
/22

A Symbolic Analysis of Privacy 
for TLS 1.3 with Encrypted Client Hello

Karthikeyan Bhargavan, Vincent Cheval, Christopher Wood*

Inria Paris, Cloudflare*

CCS ‘22

2022.11.21.

GyeongHeon Jeong(ghjeong@mmlab.snu.ac.kr)

mailto:ghjeong@mmlab.snu.ac.kr


/22

Index

• Introduction

• Background
• Basic TLS 1.3

• TLS 1.3 with All Features

• Security Goals

• Encrypted ClientHello (ECH)

• Model & Result

• Conclusion

2



/22

Introduction

• TLS 1.3, the newest version of the Transport Layer Security (TLS) protocol, yet 
privacy guarantees of TLS 1.3 remain weak and poorly understood
• The protocol reveals the identity of the target server allowing the passive surveillance and 

active censorship of TLS connections

• To close this gap, the IETF TLS working group is standardizing a new privacy 
extension called Encrypted Client Hello (ECH)
• The absence of a formal privacy model makes it hard to verify that this extension works

• This paper presents the first mechanized formal analysis of privacy properties for 
the TLS 1.3 handshake
• Using the symbolic protocol analyzer ProVerif

• One of the largest privacy proofs attempted using an automated verification tool

3



/22

Background

• This paper shows all standard modes of TLS 1.3, with and without ECH
• Therefore, the detail explanation of TLS 1.3 and ECH will be followed

• Typical TLS 1.3 deployment scenario
• Two clients: A, B (e.g., Web browsers)

• Backend servers: 𝑆1, 𝑆2 (e.g., Websites)

• Client-facing server: F (e.g., Content delivery network)

4



/22

Basic TLS 1.3

5

Client (C) Server (S)

Supports protocol parameters:
([TLS 1.3,...], DHE[𝐺0], H(), enc())

Supports protocol parameters:
([TLS 1.3, DHE[𝐺0], H(), enc())

ClientHello (cr, [(𝐺0, 𝑔
𝑥)])

cr : Client nonce
𝑔𝑥: Diffie-Hellman key 

share
𝐺0: Diffie-Hellman 

group

Generates (x, 𝑔𝑥) in 𝐺0 and computes: es = kdf0

DHE: Diffie-Hellman 
key exchange

ServerHello (sr, [(𝐺0, 𝑔
y)])

Generates (y, 𝑔y) in 𝐺0 and computes: es = kdf0

𝑔𝑥y 𝑔𝑥y

tx3tx3



/22

Basic TLS 1.3

6

Extensions: contains additional server parameters
Certificate: contains the server’s public-key certificate

CertVerify: contains a signature over the handshake transcript so far 
over server’s private-key

Finished: contains a MAC over the handshake transcript up to CertVerify



/22

Negotiating Connection Parameters

7

Client (C) Server (S)

Supports protocol parameters:
([TLS 1.3,...], DHE[𝐺0, 𝐺1], H(), enc())

Supports protocol parameters:
([TLS 1.3, DHE[𝐺1], H(), enc())

ClientHello (cr, [(𝐺0, 𝑔
𝑥), 𝐺1])

Generates (x, 𝑔𝑥) in 𝐺0 and computes: es = kdf0

ServerHello (sr, [(𝐺0, 𝑔
y)])

Generates (y, 𝑔y) in 𝐺0 and computes: es = kdf0

HelloRetryRequest (𝐺1)

Generates (x` , 𝑔𝑥`) in 𝐺1 and computes: es = kdf0

ClientHello (cr`, [(𝐺1, 𝑔
𝑥`)])



/22

Certificate-based Client Authentication

8



/22

Pre-Shared Keys (PSK)

• If the client and server have been configured with a pre-shared symmetric key
(𝑝𝑠𝑘C,S), then they can instead use this PSK to authenticate each other

• External PSK provided by the application 

• Resumption PSK output by a prior handshake between the client and server

• After the end of each handshake, the server may send the client a session ticket 
(SessionTicket) that serves as a new PSK identifier (psk` )
• Save it for use in next PSK handshakes

• In a PSK handshake, the client already has a key it shares with the server, and so 
it can start sending data immediately after the ClientHello message without 
waiting
• This data is called 0-RTT Data

9



/22

TLS Extensions

• ClientHello message indicate protocol extensions that the client supports, and 
the server may choose some of these extensions in the ServerHello

