An Analysis of First-Party Cookie Exfiltration due to CNAME Redirections

NDSS 2021

Tongwei Ren, Alexander Wittman, Lorenzo De Carli, Drew Davidson Worcester Polytechnic Institute, University of Kansas

2022-08-17

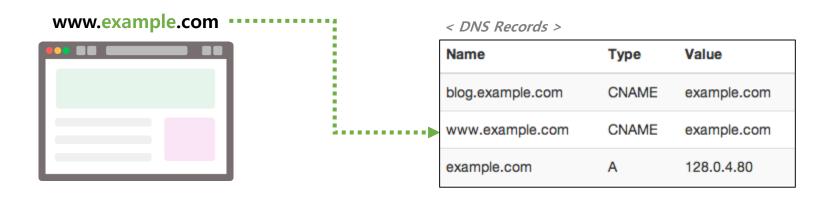
JaeHyun Lee (jhlee2021@mmlab.snu.ac.kr)

Contents

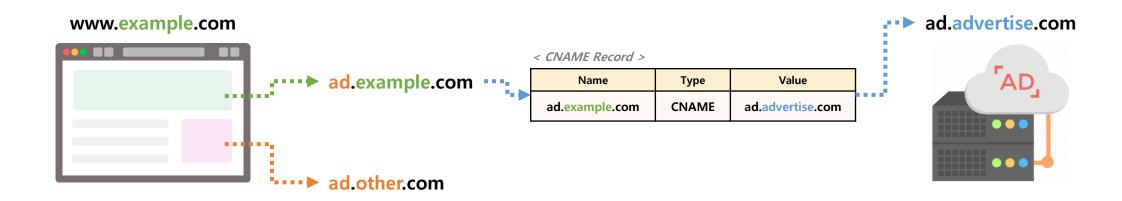
- Introduction
 - Motivation and Contribution
- Background
 - CNAME Redirection / Cookie Policy
- Evaluation
 - Data Collection
 - Domain Classification
 - Cookie Lifecycle Analysis
 - Manual Cookie Analysis
 - Browser Blocklist Evaluation
- Conclusion

Motivation

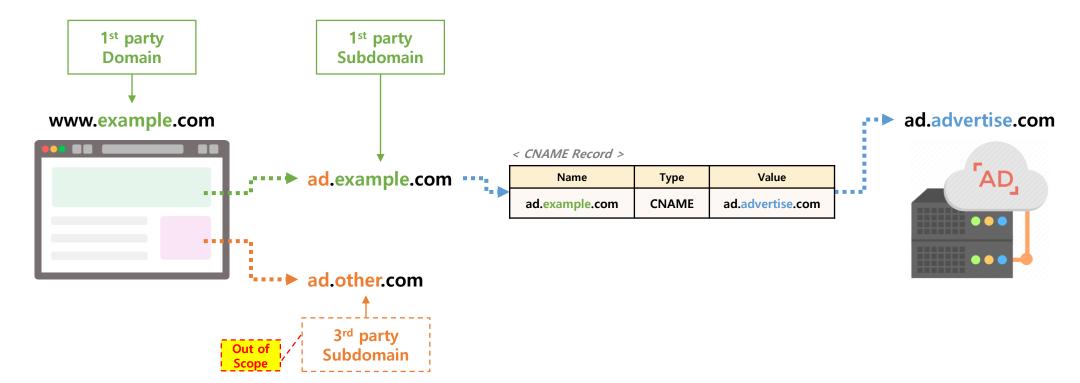
- Recently advertisers / trackers get into misuse of CNAMEs to bypass blocklists and privacy policies
- ✓ Supplement the lack of analysis of the effect of CNAME cloaking on browser cookie policies
- ✓ Understand the actual effect of existing mitigations against CNAME cloaking on cookie exfiltration

