Enabling Live Migration of Containerized
Applications Across Clouds

IEEE InfoCom ‘20
Thad Benjaponpitak, Meatasit Karakate, Kunwadee Sripanidkulchai

Chulalongkorn University

JaeHyun Lee (jhlee2021@mmlab.snu.ac.kr)

mailto:jhlee2021@mmlab.snu.ac.kr

Contents

 Background
 Container based
 Cloud Provider and Live Migration

 System design
« Components
* Design Goals
« Migration Flow

e Evaluation and Result

e Conclusion

Background

Contalner

= Containers are becoming the de facto standard
« Application focused solution
 Abstraction of system call and resources
 But isolated from the host machine

App App App
| oomutrn | mmp

Traditional Deployment Virtualized Deployment Container Deployment 3/23

Docker and Kubernetes (common sense)

= Docker]
 OS-level virtualization to deliver software in packages miliim)
called containers -
 De facto standard of container docker
= Kubernetes
 Container orchestration system for automating
deployment, scaling and management

e De facto standard of docker-based web service kubernetes

Cloud Service (common sense)

» Cloud Service Provider
« 3 major commercial providers: Amazon / Google / MS

* Their Container Services
« AWS: EKS (Elastic Kubernetes Service)

« GCP: GKE (Google Kubernetes Engine)

« Azure: AKS (Azure Kubernetes Service)

Migration (common sense)

= Why?
* In case of accident (reliability)
« Better functionality
 Business issue ($$%)

= How? .
* Service down (“Service Under Maintenance’) SiES
* Blue-green deployment & |
 Canary deployment /—-

Live migration

= Process of transferring the state of running application to
remote with minimum downtime

« Memory migration

» Storage migration

« Network migration

System Design

= Components and terms
» Design Goals

= Migration Flow

Components (or Tools/Envs)

StrongSwan
* Open source IPSec VPN
« All hosts and containers can communicate using private IP addresses

= HAProxy
« handle incoming connections at the host to support multiple container networking

= CRIU

« One of the most developed implementations of user-space-based migration (cf. kernel-based)

" rsync
« Efficient file transferring(sync) across networked computers by using delta-copy

= Holding Application
« Extra application for holding and redirecting

= WordPress / MySQL

« Sample application on this paper

Design Goals

A. Multi-cloud support
* AWS < GCP « Azure

B. Interdependent container support
« Web App + DB App (+ others)

C. Short migration time
« Optimization

D. Secure data transfer
» Between Source and Target cloud provider

E. No failed client connection during migration
» Bluegreen migration

F. Automated migration
« Using python based script Ansible, an open-source SW provisioning, conf. management and deployment tool

Design — key point (1/2)

C. Short migration time

v Memory and Storage Migration steps (typical way vs. this paper)

. Checkpoint — freezing and dump — pre-dump (CRIU)
— transfer pre-dump (rsync) € E &
Il. Transfer — transfer mem and storage ® I1l. Checkpoint — iterative dump (CRIU)
SEEE IV. Transfer — transfer only diffs (rsync)
[ll. Restore V. Restore
<Three basic steps> <Add pre-migration steps>

Further consideration: NFS (Network File System)
NFS also had been considered as another optimization
But, there was significant performance overhead

Design — key point (2/2)

E. No failed client connection during migration

v Key |ldea: Hold and Redirect

aws

\\-—-/7

—X—
Ready? P>

Hold

ad 11

Redirect

HAProxy

o Google Cloud Platform
\\§

<Source Cloud>

<Target Cloud>

12/ 23

Migration Full-Flow

Preparation
 Create target resources (via docker image)
« Deploy holding app
« Setup IPSec Tunnel

Pre-Migration
* Pre-dump
* Pre-copy

Migration
« Checkpoint
« Transfer
» Restore

Finished

« Destroy source resources

Migration Flow (1/4)

= Preparation
= Pre-migration

Client
connection

AWS Source

HAProxy

80

IP:172.31.1.34

MySQL
10.200.1.2

Connect via

Y

Bridge

WordPress
10.200.1.5

Migration Flow (2/4)

= Migration

Client
connection

AWS Source IP:172.31.1.34 | | GCP Target IP: 10.0.1.2
Hold Clie_'nt - .
| HAProxy Connection J | yoiding App WordPress | HAProxy
80 - 12345 . (restoring) 80
"""""""" Inactive
SQL . WordPress | . ;
'(gpped . Rareiivnd E MytSQL i Backend
i checkpointed) | : checkpointed) | : (restoring) : (for AWS’s
[---------- / ------------------------ HAProxy)
[V—«/ﬁ';ger checkpoints via rsync \\\
IPSec Tunnel
Strong Strong
Swan Swan
AWS VPN GCP VPN
Gateway Gateway
IP:172.31.1.170 IP:10.0.1.3