• Server Name Indication (SNI): 
• Most common TLS extension on the Web

• The ClientHello includes the name of the server to which the client wishes to connect 

• Needed by web hosts and content-delivery networks that host multiple domains and have 
to decide which server to use for each connection

• By default, all extensions sent in the ClientHello, ServerHello messages are 
unencrypted, but the server can encrypt some extension data in its Extensions 
message
• ECH extension allows the client to also encrypt elements of the ClientHello, including the 

SNI extension

10



/22

Security Goals of TLS 1.3

11

1. CryptoVerif
2. F*
3. Tamarin
4. ProVerif

These models do not
cover all features

Authentication and Integrity Goals

Server Authentication (SAUTH)

Client Authentication (CAUTH)

Key and Transcript Agreement (AGR)

Data Stream Integrity (INT)

Key Uniqueness (UNIQ)

Downgrade Resilience (DOWN)

Confidentiality

Key Secrecy (SEC)

Key Indistinguishability (IND)

1-RTT Data Forward Secrecy (FS)

0-RTT Data Secrecy (SEC0)

Verification Tool

(1,3,4)

(1,3,4)

(1,3,4)

(1,2,3,4)

(3,4)

(4)

(1,2,3,4)

(1)

(1,3,4)

(1,2,3,4)



/22

Security Goals of TLS 1.3 (cont.)

12

Encrypted Client Hello guarantees all these privacy goals

Privacy

Client Identity Privacy (CIP)

Server Identity Privacy (SIP)

Client Unlinkability (UNL)

Client Extension Privacy (C-EXT)

Server Extension Privacy (S-EXT)

Limitation

No automated proofs

Not guaranteed by TLS



/22

ECH (Encrypted ClientHello)

• Goal: Privacy guarantee of the identity of the backend server

• Main idea: Encrypt sensitive information (e.g., Server identity of the backend 
server) with a public key of the client-facing server

13



/22

TLS 1.3 + ESNI (Encrypted SNI)

• ESNI is first draft of ECH
• Encrypting the SNI extension in the ClientHello with the public-key of the client-facing 

server F (HPKE)

• Vulnerability

14

Main idea: Encrypt the whole ClientHello destined for the backend server
(inner) and bind it with the ClientHello for the Client-Facing server (outer)



/22

TLS 1.3 + ECH (Past)

• Another vulnerability with HelloRetryRequest

15

Outer Client 
Hello

Main idea: The encryption of the second Inner Client Hello 
must be linked to the first Inner Client Hello



/22

TLS 1.3 + ECH (Current)

16

The context ctx is 
updated after each 

decryption
(ctx’, ctx” )



/22

Attacker model

• Considering the symbolic models, known as Dolev-Yao model
• Attacker can have a control over the network, read, write and intercept messages 

• But attacker cannot break the cryptography nor use side channel

• It is very powerful state-of-the-art tool

• Automated Verification Tool : ProVerif
• Most common use

• Supports multiple versions and weak ciphersuites and can find downgrade attack on 
TLS 1.3

17



/22

Modeling

• Model Considerations
• Focus only on TLS 1.3 (No version negotiation)

• Model all features (e.g., HRR, PHA, PSK, Ticket, ECH, 1RTT and 0RTT Data)

• Model all security properties (i.e., Authentication, Integrity, Confidentiality and Privacy goals)

• Proving all properties with all features is too taxing on ProVerif in computation time 
or memory consumption 
• OOT = 48H and OOM = 100GB

• Parametrized model: Simple configuration file allows us to activate/deactivate
• Features 

• Compromised keys

• Server and client behavior

18



/22

Results (Authentication, Integrity, Confidentiality)

19: Feature enabled : Feature disabled

Computation time
Sanity checks



/22

Results (Privacy)

20

Privacy properties requires more time and memory 

: Feature enabled : Feature disabled

1-RTT and 0-RTT
are disabled



/22

Conclusion

• TLS 1.3 and ECH have been developed for security goals
• The absence of verification model make hard to know that this extension works

• This paper takes first step of the automated analysis of privacy properties for 
the TLS 1.3 handshake

• But the limitation is still remained
• Deactivate many of the features to try to obtain the proof in privacy

• Ongoing work: Improve ProVerif to reduce memory consumption

21



/22

Thank you for listening

22