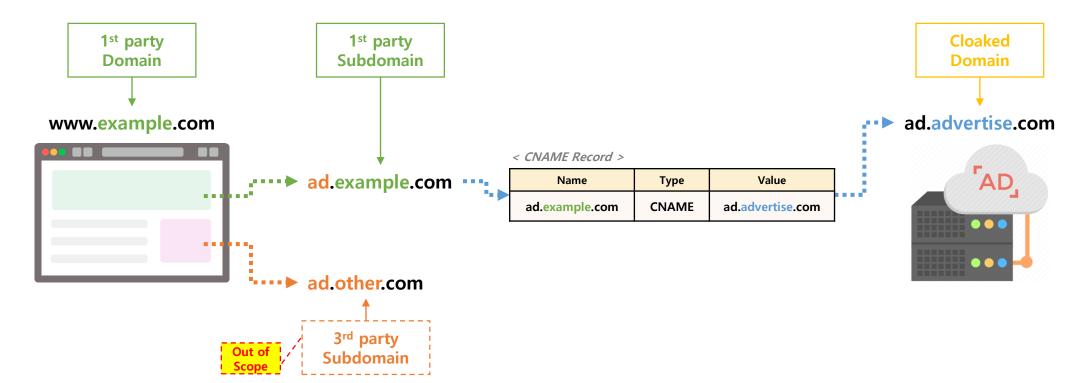

Main Contributions

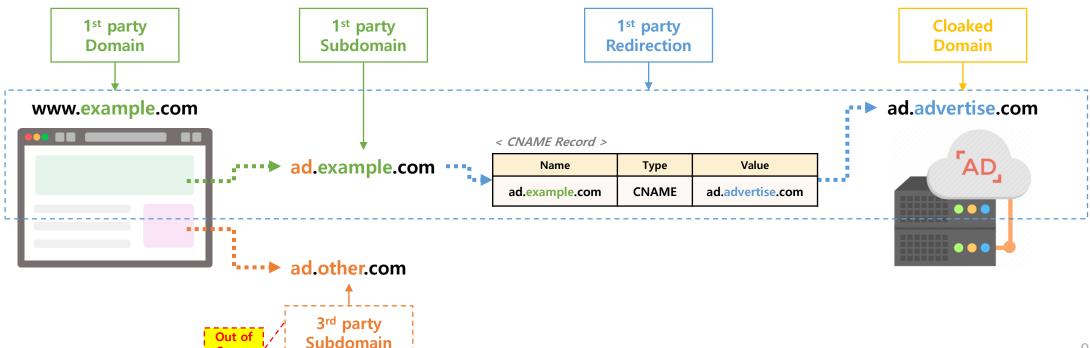
 Perform a large-scale analysis of the impact of advertising-related CNAME redirections on cookie propagation (Alexa Top-10000 sites)


■ Find that in a number of sites, the deployment of 1st party redirections cause sensitive cookies to leak to 3rd party advertising domains

CNAME Redirection


- A **CNAME** (Canonical Name) record is a type of resource record in DNS that maps one domain name to another
 - ✓ CNAME redirection is also used for content delivery network (CDN)
 - Browsers identify and trust CDN content as coming from host domain itself
 - ✓ However, CNAME records can also be used for some malicious purposes.


- By using <u>CNAME redirections</u>, a 3rd party domain gets cloaked as a subdomain of a 1st party or trusted 3rd party
 - > Same powers as the true 1st party or trusted 3rd party


- By using <u>CNAME redirections</u>, a 3rd party domain gets cloaked as a subdomain of a 1st party or trusted 3rd party
 - > Same powers as the true 1st party or trusted 3rd party

- By using <u>CNAME redirections</u>, a 3rd party domain gets cloaked as a subdomain of a 1st party or trusted 3rd party
 - > Same powers as the true 1st party or trusted 3rd party

- By using <u>CNAME redirections</u>, a 3rd party domain gets cloaked as a subdomain of a 1st party or trusted 3rd party
 - > Same powers as the true 1st party or trusted 3rd party

Browser Cookie Policy

- Cookie ?
 - One of the most straightforward ways to maintain user identities on the web
 - Text-based key-value pairs that are managed by the browser
 - Popular for <u>authentication</u> and/or <u>user-tracking</u>
- Same-Origin Policy (SOP)
 - To ensure that data is not leaked through cookies
 - Browser can prohibit access to a cookie from other origins

