain the adversary executes the following attack

steps: (1) submits a request for a certificate, (2) performs nameserver

elimination against the nameservers in the victim domain, (3) hijack

the DNS packet, (4) conclude DV, (5) obtain fraudulent certificate

for a real victim domain signed by our CA.

4.3.4 Measurements of attack surface of vulnerable domains. To
obtain insights about the sizes of the announced BGP prefixes in

the Internet we use the BGPStream of CAIDA [20] and retrieve the

BGP updates and the routing data from the global BGP routing table

from RIPE RIS [53] and the RouteViews collectors [58]. The dataset

used for the analysis of vulnerable sub-prefixes was collected by us

in April 2021.

There are currently 911,916 announced prefixes in the Internet.

From these prefixes we extracted all the announcements with pre-

fixes of ASes which host nameservers of the domains in our dataset

(Table 2). Then, we take the domains that we found vulnerable

to frag. and rate-limit server elimination attacks (Table 2 column

"#Vuln."), and check which domains have nameservers that are on

network blocks smaller than /24 or networks which are topologi-

cally closer to the attacker than to the VAs of Let’s Encrypt. The
former set contains domains on networks that can be hijacked via

a more specific BGP announcement which makes them vulnerable

to sub-prefix hijacks. We obtain 10.6% of the Let’s Encrypt certified
domains and 11.75% Alexa domains. Namely, against these domains

our off-path attacker can force Let’s Encrypt to query a nameserver

of its choice, which can be sub-prefix hijacked since it is on a net-

work block less than /24, see Figure 10; the legend is explained in

Section 4.2.4.

The latter contains domains on networks which can be inter-

cepted via same-prefix BGP hijacks. We find that our attacker can

intercept the prefixes from above 30% of the ASes with victim do-

mains, causing the network with the VAs in our setup to accept the

hijacking BGP announcements of the attacker and as a result send

DNS packets through the attacker.

4.4 Comparison to Other Popular CAs
We evaluated our attack methodologies also with other CAs that

control more than 95% of the certificates market, listed in Table

4. Our evaluation was performed against the popular 857K-top

Alexa domains. The results are listed in Table 4. For success, only

Let’s Encrypt requires that multiple vantage points receive the

same responses. In contrast, other CAs, even when selecting an IP

address from a large prefix, such as Certum-Google, perform the

validation with a single IP address.

12 13 14 15 16 17 18 19 20 21 22 23 24
Prefix Length

0.0%

10.0%

20.0%

30.0%

40.0%

Pe
rc

en
ta

ge

LE VAs
Other CAs
LE Domains
Alexa Domains

Figure 10: Network prefixes of CAs’ resolvers and of domains’ name-
servers vulnerable to sub-prefix hijacks.

CA #Vantage Sub-prefix #Time Block MultiVA
Points attack outs (min)

Digicert 1 ✗ 1 5 ✗
Sectigo 1 ✗ 2 10+ ✗

GoDaddy 1 ✓ 10 10+ ✗
GlobalSign 1 ✓ 4 10+ ✗

Certum-Google 20+ ✓ 2 10+ ✗
Certum-Cloudflare 1 ✗ 16 10+ ✗

Let’s Encrypt 4 ✓ 2 15 ✓
Actalis 1 ✓ 2 10+ ✗

Table 4: Infrastructure of popular CAs and our evaluations.

All our blocking methodologies apply to other CAs as well. We

only needed to apply slight modifications according to the be-

haviour of the DNS software at each CA. For instance, the number

of the required timeout differs (column ‘#Timeouts’), as well as

the length of the blocking interval (column ‘Block’), during which

the DNS software avoids querying the blocked nameserver. We

conclude that all the CAs are vulnerable to nameserver-elimination,

which exposes them to extremely effective off-path attacks.

Similarly to the analysis in Section 4.3.4, we obtain that 11.75%

of the 857K-Alexa domains, for which the CAs (in Table 4) can

be forced to query a specific nameserver, that is on a network

vulnerable to sub-prefix hijack.

4.5 How Fast is Short-Lived Hijack?
The goal of our attacker is to do a short-lived hijack to avoid detec-

tion. It is believed that short-lived traffic shifts are caused by the

configuration errors (that are quickly caught and fixed) and since

they do not have impact on network load or connectivity, they are

largely ignored [17, 37, 38].

There are a number of factors which contribute to the overall

latency of the attack, nevertheless, how fast the attacker can carry

out such attack depends predominantly on the speed at which

the malicious BGP announcements propagate to the forwarding

plane at the target victim AS. The main role in this latency play the

updates of the received BGP announcements at the Autonomous

System Boundary Router (ASBR), which is used to exchange routing

information with the ASes. There is a rule that a BGP announce-

ment should be delayed until the local route is installed in BGP

Forwarding Table (FIB), so the announcement is not causing tem-

porary blackholing. For instance, if the receiving router is much

faster to pick up on the new announcement and starts sending the

traffic before the FIB is fully converged. That is the main factor

of the propagation delay and it is a delay introduced by a BGP

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1431

timer, which limits the rate at which routing announcements are

transmitted.

In this experimentwe evaluate the ability to process route changes

on popular routing platforms, in response to a new BGP announce-

ment, measuring the time it takes for the new route to be installed

and used in the FIB on the line card. During the experiment we

populate the routing and forwarding tables with data, generate and

send BGP announcements and initiate the measurements. We mea-

sure convergence delay, i.e., the latency between the time that the

BGP announcement is sent by the originator until the propagation

of the information into the forwarding plane at ASBR with each

box. In our evaluations we send BGP announcements with 300,000

IPv4 prefixes, hence measuring convergence between control and

data plane at high load. The resulting latency is in the order of tens

of seconds, and is device dependent. The slowest was CISCO 7600

platform with above 30 seconds and was representative among old

platforms we tested. Newer platforms, such as Cisco ASR 9901 and

Juniper MX204, are much faster with overall time being between 5

and 10 seconds, even when routers have multiple full BGP feeds.

The fastest results were obtained with Arista 7280R3, which had an

almost instant propagation time of a second. Our findings show that

the convergence delay depends on CPU power and efficiency of the

implementation and our evaluations results demonstrate high vari-

ance (between one second and tens of seconds). For instance, the

Cisco 7600 platform tested by us was released in 2000s with control-

plane module Sup720 with just 2x 600MHz MIPS CPUs. Modern

platforms, like Junipers MX204, have 8-core Xeon-D @2.2GHz and

they run soft-real time Linux kernel and on top of that are two vir-

tualised instances of JunOS control-plane in QEMU/KVM, resulting

in much faster processing times, not only because the box has more

CPU power but also because of the more efficient software stack.

The evaluation results are summarised in Table 5.

Year BGP router FIB Convergence
2001 CISCO 7600 >30sec

2005 CISCO IOS XR 9000 500ms

2006 Juniper MX204 5-10sec

2008 CISCO ASR 9001 5-10sec

2009 Alcatel Lucent 7750SR 3sec

2010 Arista 7280R3 1sec

Table 5: BGP convergence on popular routing platforms.

5 COUNTERMEASURES
Unpredictable VAs selection. Our attacks used the fact that the

adversary knows in advance the set of VAs that perform the val-

idation: the network blocks of the VAs are publicly known. The

network blocks and the set of the VAs is small. This allowed our

downgrade attack to be carried out against each VA, forcing the

VAs to query attacker-selected nameserver for the next 15 minutes.

This provides the adversary sufficient time to obtain fraudulent cer-

tificates. If the VAs are selected from a large set of network blocks

at random, such that the adversary cannot efficiently attack them

in advance, the downgrade attack would be much more challenging

to launch in practice. This would enhance the security of DV with

multiVA even against MitM adversaries.

