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Overview

« HAR(Human activity recognition) has attracted great attention in both academia
and industry

* WiFi-based HAR - Ubiquity, low cost, device-free, low dependence
* Coarse-grained RSSI(Received Signal Strength Indicator)
* Fine-grained CSI(Channel State Information)

* But, in a certain IA(Ineffective Area) - The accuracy of recognition can decrease

* In this paper:
* Examine the spatial diversity in WiFi-based HAR

* Develop a WiFi-based spatial diversity-aware device-free activity recognition
(WiSDAR) system




Background (1) — CSI (Channel State Information)

* CFR* is the frequency response(magnitude, phase) of the channel

* CSlis commonly used to characterize the CFR in WiFi systems
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* CFR : Channel Frequency Response 4 /18



Background (2) — Reflection Model

* Doppler effect

 Relative movement between transceivers
and a reflector > Change the frequency
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Observations (1) : Target in the IA

 The CFR power can be largely attenuated when the target is located in a certain

area(the IA) of a transceiver pair - Affecting the HAR accuracy

* The FFZ* outlines an IA(Ineffective Area) for HAR

|

5 5
w [ wn
5 10 k10
15 < 15
3 3
2 20 2 20
D D

0 1 2 3 4
Time Sequence(s) Time Sequence(s)
(a) (b)

* FFZ : First Fresnel Zone
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Observations (2) : Location of Transceivers

* For the same activity, a pair of transceivers can observe different CFR power
characteristics when they are placed at different locations and orientations
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Multiple-antenna Observation

* SA(Separated Antenna)
 Utilizing the MIMO feature and multiple extended antennas of existing WiFi

devices
* Obtaining more diverse features from multiple spatial dimensions for deep
learning
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* WIiSDAR separates the WiFi antennas by extended cables
* Only one pair of physical WiFi devices with no extra NICs or APs
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Area Determination (1)

* To select ineffective pairs and filter out the corresponding dirty features
—> Minimizing the IAs and increasing the performance

* |A selection criteria
* When the target is in the IA,
* 1) The amplitude of most subcarriers will have an obvious drop
e 2) The amplitude drop lasts for a relatively long duration

= Large amplitude drops with long durations = IA




Area Determination (2)

e Area determination scheme
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System Implementation : WiSDAR (1)
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System Implementation : WiSDAR (2)

e CSl data denoising
* Low-pass filter
e PCA(Principal Component Analysis)

 Area determination

* Activity detection

e Currently no activity > P, > 6p - During the 0, no other peak values
larger than €p = t=Start point

 Currently in activity > P; > 0p - During the 01, no other peak values larger
than @p - t=End point
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System Implementation : WiSDAR (3)

* Feature extraction

* Frequency component with STFT*

* Training
* CNN : For spatial features
e LSTM : For temporal features

* STFT : Short Time Fourier Transform
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Evaluation (1)

* Overall setup
e COTS hardware : Dell Latitude D820 laptops with an Intel 5300 WiFi
* Colleting CSI values : CSI tool, 5GHz WiFi channels with 20MHz bandwidth

» Testing with 6 volunteers(different gender, height, weight, age) in hexagon
topology

* Dataset
* 5760 training samples for 8 activities and data augmentation
. Different antenna topologies
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Evaluation (2)

e Overall performance (activity recognition)

Wa Fa Rn St Pk Ps Wv Bx
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St 0 0.02 0 0.93 | 0.05 0 0 0
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Evaluation (3)

* Performance by recognition methods
* DL : Deep Learning
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Evaluation (4)

* Performance with/without target area determination
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Fig. 20. Accuracy when with or without target area determination mechanism. (a) Accuracy relevant to all activities. (b) Accuracy relevant to activities in IA.
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Conclusion

* WiFi-based HAR methods, especially using the CSI, have many benefits for HAR

* But, there are IA(Ineffective Area) and IA usually drops the HAR performance

» Target area determination and SA(Separated Antenna) methods helped
overcome the effect of the IA

High performance in the COTS environments

However,
* Similar values are also detected in frequency domain features
* SA with cable - Not practical