However, CNAME Cloaking may obscure the true origin of a web request for a resource such as cookie

Existing Mitigations

- AdBlockers
 - Rely on manually-curated blocklist

- Browser protection
 - Brave / Safari: Proposed solution (recently on 2020)
 ✓ But need re-implementation (to update blocklist)
 - Chrome / Firefox / Edge: No CNAME defenses at all

Methodology

Analysis steps

- 1) Data Collection
- 2) Domain Classification
- 3) Cookie Lifecycle Analysis
- 4) Manual Cookie Analysis
- 5) Browser Blocklist Evaluation

Test environments

- Custom crawler/logger on Firefox browser
- Selenium^[1] / mitmproxy^[2] / dnspython^[3]
- Singularity container with mongoDB
- Tested on June and December 2020

^{[1] &}lt;a href="https://www.selenium.dev/">https://www.selenium.dev/ Web testing framework,

^{[2] &}lt;a href="https://mitmproxy.org/">https://mitmproxy.org/ HTTPS proxy

^{[3] &}lt;a href="https://www.dnspython.org/">https://www.dnspython.org/ DNS toolkit for Python

Data Collection

- Gather main dataset
- Logging Redirections
 - All the requests, responses and DNS resolution chain for each request
 - Target: Alexa Top-10000 list
- Isolating Candidate Redirections
 - Redirections that are likely to be ad/tracking related
 - Two approaches
 - ✓ Domain-based: based on the popular blocklists used by commercial ad-blockers
 - ✓ URL-based: based on string pattern on URL such as "ad", "track", etc.

Data Collection - Result

	June 2020	December 2020	_
Websites	9,578	9,683	
HTTP Requests	1,576,505	1,554,789	A va v v v d
HTTP Responses	1,552,791	1,533,379	
Avg Req size [B]	1,364	1,428	
Avg Resp size [B]	104,535	102,566	Around 400 sites
First-party redirections	188,300	203,957	1
Redirections after filtering	28,250	46,745]

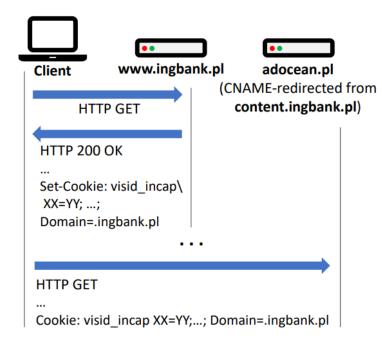
< Summary of main dataset >

- 1st party redirection
 - > More than 4% of the total websites
- Ad/Tracking related candidates
 - > Approximately 19% of all 1st party redirections

Domain Classification

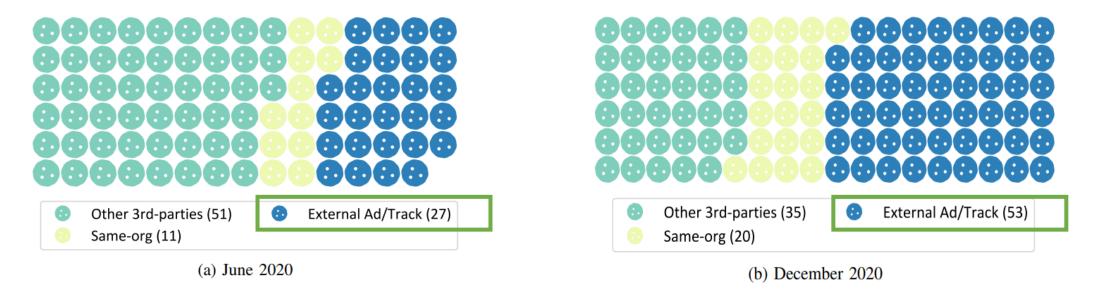
- Obtain accurate and comprehensive information about destination domains of filtered redirections
- Through manual investigation of source and destination domains of each redirection, divide all 1st party redirections into three categories
 - Same-organization
 - ✓ Source and destination domain belong to the same organization (ex. msn and Microsoft)
 - External ad/tracking
 - ✓ Destination domain belongs to an ad/tracker. (ex. ads.google.com)
 - Other 3rd parties
 - ✓ Not under either Same-organization or External ad/tracking.