Resilient nameserver-selection. The nameserver selection

algorithms of the CAs should be made robust by selecting the

nameservers uniformly at random, even those with poor perfor-

mance. If a nameserver does not respond, the query is resent to

another nameserver after a timeout. This would prevent our off-

path server-elimination methodologies. The additional latency to

the certification would not be significant.

Turning off caches. Turning off caches does not prevent the

cache poisoning attack [35] but makes it more difficult to launch.

Caches allow to inject a malicious mapping between the victim

domain and the IP address of the attacker, which is subsequently

used for running domain validation against the target domain. Al-

though Let’s Encrypt limits the caching duration to 60 seconds, it

still suffices for attacking the lookup phase to redirect to attacker’s

hosts. The validation is then run against the hosts of the attacker.

The entire attack concludes within two minutes. If there are no

caches the attacker has to keep the hijacked prefixes over longer

time periods, which may make the attack more visible.

DNSSEC against domain hijacks. DNSSEC [RFC4033-4035]

could prevent the attacks, however, recent works showed that more

than 35% of signed domains are vulnerable to key recovery attacks

[21, 56].

Preventing BGP hijacks with RPKI. If fully deployed RPKI

[RFC6480] would prevent prefix hijack attacks. Our measurements

show that most networks do not filter hijacking BGP announce-

ments with Route Origin Validation (ROV). The ASes of Let’s En-
crypt do not apply ROV, hence even if the domains have a valid

ROA, it does not prevent the hijacks. In addition, only 86 out of

17,864 ASes on our dataset of domains (2M Alexa and Let’s Encrypt
domains, Table 2) apply ROV. Worse, 57% ASes have ROAs, out

of which 32.4% ROAs are invalid, and hence can be hijacked. A

full adoption of RPKI (both the prefix certificates with ROAs and

validation with ROV) although would not prevent all the possible

attacks against DV, it would prevent the prefix hijack attacks.

Detecting FraudulentCertificateswithCT.ACertificate Trans-

parency (CT) log [42] could expose a fraudulent certificate and

allow a CA to quickly revoke it. We measured the rate at which our

fraudulent certificates with Let’s Encrypt appear in the logs of CT

monitors. We registered with the notification third party services

which continuously monitor CT logs and notify via email when a

certificate for required domain is issued. We also registered with

search services which provide API for retrieving logged certificates

by domain name.

We observed that it took some monitors a few hours to fetch our

fraudulent certificates. Furthermore, some of the monitors exhibited

failures and did not detect the fraudulent certificates. Our results

are aligned with the recent study which found that the monitors

provide unreliable service [45]. The damage of our attack would

have been done by the time the attack is detected. Indeed, the

damage of such attacks is the highest in the first hour, e.g., [54].

6 RELATEDWORK
Domain validation. Domain validation plays a central role in

the PKI ecosystem and in Internet security. Flaws in DV can be

exploited to obtain fraudulent certificates. Some CAs were shown

to use buggy domain validation, e.g., to establish control over a

domain WoSign
12

tested control of any TCP port at the target

12https://wiki.mozilla.org/CA:WoSign_Issues#Issue_L:_Any_Port_.28Jan_-
_Apr_2015.29

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1432

domain, in contrast to requiring control over services, such as

Email, HTTP, or TLS. In other cases, CAs were validating control

over domains by sending email verification to addresses belonging

to ordinary users instead of domain administrators
13
. There are

also design specific flaws, which were exploited to bypass DV and

issue fraudulent certificates [14, 18]. Following these attacks Let’s
Encrypt standardised domain validation [RFC8555] and deployed

a production grade validation with multiVA. Followup works [9,

15, 36] on Let’s Encrypt evaluated performance and demonstrated

security of validation from multiple locations with multiVA.
Distributed domain validation. Distributed validation is a

known concept. In 2004 [50] proposed CoDNS to improve the avail-

ability and performance of DNS lookups. ConfiDNS [52] extends

CoDNS with peer agreements and majority vote. Perspectives’ [60]

verifies a server’s identity by using a new infrastructure of notary

servers. DoubleCheck [10] aims to prevent attacks against clients

that retrieve a certificate of the target service for the first time.

However, in contrast to multiVA of Let’s Encrypt these proposals
are not deployed due to the modifications required to the existing

infrastructure and the lack of specific use cases motivating adoption.

We explore the security of multiVA since it is deployed by one of

the largest and rapidly growing CAs.

BGP prefix hijacks. [23, 24, 57] evaluated applicability of BGP

prefix hijacks against different applications in the Internet. There is

numerous evidence of DNS cache poisoning attempts in the wild [1–

7, 22, 54], which are predominantly launched via short-lived BGP

prefix hijacks or by compromising a registrar or a nameserver of the

domain. In this work we apply BGP prefix hijacks for intercepting

the DNS communication between the VA and the nameserver, in

order to create a spoofed DNS response with records that map the

nameservers in the victim domain to attacker’s IP addresses. Once

cached, these records poison the caches of the DNS resolvers at the

VAs. Notice that are also other attacks on BGP, such as poisoning

AS paths [16], defences against these are path security with BGPsec

proposals, [12, 44], none of which are deployed. In our work we

show that even merely applying origin hijacking already leads to

devastating attacks against a large fraction of Internet domains

and their clients, and our evaluations show that the attacks are a

practical threat.

Countermeasures against BGP hijacks. To mitigate prefix

hijacks, the IETF designed and standardised Resource Public Key

Infrastructure (RPKI) [RFC6810] [19]. RPKI uses Route Origin Au-

thorizations (ROAs) to bind Autonomous Systems (ASes) to the

network prefixes that they own via cryptographic signatures. In

order for this binding to deliver on its security promise, the own-

ership over prefixes has to be correctly validated and configured

in the resource certificates (RCs) and Route Origin Authorizations

(ROAs), which are then placed in global RPKI repositories man-

aged by five Regional Internet Registries (RIRs). These ROAs are

fetched and validated, e.g., using the implementation of RIPE NCC

validator [51]. The RPKI validator fetches the ROAs from the global

RPKI repositories and applies Route Origin Validation (ROV) to

create a local validated cache. This cache is then provided to a BGP-

speaking routers via the RPKI to Router (RTR) protocol. Recent

research [33, 40] showed that about 600 networks apply ROV. In

13https://bugzilla.mozilla.org/show_bug.cgi?id=556468

our measurements of the ASes with domains in our dataset, we find

that very few ASes apply ROV, only 86 out of 17,864!

There are also proposals for detection of hijacks based on changes

in the origin, [41], which is not yet in use in the Internet. SCION

[62] proposes to replace BGP with a new routing architecture and is

already deployed in production of a number of ISPs, but is not used

by the vast majority of the Internet and none of the ASes which

host the domains in our datasets or the CAs.

7 CONCLUSION
Domain validation is essential for bootstrapping cryptography on

the Internet. After validating control over a domain, a CA generates

a certificate which can be used to establish cryptographic material

and protect communication between the clients and the correspond-

ing server. In contrast to other means for verifying control over

a domain, domain validation is automated, and hence is fast and

cheap (or even free, e.g., as in the case of Let’s Encrypt). These
benefits are the reason why the CAs that offer domain validation

collectively control more than 99% of the certificates market.

Unfortunately, the benefits of domain validation are coupled

with insecurity. The attacks in 2018 [14, 18] showed that the do-

main validation used by many CAs was vulnerable. Let’s Encrypt
was the first CA to deploy in production mode validation from

multiple vantage points, to provide security even against strong

MitM adversaries [36]. Followup security analysis and simulations

showed that MitM adversaries cannot attack multiple VAs of Let’s
Encrypt concurrently [15].

In this work we developed off-path downgrade attacks to reduce

the domain validation to be performed against a single, attacker-

selected nameserver. The experimental evaluation that we carried

out found Let’s Encrypt vulnerable to our downgrade attack. After

forcing the VAs of Let’s Encrypt to query a single nameserver that

resides on a network vulnerable to sub-prefix hijacks we carried

out ethical attacks and successfully issued fraudulent certificates

for 10.60% of the domains in our dataset. They demonstrate that

Let’s Encrypt is not only insecure against MitM adversaries but

also against off-path adversaries.

