Why it takes so long to connect to a WiFi access point

Pei, C., Wang, Z., Zhao, Y., Wang, Z., Meng, Y., Pei, D., Peng, Y., Tang, W., Qu, X. IEEE INFOCOM 2017 - Conference on Computer Communications

2023.7.27.

Summarized by, Sangwi Kang | swkang@mmlab.snu.ac.kr

Outline

- Overview
- WiFi Set-Up Process Analysis
- Correlation Analysis
- Impacts of Different Mobile Devices and AP Models
- Reducing Connection Time Cost
- Evaluation
- Conclusion

Overview

- In recent years, wireless data traffic has grown exponentially, and the vast majority of it is 802.11 LAN (WiFi) traffic
- However, a lot of WiFi networks show <u>unsatisfactory results</u> in terms of <u>connection success/failure</u> and <u>connection time</u>
- Thus, it is critical to understand the WiFi connection set-up process to solve the problems
- In this paper:
 - Analyzing the WiFi connection set-up process
 - Reducing the connection set-up time costs by Machine Learning(ML) based method

WiFi Set-up Process Analysis (1)

Definitions

WiFi Set-up Process Analysis (2)

WiFi Success & Failure

- Success: Successfully obtained IP addresses within 30 sec
- Timeout : **Not entered** to the *DHCP* phase
- DHCP Failure: Entered to the DHCP phase, but not obtained IP addresses

WiFi Set-up Process Analysis (3)

The Distribution of sub-phases

- The association and authentication sub-phases do not take too much time
- 0~7 sec / 7~15 sec show similar pattern, while 15~30 sec shows different
- ~15 sec: the DHCP phase is higher, 15~30 sec: the Scan phase is higher

WiFi Set-up Process Analysis (4)

The State Transition of Connection Set-up Processes 290

- There are <u>anomalous state</u> transitions to *Disconnected*
- The *Disconnected* triggers the reconnecting
- The reconnecting starts with Scanning state
- Overall, <u>multiple times</u> of the Scanning state entering <u>increases</u> the scan time cost

Correlation Analysis (1) Connection Log Dataset Fields

Environment related data

	Abbreviation	Features	Description			
	hour of day	Hour of day.	Which hour the connection event happens in 24 hours.			
	RSSI	Received Signal Strength Indicator. The signal strength of AP measured on the mobile of				
	number of devices	Number of associated devices.	Number of devices currently associated on the AP.			
	mobile device model	Mobile device model.	The extracted information from the first eight characters of IMEI.			
	AP model	AP model.	The extracted information from the first eight characters of AP's BSSI			
	Encrypted	Encryption type of the AP. Whether the AP is encrypted using the password or not, e.				
1	IsPublic	Is public AP?	The labeling result of an AP to decide whether the AP is public or not.			
/	result	Connection result reported by the App.	Whether the App user successfully connects to the AP or not.			
\ [connection time cost	Connection time cost.	The time cost of the connection set-up process.			

Performance related data

Correlation Analysis (2)

Qualitative Analysis

- X-Y visualization to show the variance of <u>connection time cost</u> with <u>each</u> <u>feature</u>
- Calculate the mean connection time cost for each bin
- Connection time costs in <u>daytime</u> are larger than night

Correlation Analysis (3)

Quantitative Analysis

- Relative Information Gain(RIG) and Kendall coefficient(Kendall) to show the relationship of <u>connection time cost</u> and <u>each feature</u>
- The Model of mobile device and AP have highest RIG

Features	RIG	Kendall
mobile device model	0.156	/
AP model	0.078	/
RSSI	0.020	-0.395
number of devices	0.006	0.208
hour of day	0.005	/

Impacts of Different Mobile Devices and AP Models (1) Mobile Device Model

- The **chipset** matters: CPU frequency **†** connection time cost **↓**
- The **OS** matters

Impacts of Different Mobile Devices and AP Models (2) AP Model

- The connection time costs of <u>public APs</u> in one day are consistently <u>larger</u> than private APs
- Among the 200K APs, there are 2,802 distinct AP models:
 - 27% are only for public
 - 32% are only for private

Reducing Connection Time Cost (1)

Machine Learning Model

Predict the <u>connection time cost</u> for <u>each connection attempt</u>

• FAST for < 15 sec, SLOW for >15 sec

- IsPublic → AP model
- number of devices

Proportion of DHCP (%)

Reducing Connection Time Cost (2)

Machine Learning Based AP Selection Algorithm

• Help mobile users choose APs to have lower connection time cost

- Step 1 : AP classification
 - Use the trained model to divide APs into SLOW and FAST sets
- Step 2: AP selection
 - Choose the AP with <u>the strongest signal</u> from the FAST set

Evaluation

Performance Comparison

- Baseline: Strongest Signal Strength
- In case of ML algorithm :
 - Less than 3.6% connection attempts failed
 - The <u>80%</u> time costs is only <u>3 sec</u>, which is <u>10X reduction</u> on the 80% connection time cost

Conclusion

- There are a lot of unsatisfactory results in WiFi networks, often due to the connection time cost
- Based on the comprehensive and detailed analysis of the connection time cost, the ML model is proposed
- And it reduced the connection failure from 33% to 3.6% and the 80% connection time costs by 10x

- Extensive, massive data collection and detailed analysis
- Unclear process for collecting dataset
- Need for manual data updates for the proposed algorithm

Appendix (1)

Data Collection Environment

- Connection Log Dataset
 - App: Customized WiFi Manager / Android
 - Duration / Cities: 1 week / 4 different cities
 - Number of unique APs / Devices: 7 million / 5 million
 - The overall number of connection set-up processes: 0.4 billion
- Dataset for Sub-phase Analysis
 - Selected mobile devices : 12,472 devices
 - Connection attempts: 706K

Appendix (2) Mobile Device Specifications

Average connection time cost	Device model	Operating System	Chipset	CPU Frequency	RAM Size	Wireless Interface
475ms	MEIZU M1 Note	Flyme	MediaTek 6752	1.7GHz	2GB	IEEE a/b/g/n
754ms	SAMSUNG G9280	Android OS	Exynos 7420	2.1GHz	4GB	IEEE a/b/g/n/ac
•••	•••	•••	•••	•••	•••	•••
2463ms	MEIZU M2 Note	Flyme	MetiaTek 6753	1.3GHz	2GB	IEEE a/b/g/n
3534ms	MEIZU PRO 5	Flyme	Exynos 7420	2.1GHz	4GB	IEEE a/b/g/n/ac