Domain Classification - Result


- External Ad/Tracking
 - > Approximately 15% of all filtered redirections

Cookie Lifecycle Analysis

* Learn more about <u>how frequently cookies are transmitted to External</u> Ad/Tracking 3rd party domains


Cross-domain Cookie Transmission

- Observed many times on this experiment (unclear)
- Cookies may be set by the real 1st party domain, but sent to the cloaked 3rd party domain

< extracted example of cookie transmission>

Cookie Lifecycle Analysis - Result

- In total,
 - > 89 (June) and 108 (December) cookies are identified as 'cross-domain transmission'
- Among them,
 - > 27 (June) and 53 (December) cookies belong to 'External Ad/Track' category

Manual Cookie Analysis

Gain insight on inter-domain cookie transmission on actual website

Methodology

- Randomly select 62 websites (External Ad/Tracking)
- Create user accounts and record authenticated browsing sessions
- Analyze each cookie to determine whether it is a sensitive cookie

Sensitive cookies

- ✓ Information cookie contains one or more of the user data such as name, email, etc.
- ✓ Authentication cookie causes the website to ask users to re-auth after deleting it
- ✓ Identity cookie causes the user to log back in without re-entering PW after deleting it

Manual Cookie Analysis - Result

Domain	June 2020	Dec. 2020	#]	Key/Value Pairs	Content found in cookies
autotrader.com	X	✓		A/I:1	HEX data; user email address
carsales.com.au	✓	✓		A:1	Opaque HEX data
cheaptickets.com	✓	✓		A:1 ; I:1	Opaque encoded data; username
childrensplace.com	✓	✓		A:5 ; I:9	Base64 data; user's name, location, ZIP, account n., reg. date
denik.cz	✓	✓		D:2; D/I:1	User email address
everydayhealth.com	×	✓		A:3 ; I:3	Opaque HEX data; user email, username, name, birthday, ZIP
intel.com	X	✓	6 -	A:1	Opaque Base64 data
mathworks.com	×	✓	0	A:1 ; I:1	HEX data; username and profile-picture filename
realestate.com.au	✓	X		D/I:1	JWT token (see Figure 4); user email address
royalcaribbeans.com	✓	X		A:1	OpenAM authentication cookie
sas.com	✓	X		D:1; I:1	OpenAM-formatted cookie (see Figure 4); username
startribune.com	✓	✓		D:5; D/I:5	JWT token; user email address, registration date and ZIP code
travelzoo.com	✓	X		A:1	Opaque HEX data
vagaro.com	X	✓		I:1	City-level user location and ZIP code

< A: Authentication cookie; I: Information cookie; D: iDentity cookie >

- Sensitive cookies that exfiltrated to 3rd parties
 - > Actual data (46 cookies in 14 sites) were found in the wild

Browser Blocklist Evaluation and Result

- * Evaluate 'Safari' and 'Brave' browsers since they have explicitly announced their ability to prevent CNAME cloaking
- Visit and log in to the 7 websites having cross-domain authentication cookie transmission from the previous experiment
- Results
 - ✓ Safari: 2 out of 7 instances of exfiltration were blocked
 - ✓ Brave: 6 out of 7 instances of exfiltration were blocked
 - Impressive but not perfect

Summary

- A non-negligible fraction of the Alexa Top-10000 websites perform CNAME redirection (more than 4%)
- Many sites exfiltrate cookies to 3rd party ad/tracking domain on their homepage
- Sensitive cookies are exfiltrated to 3rd parties beyond the homepage (totally 46 cookies in 14 of 62 websites)
- The ability of blocking these exfiltration vary between browsers

Conclusion – Security Implications

- CNAME cloaking has undesirable implications for user security and privacy
- CNAME cloaking appears to be a feasible means for advertisers to evade blocklists when they have the cooperation of 1st parties
- 3rd parties and 1st parties are willing to collaborate in ways that blur origin-based security
- The exfiltration of authentication cookies may open the door to impersonation and account takeover, extend the 1st party attack surface

Thank you

Appendix