We showed that other CAs were also vulnerable to downgrade

attacks, and off-path attackers can launch efficient and effective

attacks to obtain fraudulent certificates with them.

Our work demonstrates that domain validation, although seem-

ingly simple, is not a resolved problem. An interesting and an

important question that we leave for future research is under what

conditions and assumptions (on topology, adversary capabilities,

etc.) can domain validation be made secure.

ACKNOWLEDGEMENTS
We are grateful to Jennifer Rexford for her helpful comments on

our work. This work has been co-funded by the German Federal

Ministry of Education and Research and the Hessen State Min-

istry for Higher Education, Research and Arts within their joint

support of the National Research Center for Applied Cybersecu-

rity ATHENE and by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) SFB 1119.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1433

REFERENCES
[1] 2015. Hacked or Spoofed: Digging into the Malaysia Airlines Website Incident.

https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/hacked-

or-spoofed-digging-into-the-malaysia-airlines-website-compromise. Accessed:

2021-1-19.

[2] 2015. Webnic Registrar Blamed for Hijack of Lenovo, Google Do-

mains. https://krebsonsecurity.com/2015/02/webnic-registrar-blamed-for-

hijack-of-lenovo-google-domains/. Accessed: 2021-1-19.

[3] 2018. DNSpionage Campaign Targets Middle East. https:

//blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-

east.html. Accessed: 2021-01-19.

[4] 2019. Global DNS Hijacking Campaign: DNS Record Manipulation at

Scale. https://www.fireeye.com/blog/threat-research/2019/01/global-dns-

hijacking-campaign-dns-record-manipulation-at-scale.html. Accessed: 2021-1-

19.

[5] 2019. Sea Turtle keeps on swimming, finds new victims, DNS hijacking

techniques. https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-

swimming.html. Accessed: 2021-01-19.

[6] 2019. ‘Unprecedented’ DNS Hijacking Attacks Linked to Iran. https:

//threatpost.com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/

[7] 2020. Security Incident on November 13, 2020. https://blog.liquid.com/security-

incident-november-13-2020. Accessed: 2021-01-19.

[8] Louis Poinsignon. 2018. BGP leaks and cryptocurrencies. https://

blog.cloudflare.com/bgp-leaks-and-crypto-currencies/

[9] Josh Aas, Richard Barnes, Benton Case, Zakir Durumeric, Peter Eckersley, Alan

Flores-López, J Alex Halderman, Jacob Hoffman-Andrews, James Kasten, Eric

Rescorla, et al. 2019. Let’s Encrypt: An Automated Certificate Authority to

Encrypt the Entire Web. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2473–2487.

[10] Mansoor Alicherry and Angelos D Keromytis. 2009. Doublecheck: Multi-path

verification against man-in-the-middle attacks. In 2009 IEEE Symposium on Com-
puters and Communications. IEEE, 557–563.

[11] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router

buffers. ACM SIGCOMM Computer Communication Review 34, 4 (2004), 281–292.

[12] Rob Austein, Steven Bellovin, Russ Housley, Stephen Kent, Warren Kumari, Doug

Montgomery, Chris Morrow, Sandy Murphy, Keyur Patel, John Scudder, et al.

2017. RFC 8205-BGPsec Protocol Specification. (2017).

[13] R Barnes, J Hoffman-Andrews, D McCarney, and J Kasten. [n.d.]. RFC 8555:

Automatic Certificate Management Environment (ACME), Mar. 2019. Proposed
Standard ([n. d.]).

[14] Henry Birge-Lee, Yixin Sun, Anne Edmundson, Jennifer Rexford, and Prateek

Mittal. 2018. Bamboozling certificate authorities with {BGP}. In 27th {USENIX}
Security Symposium ({USENIX} Security 18). 833–849.

[15] Henry Birge-Lee, Liang Wang, Daniel McCarney, Roland Shoemaker, Jennifer

Rexford, and Prateek Mittal. 2021. Experiences Deploying Multi-Vantage-Point

Domain Validation at Let’s Encrypt. USENIX Security (December 2021).

[16] Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mittal. 2019. Sico:

Surgical interception attacks by manipulating bgp communities. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
431–448.

[17] Peter Boothe, James Hiebert, and Randy Bush. 2006. Short-lived prefix hijacking

on the Internet. NANOG.

[18] Markus Brandt, Tianxiang Dai, Amit Klein, Haya Shulman, and Michael Waidner.

2018. Domain Validation++ For MitM-Resilient PKI. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2060–

2076.

[19] Randy Bush and Rob Austein. 2013. The resource public key infrastructure (RPKI)

to router protocol.

[20] CAIDA. 2021. BGP Stream. https://bgpstream.caida.org/

[21] Taejoong Chung, Roland van Rijswijk-Deij, Balakrishnan Chandrasekaran, David

Choffnes, Dave Levin, Bruce MMaggs, Alan Mislove, and ChristoWilson. 2017. A

Longitudinal, End-to-End View of the {DNSSEC} Ecosystem. In 26th {USENIX}
Security Symposium ({USENIX} Security 17). 1307–1322.

[22] D. Madory. 2018. Recent Routing Incidents: Using BGP to Hijack

DNS and more. https://www.lacnic.net/innovaportal/file/3207/1/

dougmadory_lacnic_30_rosario.pdf

[23] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. 2021. From

IP to transport and beyond: cross-layer attacks against applications. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference. 836–849.

[24] Tianxiang Dai, Philipp Jeitner, Haya Shulman, and Michael Waidner. 2021. The

Hijackers Guide To The Galaxy: Off-Path Taking Over Internet Resources. In

30th {USENIX} Security Symposium ({USENIX} Security 21). 3147–3164.
[25] Joao Damas, Michael Graff, and Paul Vixie. 2013. Extension mechanisms for DNS

(EDNS (0)). IETF RFC6891, April (2013).
[26] Supratim Deb, Anand Srinivasan, and Sreenivasa Kuppili Pavan. 2008. An im-

proved DNS server selection algorithm for faster lookups. In 2008 3rd International
Conference on Communication Systems Software and Middleware and Workshops

(COMSWARE’08). IEEE, 288–295.
[27] Chris C Demchak and Yuval Shavitt. 2018. China’s Maxim–Leave No Access

Point Unexploited: The Hidden Story of China Telecom’s BGP Hijacking. Military
Cyber Affairs 3, 1 (2018), 7.

[28] Frank Denis. 2013. The GOOGLE.RW Hijack.

http://labs.umbrella.com/2013/10/25/google-rw-hijack-nobody-else-noticed/.

[29] EFF, the Electronic Frontier Foundation. [n.d.]. Certbot. https://certbot.eff .org/

[30] Xuewei Feng, Chuanpu Fu, Qi Li, Kun Sun, and Ke Xu. 2020. Off-Path TCP

Exploits of the Mixed IPID Assignment. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 1323–1335.

[31] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer. js:

A remote software-induced fault attack in javascript. In International conference
on detection of intrusions and malware, and vulnerability assessment. Springer,
300–321.

[32] Amir Herzberg and Haya Shulman. 2013. Fragmentation Considered Poisonous:

or one-domain-to-rule-them-all.org. In IEEE CNS 2013. The Conference on Com-
munications and Network Security, Washington, D.C., U.S. IEEE.

[33] Tomas Hlavacek, Amir Herzberg, Haya Shulman, and Michael Waidner. 2018.

Practical experience: Methodologies for measuring route origin validation. In

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). IEEE, 634–641.

[34] A Hubert and R Van Mook. 2009. Measures for making DNS more resilient

against forged answers. In RFC 5452. RFC.
[35] Philipp Jeitner and Haya Shulman. 2021. Injection Attacks Reloaded: Tunnelling

Malicious Payloads over DNS. In 30th {USENIX} Security Symposium ({USENIX}
Security 21). 3165–3182.

