μTesla-Based Authentication for Reliable and Secure Broadcast Communications in IoD Using Blockchain

J. C. P. García, A. Benslimane, A. Braeken and Z. Su

<u>IEEE INTERNET OF THINGS JOURNAL</u>, VOL. 10, NO. 20, 15 OCTOBER 2023

2025.02.05.

Summarized by, Sangwi Kang | swkang@mmlab.snu.ac.kr

Outline

- Introduction
- Drones and Broadcast Communication
- Secure Broadcast Communication
- µTesla-based Authentication Using Blockchain
- Security Analysis
- Performance Evaluation
- Conclusion

Introduction

Internet of Drones

- Most communications in IoD networks are conducted over a public channel in a broadcast fashion
- Due to the <u>high mobility of drones</u>, there is the potential for <u>packet loss</u>
- Re-authentication issues caused by handover problems are also a challenge
- The authentication protocol for the drones must consider the handover and packet loss
- There were some suggestions before, but they <u>do not</u> take into account <u>packet</u> loss and <u>handover</u>

 In this paper, the authors propose a blockchain-based authentication scheme inspired by light-weight broadcast authentication protocol

Drones and Broadcast Communication

Secure Broadcast Communication

- > µTesla
- The micro version of the Tesla
- ✓ Designed for resource-constrained networks
- ✓ Computationally expensive digital signatures have been removed.
- ✓ Delivers the initial key in the key chain **by unicast** to all receivers, reducing the size of transmitted packets compared to the Tesla
- > The unicast can cause network overhead
- > The number of keys is finite, so a mechanism for refreshing keys is required

Secure Broadcast Communication > µTesla

- > Overview
- μTesla achieves <u>light-weight computation</u> and can respond to <u>packet loss issue</u>
- > Centralization risks
 - Single point of failure, scalability
- Advantages of blockchain
 - Publicly verifiable, tamper-proof, and distributed
 - Deals with re-authentication issues
- ✓ Authentication protocol that combines µTesla and blockchain

Light-weight Packet Loss Tolerant

Distributed
Tamper-proof
Re-authenticapable

> Network Structure

> Network Structure Zone 1Zone 2Zone 3₹ 000 **888 Drone Management Drone Authentication Data Drone Authentication** Zone 4 $UAV\ Devices$

> Drone Setup and Registration

> Broadcast Authentication Flow

Security Analysis

- Assumptions
 - The private blockchain is jointly maintained by the authorized GS(Ground Station)s
 - Attackers can impersonate drones or GSs
 - Dolev-Yao (DY) Model: Shows what happen when communication occurs on insecure channel
- Eavesdropping Attack
- Drone Identity Impersonation
- Drone Identity Forgery
- Drone Cloning Attack
- Ephemeral Secret Leakage Attack
- MITM (Man-in-the-Middle)

Time Delayed Key Disclosure One-way Hash Function

Hash Key Chain

> Experiment Setting

Drone

- Raspberry Pi 3B Quad-core Cortex-A72 @1.5GHz 8G 64G ROM
- Python *pycrypto* library
- AES128 for symmetric encryption, SHA256 for hash function

Blockchain

- Hyperledger Fabric v2.2 / Docker v20.10.6
- PBFT (Practical Byzantine Fault Tolerance)
- Intel Core i7-7700 CPU 3.60GHz x 8 16G RAM

> Computation and Communication Cost

Schemes	Time Complexity	$Time({ m ms})$	Comm.(bits)
[6]	$12T_{hm}$	118.788	1280
[7]	$23T_H + 2T_S$	2.548	2304
[9]	*	12799.200	16912
[12]	$2T_H + 5T_S$	4.927	7168
Ours	$T_H + T_{MAC} + T_S$	1.054	1024

*
$$14T_H + 14T_m + T_e + 3T_{bp} + 3T_S$$

(The average of 1,000 executions of the cryptographic operations)

 T_H : Cost of calculating hash

 T_{MAC} : Cost of calculating MAC

 T_S : Cost of encryption and decryption

> Blockchain Operations Latencies

(sec)

Operation	Min	Max	Average
Invoke RegisterUAV	1.342	1.721	1.418
Invoke RevokeUAV	1.541	1.726	1.692
Query for White List	0.364	0.621	0.481
Query for UAV	0.127	0.182	0.150

(300 independent invocations to the smart contract i.e., Hyperledger chaincode) (The average block generation time setting : 2sec level)

> Average Authentication Delay

Conclusion

- Secure communication is challenging due to high mobility in a restricted environment.
- By applying blockchain and μTesla, the author proposed a authentication protocol that is **packet loss tolerant, lightweight, tamper-proof, and re-authenticapable.**
- Detailed and realistic parameters for various situations
- PKI concept authentication system w/o PKI
- Loss tolerant for the keys, but not for the message itself
- Unknown whether it can be applied to a real drone environment

Appendix

> Time Cost of Different Cryptographic Operations

Notation	Description	$Time({ m ms})$
T_{hm}	Hyper-elliptic curve multiplication	9.899
T_H	SHA256 Hash function	0.026
T_S	AES128 encryption and decryption	1.975
T_m	Scalar Multiplication in \mathbb{G}_1	0.031
T_e	Exponentiation in \mathbb{G}_T	7.682
T_{bp}	Bilinear pairing in \mathbb{G}_T	8.128
T_{MAC}	MAC Code	0.053

Appendix

> Simulation Setup

Parameter	Value	
Simulation time	30 minutes	
Zones (GS)	[5, 10]	
Drones/Zone (ρ)	[5, 10]	
Mobility model	Random	
Average Block time	2 seconds	
Transaction size	64kB	
Packet size	512 Bytes	
Data Rate (802.11b)	11 MBps	