[36] Josh Aas and Daniel McCarney and and Roland Shoemaker. 2020. Multi-

Perspective Validation Improves Domain Validation Security. https://

letsencrypt.org/2020/02/19/multi-perspective-validation.html

[37] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. 2008. Autonomous security

for autonomous systems. Computer Networks 52, 15 (2008), 2908–2923.
[38] Varun Khare, Qing Ju, and Beichuan Zhang. 2012. Concurrent prefix hijacks: Oc-

currence and impacts. In Proceedings of the 2012 Internet Measurement Conference.
29–36.

[39] Amit Klein and Benny Pinkas. 2019. From {IP}{ID} to Device {ID} and

{KASLR} Bypass. In 28th {USENIX} Security Symposium ({USENIX} Security
19). 1063–1080.

[40] John Kristoff, Randy Bush, Chris Kanich, George Michaelson, Amreesh Phokeer,

Thomas C Schmidt, and Matthias Wählisch. 2020. On Measuring RPKI Relying

Parties. In Proceedings of the ACM Internet Measurement Conference. 484–491.
[41] Mohit Lad, Daniel Massey, Dan Pei, Yiguo Wu, Beichuan Zhang, and Lixia Zhang.

2006. PHAS: A Prefix Hijack Alert System.. In USENIX Security symposium, Vol. 1.

3.

[42] Ben Laurie. 2014. Certificate transparency. Commun. ACM 57, 10 (2014), 40–46.

[43] Francois Le Faucheur, A Vedrenne, P Merckx, and T Telkamp. 2004. Use of Interior

Gateway Protocol (IGP) metric as a second MPLS traffic engineering metric. IETF
Request for Comments RFC3785 (2004).

[44] Matt Lepinski and Kotikalapudi Sriram. 2017. BGPSEC protocol specification.

Internet Engineering Task Force (IETF) (2017).
[45] Bingyu Li, Jingqiang Lin, Fengjun Li, Qiongxiao Wang, Qi Li, Jiwu Jing, and

Congli Wang. 2019. Certificate Transparency in the wild: Exploring the reliability

of monitors. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2505–2520.

[46] Keyu Man, Zhiyun Qian, Zhongjie Wang, Xiaofeng Zheng, Youjun Huang, and

Haixin Duan. 2020. DNS Cache Poisoning Attack Reloaded: Revolutions with

Side Channels. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (Virtual Event, USA) (CCS ’20). Association for

Computing Machinery, New York, NY, USA, 1337–1350. https://doi.org/10.1145/

3372297.3417280

[47] D McPherson, V Gill, D Walton, and A Retana. 2002. RFC3345: Border Gateway

Protocol (BGP) Persistent Route Oscillation Condition.

[48] Lucas Noack and Tobias Reichert. 2018. Exploiting Speculative Execution (Spec-

tre) via JavaScript. Advanced Microkernel Operating Systems (2018), 11.
[49] Yossef Oren, Vasileios P Kemerlis, Simha Sethumadhavan, and Angelos D

Keromytis. 2015. The spy in the sandbox: Practical cache attacks in javascript

and their implications. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. 1406–1418.

[50] KyoungSoo Park, Vivek S Pai, Larry L Peterson, and Zhe Wang. 2004. CoDNS:

Improving DNS Performance and Reliability via Cooperative Lookups.. In OSDI,
Vol. 4. 14–14.

[51] Tashi Phuntsho. 2019. How to Install an RPKI Validator. https://labs.ripe.net/

Members/tashi_phuntsho_3/how-to-install-an-rpki-validator

[52] Lindsey Poole and Vivek S Pai. 2006. ConfiDNS: Leveraging Scale and History to

Improve DNS Security.. InWORLDS.
[53] RIPE NCC. 2021. RIS Raw Data. https://www.ripe.net/analyse/internet-

measurements/routing-information-service-ris/ris-raw-data

[54] S. Goldberg. 2018. The myetherwallet.com hijack and why it’s risky to hold cryp-

tocurrency in a webapp. https://medium.com/@goldbe/the-myetherwallet-com-

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1434

https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/hacked-or-spoofed-digging-into-the-malaysia-airlines-website-compromise
https://www.trendmicro.com/vinfo/us/security/news/cyber-attacks/hacked-or-spoofed-digging-into-the-malaysia-airlines-website-compromise
https://krebsonsecurity.com/2015/02/webnic-registrar-blamed-for-hijack-of-lenovo-google-domains/
https://krebsonsecurity.com/2015/02/webnic-registrar-blamed-for-hijack-of-lenovo-google-domains/
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://blog.talosintelligence.com/2018/11/dnspionage-campaign-targets-middle-east.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://www.fireeye.com/blog/threat-research/2019/01/global-dns-hijacking-campaign-dns-record-manipulation-at-scale.html
https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-swimming.html
https://blog.talosintelligence.com/2019/07/sea-turtle-keeps-on-swimming.html
https://threatpost.com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/
https://threatpost.com/unprecedented-dns-hijacking-attacks-linked-to-iran/140737/
https://blog.liquid.com/security-incident-november-13-2020
https://blog.liquid.com/security-incident-november-13-2020
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/
https://blog.cloudflare.com/bgp-leaks-and-crypto-currencies/
https://bgpstream.caida.org/
https://www.lacnic.net/innovaportal/file/3207/1/dougmadory_lacnic_30_rosario.pdf
https://www.lacnic.net/innovaportal/file/3207/1/dougmadory_lacnic_30_rosario.pdf
http://labs.umbrella.com/2013/10/25/google-rw-hijack-nobody-else-noticed/
https://certbot.eff.org/
https://letsencrypt.org/2020/02/19/multi-perspective-validation.html
https://letsencrypt.org/2020/02/19/multi-perspective-validation.html
https://doi.org/10.1145/3372297.3417280
https://doi.org/10.1145/3372297.3417280
https://labs.ripe.net/Members/tashi_phuntsho_3/how-to-install-an-rpki-validator
https://labs.ripe.net/Members/tashi_phuntsho_3/how-to-install-an-rpki-validator
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278

hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278

[55] Haya Shulman and Michael Waidner. 2014. Fragmentation considered leak-

ing: port inference for dns poisoning. In International Conference on Applied
Cryptography and Network Security. Springer, 531–548.

[56] Haya Shulman and Michael Waidner. 2017. One key to sign them all considered

vulnerable: Evaluation of DNSSEC in the internet. In 14th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 17). 131–144.

[57] Yixin Sun, Maria Apostolaki, Henry Birge-Lee, Laurent Vanbever, Jennifer Rex-

ford, Mung Chiang, and Prateek Mittal. 2020. Securing Internet Applications

from Routing Attacks. arXiv preprint arXiv:2004.09063 (2020).
[58] University of Oregon Route Views Project. 2021. Route Views Project. http:

//www.routeviews.org/routeviews/

[59] Zheng Wang, Xin Wang, and Xiaodong Lee. 2010. Analyzing BIND DNS server

selection algorithm. International Journal of Innovative Computing, Information
and Control 6, 11 (2010), 5131–5142.

[60] D Wendlandt, D Andersen, and A Perrigo Perspectives. 2008. Improving SSH-

style Host Authentication with Multi-path Network Probing. In USENIX Annual
Technical Conference.

[61] Yingdi Yu, Duane Wessels, Matt Larson, and Lixia Zhang. 2012. Authority server

selection in DNS caching resolvers. ACM SIGCOMM Computer Communication
Review 42, 2 (2012), 80–86.

[62] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian Perrig,

and David G Andersen. 2011. SCION: Scalability, control, and isolation on next-

generation networks. In 2011 IEEE Symposium on Security and Privacy. IEEE,
212–227.

A HIJACKING DOMAIN VALIDATION
In this section we show BGP prefix hijack attacks against a single

VA of Let’s Encrypt that was used until 2020. We start by explaining

and evaluating same-prefix hijacks and sub-prefix hijacks using a

victim domain that we setup for this purpose. We evaluate attacks

and their effectiveness and efficiency on popular router boxes. We

explain why the attacks become challenging against the multiVA

DV (domain validation) of Let’s Encrypt.

A.1 Setup and Attacker Model
A.1.1 Attacker Model. Most attackers are not located on the path

between the nameservers of a victim domain and the VAs of Let’s
Encrypt but are off-path to the victims that they wish to attack.

BGP prefix hijacks enable off-path attackers to become on-path

for the communication exchanged with the hijacked prefix. In this

section we show how to apply BGP prefix hijacks for intercepting

the communication between the nameservers and the VAs when the

attacker is off-path and is not located on the communication path.

Our BGP prefix hijacks are short-lived and are aimed at hijacking

the DNS packets exchanged between the DNS resolver software at

the VAs and the nameservers of victim domains. Short-lived BGP

hijacks are common attack in the Internet [8, 22, 27].

Our attacker model is the same as the one against which Let’s
Encrypt guarantees security [15]. This is also the attacker that was

used in [14] to demonstrate insecurity of a single node DV. The

attacker controls a BGP router and issues BGP announcements

hijacking the same-prefix or a sub-prefix of a victim AS in the

Internet. We show how the attacker can perform same-prefix and

sub-prefix BGP hijacks of the VAs and the nameservers, explain the

differences, and the implications of both these hijacks on the traffic

that is intercepted during the interaction with Let’s Encrypt.
The attacker sets up a malicious DNS nameserver with a zonefile,

that corresponds to the resources in the victim domain all mapped

to the IP addresses of the attacker.

The victim AS is either a network hosting one or more of the

nameservers of the target domain or the network hosting the VA.

The target domain is the domain for which the attacker wishes to

issue a fraudulent certificate. The target domain has nameservers

which serve records from the DNS zone of that domain. The goal

is to hijack the same-prefix or a sub-prefix either of one or more

nameservers of the target domain or to hijack the VAs. If the hijack

succeeds, the attacker will receive all the traffic destined to the

victim AS. To avoid blackholing the attacker should relay the traffic

to the destination. In our attack against Let’s Encrypt the goal of the
attacker is to intercept the DNS queries sent by the VAs, or the DNS

responses sent by the nameservers. The attacker configures a filter

for matching the IP addresses of the hijacked AS, in order to catch

the target DNS packet. The attacker forwards all the remaining

traffic to the legitimate destination.

We next explain how our attacker launches sub-prefix hijacks in

Figure 12 and same-prefix hijacks in Figure 11 and how it impacts

the traffic flow.

A.2 Same-Prefix vs. Sub-Prefix BGP Hijack
A.2.1 Same-prefix BGP hijack. The attacker advertises the same

prefix as the victim AS and as a result can intercept traffic from

all the ASes that have less hops (shorter AS-PATH) to the attacker

than to the victim AS. Example same-prefix hijack attacks, for

intercepting a DNS request or a DNS response is illustrated in

Figure 11.

How effective are same-prefix attacks? The limitation of the same-

prefix hijack is that it only affects the traffic of the ASes that prefer

the attacker’s announcement, and does not propagate to all parts

of the Internet. Hence, the effectiveness of the same-prefix hijack

attacks depends on the local preferences of the ASes and the loca-

tion of the attacker’s AS. In particular, the same-prefix attack only

attracts traffic from ASes that have shorter path (i.e., less hops) to

the attacker. Namely, the closer the attacker is to the victim (i.e.,

the shorter the AS-PATH is), the more effective the attack is. Hence

the success of our hijack attack against the multiVA based DV of

Let’s Encrypt depends on the topological relationship between the

attacking AS, the target domain and the victim resolver. If the AS

prefers the path announced by the attacker to the nameserver, then

the hijack succeeds.

Figure 11: Same-prefix hijack: (a) Request and (b) Response.

A.2.2 Sub-prefix BGP hijack. The attack is illustrated in Figure 12

(a). The attacker can advertise a subprefix 2.2.2.0/24 of the victim

AS 1. The routers prefer more specific IP prefixes over less specific

ones, hence the longest-matching prefix (/24) gets chosen over the

less-specific prefix (/16). Nevertheless, the adversary cannot adver-

tise arbitrary long prefixes, e.g., (/32), since BGP routers typically

discard prefixes which are more specific than 24 bits to reduce the

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1435

https://medium.com/@goldbe/the-myetherwallet-com-hijack-and-why-its-risky-to-hold-cryptocurrency-in-a-webapp-261131fad278
http://www.routeviews.org/routeviews/
http://www.routeviews.org/routeviews/

Figure 12: Sub-prefix hijack: (a) Request and (b) Response.

size of the internal routing tables. Therefore, only prefixes with

less than 24 bits are vulnerable to sub-prefix hijacks. Once an AS

accepts the hijacking announcement it sends all the traffic for that

sub-prefix to the attacker.

How effective are sub-prefix attacks? Sub-prefix attack is highly

effective since in contrast to same-prefix hijacks, all the traffic from

any Internet AS globally is sent to the attacker, irrespective of the

location of the attacking AS. To support these huge traffic volumes

the attacker needs to set up a large infrastructure to relay traffic to

the real destination ASes in the Internet. Otherwise, the attack will

result in a blackhole and the attacker risks detection.

The effectiveness and applicability of the attack depends on the

victim prefix size, a subset of which the attacker wishes to hijack.

Our measurement evaluations of the networks of the VAs and of the

nameservers showing vulnerabilities to sub-prefix hijack attacks

are in Figure 10.

A.3 DNS Response vs. Request Interception
Our attacker makes malicious BGP announcements for a same-

prefix or a sub-prefix containing the victim domain, for intercept-

ing the DNS request sent by the CA, or containing the prefix of

the victim resolver for intercepting the DNS response sent by the

nameserver in the domain. In Section A.5 we explain that hijacking

one direction, say communication sent from the CA to the domain,

does not imply hijacking the other direction, since the routing paths

in the Internet are asymmetric. In our attack, it suffices to hijack

either the requests or the responses.

A.3.1 DNS request interception. The same-prefix hijack attack for

intercepting a DNS request is illustrated in Figure 11 (a). The victim

network announces its prefix 2.2.0.0/16. In step 1○ the attacker

starts by originating a malicious BGP announcement which maps

prefix 2.2.0.0/16 to AS 6. We wait between 1 to 3 minutes for the

announcement to propagate; see our evaluation on the conver-

gence duration in Section 4.5. When the announcement reaches AS

16509 its border router applies preferences to decide if to accept the

announcement. In our example illustration in Figure 11 since AS

16509 has less hops to 2.2.0.0/16 through AS 6 than through AS 1, it

decides to route the packets for IP addresses in prefix 2.2.0.0/16 to

AS 6. To avoid blackholing the attacker sets up forwarding to relay

all the packets to AS 1. Our attacker configures rules to intercept

DNS packets sent to port 53 to an IP address in block 2.2.0.0/16 (i.e.,

DNS requests). Once the attacker captures the target DNS request,

in step 2○, Figure 11), it creates a corresponding DNS response with

the malicious DNS records that map the nameservers in the victim

domain to the IP addresses controlled by the attacker. In step 3○
the attacker sends the DNS response to the VA from a spoofed IP

address (of one of the nameservers in the victim domain).

When launching a sub-prefix hijack attack, Figure 12 (a), the

difference is that the attacker announces a more specific prefix of

the nameservers of the victim domain than the victim AS.

Successful cache poisoning occurs once a DNS resolver at the

VA accepts and caches the malicious records from the spoofed DNS

response. The VA with the poisoned DNS resolver performs the

domain validation against the hosts controlled by the attacker. In

addition, all the subsequent DNS records will be queried from the

hosts controlled by the attacker, including the services (e.g., HTTP,

Email) against which the domain validation is performed.

A.3.2 DNS response interception. In a symmetric attack, illustrated

in Figure 11 (b) in order to intercept the DNS response sent by the

nameserver the attacker hijacks the traffic sent by the nameserver

to the VA. In step 1○ the attacker announces the prefix 54.202.0.0/15

on which the VA is hosted. ASes that are closer to the attacker

than to AS 16509 start routing the traffic for IP addresses in prefix

54.202.0.0/15 to AS 6. In Figure 11 (b) this includes AS 1 where the

nameserver is hosted. The attacker configures forwarding rules,

to relay all the traffic to 54.202.0.0/15 to AS 16509. The attacker

also sets filtering rules to capture DNS responses from AS 1 sent to

54.202.0.0/15. Notice that in contrast to previous attack, the DNS

request from the VA reaches the nameserver and the attacker cannot

intercept it. The nameserver issues a response following the request.

In step 2○ the attacker intercepts the response, changes the value

of the DNS record to point at the IP addresses controlled by the

attacker, and sends the modified response to the VA.

A.4 Attacks Against Single Point DV
Previous work [14] demonstrated BGP hijack attacks against sin-

gle point DV: the attacker used fraudulent BGP announcements,

mapping the prefix of the victim domain to the AS number of the

attacker. If the network of the VA accepted that BGP announcement,

the DNS lookup requests as well as DV, were performed against

the hosts controlled by the attacker. The evaluations in [14] used

a domain with a single nameserver and the hijacks were aimed at

intercepting only the communication with that nameserver. For

instance, the sub-prefix hijack attack was aimed at intercepting

the sub-prefix with the victim nameserver, while the same-prefix

hijacks used the fact that the attacker was located topologically

closer to the VA than the victim domain. In reality, domains have

multiple nameservers, and the DNS resolvers select a nameserver to

which they send a query in an unpredictable fashion. Our measure-

ments show that there are an average of more than 3 nameservers

per domain and that there are even domains with more than 30

nameservers. Furthermore, following best practices for resilience

typically each nameserver in a domain is located on a different

network. For attack in [14] to be practical against realistic domains

in the Internet it needs to be extended: since the attacker does not

know which nameserver the VA will select, it has to hijack the

communication channels between the VA to all the nameservers.

Therefore, the attacker needs to issue multiple hijacking BGP an-

nouncements, per prefix of each nameserver.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1436

Figure 13: Attacking DV with MultiVA.

Following [14], Let’s Encrypt was the first to deploy multiple

domain validation with four VAs (called multiVA), which since Feb-

ruary 2020 runs in production mode. Recently [15] demonstrated

the security of multiVA of Let’s Encrypt and showed that it sig-

nificantly raises the bar for attackers, making attacks against DV

impractical. The reason is that every VA selects the nameserver to

which it sends the query at random and independently of other

VAs. The lookup and the validation succeed, if at least three of the

responses arrived, and they are identical. Since the attacker does

not know to which nameserver each VA sends its query, it has to

attack the communication from every VA to any nameserver. For

instance, given a domain with 3 nameservers, each VA can send

its query to any of the 3 nameservers. Therefore, for a successful

hijack of a query the attacker would have to make the network

of every VA accept a fraudulent BGP announcement for a prefix

of every nameserver, and for a successful hijack of the response,

the attacker would have to make the network of every nameserver

accept a fraudulent BGP announcement mapping the prefix of the

VA to the AS of the attacker. Such attacks are not practical even

with very strong attackers.

A.5 Asymmetric Routing Paths
A.5.1 Forward and backward paths. Let the path, that the requests
from the VA to the nameserver take, be the forward path, and let

the path that the responses from the nameserver to the VA take

be the backward path. Both forward and backward paths are com-

puted individually by each BGP router along the path and inserted

into the routing tables along the paths. Each AS in the forward

and backward paths may have different local preferences and can

use various communities and filter configurations for selecting the

routes based on the received BGP announcements. This computa-

tion often results in asymmetric forward and backward paths.

A.5.2 Reasons for asymmetric routing paths. There are many fac-

tors for differences in forward and backward routing paths. During

our measurements we identified the following reasons for asym-

metric routing:

•Manually configured preference of paths going through cheaper

links: typically smaller networks prefer paths to peerings with

higher local preference. The best path selection algorithm of BGP

assigns higher priority to the local preference than to the “select

shortest path” rule. We explain this with the following example: as-

sume we have two possible paths between AS A and AS B: A-X-Y-B

and A-Z-B. If sending traffic fromAS A to AS X is much cheaper (for

AS A) than sending it to AS Z, it could and likely would configure

the local preference of AS A to override the shortest path. Hence,

the path from AS A to AS B would be A-X-Y-B. In contrast, if AS

Y and AS Z have the same price from the perspective of AS B, it

is likely that AS B would not change local preference and would

therefore use the shortest path B-Z-A for sending traffic to AS A.

Every AS can apply local preference to set precedence of incom-

ing routes and therefore direct outgoing traffic. But the opposite

direction for directing incoming traffic is much less controllable,

and can be done by coordinating between multiple ASes a special

configuration (using always-compare-med 14
, [RFC3345] [47] or

14
Configures the device always to compare the Multi-Exit Discriminators (MEDs),

regardless of the autonomous system (AS) information in the paths.

on arranging communities that all the ASes on the path would

accept and interpret as external triggers for local preference).

• The best path selection algorithm of BGP uses end-rules that de-

cide according to Interior Gateway Protocol (IGP) metric [RFC3785]

[43] or router ID
15

if all important metrics (local preference, MED,

AS-path length) are equal. From an external perspective it is not

possible to know which parameters an AS uses for computing the

best path.

Implications of asymmetric routing on our attack. Which network

the attacker will hijack in a real attack in the Internet depends

on the location of the attacker and on the topological location of

the victim. If the network of the nameserver accepts a bogus BGP

announcement of the attacker claiming to originate the prefix of

the VA, the responses from the nameserver will be sent through

the attacker.

Launching symmetric hijacks. Such scenarios are quite easy to

achieve in practice and it is quite a common form of “business

intelligence gathering”: A network X wants to eavesdrop on traffic

between networks A and B. Network A has peerings in one IXP (say

London) and network B in another IXP (for example Amsterdam).

The legitimate path from A to B goes through upstream providers

that both networks A and B prefer less than their peerings. Network

X has peerings with both A and B in the proper IXPs (London and

Amsterdam). So the only thing that X needs to do to intercept traffic

between A and B is to propagate routes from A to B and vice-versa.

It means that the traffic between A and B starts flowing over X

(since A and B prefer peerings over upstreams), so X can eavesdrop

on it. However, X has to carry the traffic between Amsterdam

and London for free (since it was just peering on both sides) and

therefore both A and B were benefiting from the redirection by

saving some money on transit connectivity.

B ATTACK COMPONENTS
We illustrate the conceptual components of the attack in Figure 13.

The attacker first eliminates the nameservers by removing them

from the VAs’ list of usable servers. The attacker then launches the

prefix hijacks against a network of NS3, and injects a malicious

DNS records into a spoofed DNS response.

C VULNERABLE DOMAINS
Through experimental evaluations we found 23.27% Let’s Encrypt-
certified domains with nameservers that apply rate limiting, and

15
A router ID is a 32-bit IP address that uniquely identifies a router in an AS.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1437

UNKNOWN_SERVER_NICENESS = 376ms
RTT_BAND = 400ms

rtt_lost(s){
s.RTO *=2
}

iter_fill_rtt(){
for each server s in servers:
RTO = infra_get_lame_rtt(s)
If s is new:

RTO = UNKNOWN_SERVER_NICENESS
FastestRTO = compute_fastest_rto()

}

iter_filter_order(){
for each server s in servers:
if (RTO - FastestRTO <= RTT_BAND)
move s to front

}

send_query(){
s = randomly_choose_server(servers)
if (query(s) = timeout)
s.TO +=1 // increase timeouts for s
s.RTO = s.RTO*2 // double s RTO
if (s.RTO == 12 sec && s.TO = 2)
// enter probing regime
// not more than 1 query per RTO
set_probing_regime(s)

if (s.RTO > 120sec)
// enter blocking regime
// block 900sec until s expires from infra_cache
infra-host-ttl = 900sec
infra_cache <- s

}

Figure 14: Server selection algorithm of Unbound.

2% of Alexa domains that fragment responses. These are domains

with nameservers that the VAs of Let’s Encryptcan be forced to

query. As an example case study in our work we count nameservers

vulnerable to sub-prefix hijacks. Out of 35% nameservers 10.60% are

vulnerable to sub-prefix hijack attacks. Alternately, the adversary

may select nameservers with some other vulnerability, e.g., depend-

ing on the topological location of the attacker, it can also select

nameservers that can be same-prefix hijacked. We list vulnerable

domains in our dataset in Table 6.

D ANALYSIS OF UNBOUND
D.1 Server Selection
In the first step (function iter_fill_rtt) the DNS software uses

function infra_get_lame_rtt() to read the Round Trip Time (RTT)

information for each nameserver from the infrastructure cache,

called infra_cache (this is where the information about the servers

is cached). If this is a new nameserver for which Unbound does not

have information about RTT, its RTO is set to 376ms. The fastest

Round Trip Timeout (RTO) is then marked. The RTO is the timeout

including the exponential backoff, it is used for server selection and

as a timeout for the transmitted request. The exponential backoff

is implemented in function rtt_lost() in file rtt.c.

In the second step Unbound rearranges the list of servers, moving

all the servers that satisfy (RTO-FastestRTO <= 400ms) to the front of

the server list, this is implemented in function iter_filter_order().

In the next step Unbound randomly chooses a nameserver from

the list created in second step, and sends a query to it. If the re-

sponse times-out, the RTO of that server is doubled. When the

RTO exceeds 12 seconds after 2 consecutive time-outs, the server

enters a ‘probing regime’. This allows not more than a single query

to that nameserver per RTO period. If the RTO further exceeds

120 seconds, it enters the ‘blocking regime’. This means that the

nameserver is moved to infra_cache for 900 sec (15 minutes) and

will not be queried during that time period.

The pseudocode for server selection mechanism in Unbound is

described in Figure 14.

D.2 Query Retransmissions
Unbound has two parameters for limiting the number of times

that a DNS resolver will retry to resend the query for which no

response arrived. Both parameters are defined in iterator.h con-

figuration file. The max_sent_count parameter is the limit on

maximal number of queries per DNS request, which is set to 32.

The other is the number of retries per nameserver, defined with

outbound_msg_retry, and set to 5. The values of both parameters

are hardcoded and cannot be modified.

When the Unbound DNS resolver does not have RTO (retrans-

mission time-out) information about the nameservers in a domain

to which it needs to send a query, it sets the RTO of all the name-

servers to 376ms and selects a server at random. If any server was

queried previously and the response arrived, the RTO reflects the

previous RTT value; see server selection analysis in Section 2.2.3. A

nameserver is selected at random among all the servers with RTO

below 400ms. If the fastest nameserver is 400ms faster than any

other server, it is the only one that can be selected.

If the response arrived, the resolution is done, the query is re-

moved from pending queue. If the response does not arrive, the time-

out is triggered after the RTO period. The RTT value for that server

is updated and the attempt_count parameter for that server is in-

cremented. If outbound_msg_retry is reached, remove the server

from the list of usable servers. Increment the total_sent_count
for that query. Once max_sent_count is reached, return server

fail. Return to step 1. We provide the pseudocode of Unbound re-

transmission behaviour in Figure 15.

MAX_SENT_COUNT = 32
OUTBOUND_MSG_RETRY = 5

SET request_sent_count = 0
WHILE request_sent_count < MAX_SENT_COUNT
select server by calling iter_server_selection()
get server_timeout from infra_cache
send query to selected server
wait for server_timeout period
IF success THEN

update SRTT info in infra_cache
return

ELSE
server_timeout *= 2
update SRTT info in infra_cache
server_attempts++
IF server_attempts >= OUTBOUND_MSG_RETRY

remove this server from usable server list
ENDIF
request_sent_count++
IF request_sent_count >= MAX_SENT_COUNT

return SERVFAIL
ENDIF

ENDIF
ENDWHILE

Figure 15: Query retransmission behaviour in Unbound.

E HITTING IP ID
In this section we describe the IP ID allocation methods and report

on the IP ID results we collected from the popular nameservers.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1438

#Rate Limit #Fragmentation #Frag. or Rate-Limit #Vuln. to sub-prefix hijack #Total
Let’s Encrypt 235,991 19,060 248,763 107,517 1,014,056

23.27% 1.88% 24.53% 10.60%

Alexa 145,280 37,624 179,242 100,709 856,887

16.95% 4.39% 20.92% 11.75%

Total 377,540 55,229 423,004 207,393 1,858,165

20.32% 2.97% 22.76% 11.16%

Table 6: Server-elimination attacks and attacks to obtain fraudulent certificates against domains in our dataset.

To identify the value of the IP ID we send packets from two hosts

(with different IP addresses) to a nameserver.

IP Identifier. The 16 bit IP Identifier (IP ID) field in the IP header
is used to identify fragments that belong to the same original IP

packet [RFC791]. The fragments are then reassembled by the recip-

ient according to source and destination IP addresses, IP ID value

and protocol field (e.g., TCP).

Global counter. Initially most operating systems used a globally

incremental IP ID assignment which is easy to implement and

has little requirement to keep state: just a single counter which

is incremented with every packet that is sent. Global counters

however were shown to be vulnerable to off-path attacks, [32]. A

global counter is still popular in the Internet. Our study shows that

5.53% nameservers use global counter for UDP datagrams and 2.30%

nameservers global counters for IP packets with TCP, see details

in Table 7. To prevent the attacks some operating systems were

patched to randomise their IP ID assignment.

Counter-based bucket. One of the popular algorithms that

was also standardised in [RFC7739] is the counter based bucket

algorithms. The idea is that an index computed by hash function

over the source and destination IP addresses and key, is mapped

to an entry in a table. The IP ID value is calculated by choosing

a counter pointed to by the hash function. Observing some IP ID

values for a pair of source and destination IP addresses does not

reveal anything about the IP ID values of the pairs in the other

buckets. This algorithm, implemented into recent versions of Win-

dows, Linux and Android. Recently [39] reverse engineered parts

of tcpip.sys driver of 64-bit Windows RedStone 4, which allowed

breaking this IP ID assignment algorithm. The attack requires the

attacker to control 𝑖 IP addresses in the same class B prefix. The goal

of the attacker is to receive the keys used by the IP ID generation

algorithm: a 320 bit vector, with two keys 𝐾1 and 𝐾2 that are 32

bits each. During the offline preprocessing phase the attacker uses

Gaussian elimination to calculate a matrix using the IP addresses:

𝑍 ∈ 𝐺𝐹 (2)15(𝑖−1)×15(𝑖−1)

subsequently, the attacker sends packets to the target server

from the 𝑖 IP addresses that it controls and obtains the IP ID values

from the 𝑖 response packets. The attacker applies the computation

to recover the values of the keys, which can be used to predict the

IP ID values in Windows 8 and above versions.

The Linux versions 3.0 and above use separate IP ID allocation

algorithms for UDP and TCP communication. For TCP the IP ID

value is computed per connection, while for UDP [39] demonstrated

an attack for predicting the IP ID value similar to Windows. The

evaluations demonstrated practical attack times of up to 1.5 minutes

at most, see also [39]. Furthermore, in a study which included 69

networks the IP ID values, of the servers that used counter-based

bucket algorithm for IP ID values calculations, could be predicted.

In a subsequent work, [30] demonstrated approaches for recover-

ing the IP ID value computed for the TCP communication. Their

evaluation also demonstrated practical attacks, which apply to 20%

of 100K-top Alexa domains.

Random. Another algorithm selects random IP ID values from

a pool of least recently used IP ID values. This algorithm requires

maintaining a lot of state, corresponding to the pool of the used

IP IDs, however ensures unpredictability of IP ID selection. This

approach is implemented in iOS and MacOS.

Random

Per-Host Global Zero and other N/A Total

UDP

52.60% 5.53% 7.34% 33.40% 1.14% 100%

51281 5388 7152 32560 1112 97493

TCP

14.43% 2.30% 75.92% 1.30% 6.04% 100%

14072 2247 74020 1266 5888 97493

Table 7: IP ID allocation of in 100K-top Alexa.

F OVERVIEW OF DOMAIN VALIDATION
Validating ownership over domains plays a central role in PKI se-

curity. It enables CAs to ensure that a certificate is issued to a

real domain owner and prevents attackers from issuing fraudulent

certificates for domains that they do not control. Prior to issuing

certificates the CAs validate that the entity requesting a certificate

for a domain de-facto controls the domain by running domain vali-

dation (DV) procedure. This is done by sending challenges to the

domain and verifying that the domain correctly echos the chal-

lenges. The methods for verifying challenges all depend on DNS,

and can be based on: email, whois, zonefile and HTTP/S.

HTTP/S: the user adds to the root directory of the website run-

ning at the domain a challenge provided by the CA during DV.

email: an email is sent to an administrator’s email address at the

domain, requiring the administrator to visit a challenge URL.

The idea underlying these methods is that the owner of the

domain adds to the domain a challenge he receives from the CA

after submitting the request for a certificate. The CA can then verify

the presence of the correct challenge by sending a query to the

domain. An attacker that does not see the challenge and does not

control the domain, should not be able to add the correct challenge

value to the domain’s zonefile or web server, nor will it be able to

echo the challenge via email.

F.1 Single Node DV
The idea behind single node DV is that the validation is performed

from a single node, which sends queries to one of the nameservers of

the target domain. For instance, the CA, at domain ca.com, receives

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1439

a CSR for domain example.info, and creates a challenge $ value
which has to be entered as a DNS CNAME record to the zonefile

of the domain, e.g., $www.example.info. CNAME $.ca.com. The

resolver of the CA queries the domain of the applicant, and checks

the presence of the CNAME record.

F.2 Multiple Location DV with multiVA
Following the attacks against DV Let’s Encrypt deployed a multiVA

mechanism, i.e., performing validation from multiple nodes. The

nodes are called Validation Authorities (VAs). MultiVA uses four

Validation Authorities (VAs) for validating control over domains.

Each VA uses DNS resolver library for looking up resources in the

target domains and for validating control over domains during DV.

All the VAs are located on an AWS cloud. The CA sends a domain

to validate or to lookup over an encrypted connection to the VAs.

The VAs perform validation and return the result of the validation

over an encrypted channel to the CA. If the validation is successful,

the CA issues the requested certificate. For DV to succeed at least

three of the four VAs must succeed. The VAs of Let’s Encrypt are
set up on four network blocks:

• set 1: two IP addresses owned by Flexential Colorado Corp. on

AS13649.

• set 2: five IP addresses located on AWS us-east-2 data center.

• set 3: five IP addresses, on AWS eu-central-1 data center.

• set 4: five IP addresses, on AWS us-west-2 data center.

During each lookup or during DV, multiVA selects one IP from

each set. The process of multiVA concludes successfully if at least

three of four VAs return identical responses. Responses are cached.

The DNS software of the Let’s Encrypt caps the TTL at 60 seconds.

G DECRYPTING ENCRYPTED TRAFFIC
We perform a MitM (man-in-the-middle) attack on two types of

applications: web browser and SMTPMX server, where the attacker

functions as a proxy and relays packets between the genuine target

server and the victim client application. The attacker first launches

a DNS cache poisoning attack or a BGP prefix hijack attack against a

victim, to redirect it to the attacker’s host for the target domain. We

launch DNS cache poisoning attack by intercepting a DNS request

from the client via a short lived BGP prefix hijack. We return to

the victim resolver a DNS response mapping the target domain

to the nameservers controlled by the attacker. The attacker then

responds to subsequent lookup requests for services in the target

domain with malicious records. In particular, the attacker maps the

web server and the email exchanger (MX) in the target domain to

attacker’s IP addresses. We then evaluate two attacks: (1) we use

our client to access the webserver and (2) we send an email to the

email exchanger in the target domain.

In the first attack the attacker functions similarly to a web proxy,

and relays every packet it receives to the target webserver. De-

pending on the webserver, the attacker may leave the source IP

address of the real client intact (e.g., if this information is reflected

in the objects returned by the webserver, e.g., printed on the page

and is visible to the client). The attacker establishes a TLS channel

with the client, using the fraudulent certificate to impersonate the

target webserver. The attacker poses as a client and establishes a

TLS channel with the target server. Within these connections it

relays the HTTP objects between the client to the server. In our

evaluation we experienced timeouts since the client has to wait

until the request from the attacker reaches the real server and the

responses from the real server reach the attacker and then the client.

To avoid timeouts we introduce latency to every response we send

to the client that is proportional to the time required to send the

request from the client to the server and receive a response. We

add latency to every packet starting with the TCP SYN ACK. This

causes the RTO in TCP of the client to be much longer, and not

timeout.

Using this attack, the attacker can not only read and intercept

all the exchanged communication but it can also modify the re-

turned objects to inject scripts that will be persistently running in

a sandbox on the client and can execute a range of attacks, such

as Rowhammer attacks against RAM exploiting charges leak of

memory cells via privilege escalation, [31] or Spectre attack [48, 49]

against the CPU cache via timing side channels to read data in the

cache.

In the latter attack we setup an SMTP server that relays packets

between an outbound SMTP server and an MX exchanger (an in-

bound SMTP server) in the target domain. The latency introduced

by this attack is not significant since the victim client does not

directly experience the latency introduced by our attacking proxy.

Session 5B: PKI and Access Control CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

1440

	Abstract
	1 Introduction
	2 The Downgrade Attack
	2.1 Server Selection
	2.2 Analysis of Let's Encrypt Server Selection
	2.3 Downgrade by Elimination

	3 Server-Elimination Methodologies
	3.1 Dataset
	3.2 Elimination via Fragmentation
	3.3 Elimination via Rate Limiting
	3.4 Elimination via Low Rate Bursts
	3.5 Applicability of Frag. & Rate-Limit
	3.6 No False Positives, Some False Negatives

	4 Attacks Against Let's Encrypt
	4.1 Control Setup
	4.2 Fraudulent Let's Encrypt Certificate for Our Victim Domain
	4.3 Attacking Let's Encrypt-Certified Domains
	4.4 Comparison to Other Popular CAs
	4.5 How Fast is Short-Lived Hijack?

	5 Countermeasures
	6 Related Work
	7 Conclusion
	References
	A Hijacking Domain Validation
	A.1 Setup and Attacker Model
	A.2 Same-Prefix vs. Sub-Prefix BGP Hijack
	A.3 DNS Response vs. Request Interception
	A.4 Attacks Against Single Point DV
	A.5 Asymmetric Routing Paths

	B Attack Components
	C Vulnerable Domains
	D Analysis of Unbound
	D.1 Server Selection
	D.2 Query Retransmissions

	E Hitting IP ID
	F Overview of Domain Validation
	F.1 Single Node DV
	F.2 Multiple Location DV with multiVA

	G Decrypting Encrypted Traffic