Migration Flow (3/4)

Done

Client
connection

AWS Source IP:172.31.1.34 GCP Target IP:10.0.1.2
Client Redirect Active
connection HAProxy Holding App WordPress | Backend HAProxy
80 112345 10.200.1.5 | 80
I
L avenl | C WerdProce | Active
Forward i MysQL | . WordPress | MySQL Backend
client : chéif;’gﬁ?e B | - Chéscf;’gﬁ?ed) : 10.200.1.2 (for AWS's
connection i ChECKpointea) ! i Checkpointed) !
to target HAProxy)
IPSec Tunnel
Strong . __ | Strong
Swan Swan
AWS VPN GCP VPN
Gateway Gateway
IP:172.31.1.170 IP: 10.0.1.3

Migration Flow (4/4)

= (Cleaning up GCP Target IP: 10.0.1.2
Active Client

WordPress | Backend HAProxy | connection

10.200.1.5 | 80
Active

MySQL Backend

10.200.1.2 (for AWS’s

HAProxy)

Evaluation

= Experiment specification

« An application consisting of 2 containers, ‘WordPress’and ‘MySQL’

 Live-migration from AWS (Amazon Web Service) to GCP (Google Cloud Platform)

Generate random load (60~70 TPS) using Siege’

Define 10 scenarios based on the number of concurrent clients

Repeat 10 times for each

= Constraint

« Some outliers; perhaps due to dynamic conditions in the cloud

Result — Time Spent

Scenario Pre-Migration Migration Total
Pre-Dump | Pre-copy Total Checkpoint | Diff Transfer | Restore | Total Downtime (s)
(s) (s) (s) (s) (s) (s) (s) (s)

Oc (Azure) 0.300 4.243 4.543 0.587 0.337 0.720 5.460 7.104 11.647
Oc (GCP) 0.327 4.487 4.814 0.613 0.350 0. 717 5.867 7.547 12.361
lc (GCP) 0.310 4.33 4.640 0.633 0.380 3.420 5.470 9.903 14.543
5c¢ (GCP) 0.433 4.953 5.387 0.713 0.357 4.227 5.347 10.643 16.030
10c (GCP) 0.590 6.133 6.723 0.907 0.383 4.673 5.3[Acceptablel 11.317 18.040
50c¢ (GCP) 11170 7.033 8.203 1.917 0.376 12.710 5.6 0.633 28.836
100c (GCP) 1.015 1222 8.237 3.930 0.455 11.410 5.222 21.017 29.254
200c (GCP) 0.936 7.053 7.989 4.763 0.503 13.370 5.470 24.106 32.095
, 400c (GCP) 1.430 8.890 10.320 5.948 0.690 12.370 5.448 24.456 34.776

| w/o optimization

Result — Optimization

1,500
1,230

1,000 | :
793.28 735.12 655.84

500 I 328 32 1
0

Baseline Scheduled Unscheduled Sequential Compressed

C1 \
throughput between “_ “- [EC 2] $
AWS < GCP (compression option)

S C: RN C3 |

Throughput (Mbps)

20/ 23

Result — Response Time

| | I | I
- 292 | | I | ! I

~ | Pre-Migration | I Migration | |

E ——— |_< | >_I.< Ll | g

¢= | | | | |

g 4 I I I I I

= | I | |

=3 - 1 5 T ! !

E 0 || | Ll | |
0 10 20 30
Elapsed:time (s)

Normal State Pre-dump Hold Redirect

& Pre-copy

40

Normal State

o0

Critiques

First approach of live migration using commercial cloud providers
Well-organized migration flow and optimization techniques

Too simple testbed (simple WebSite and DB container)
Not enough load: 6~70rps (should be hundreds at least)
Should consider de facto use case such as kubernetes (container orchestration)

BTW, | cannot find ‘CloudHopper’ anywhere..

Thank you

Experiment environment

TABLE 1
MACHINE SPECIFICATIONS.

Host Provider Machine type vCPUs | RAM (GB) Region

Source AWS t3.medium 2 4 ap-northeast-1
Source VPN AWS t3.small 2 2 ap-northeast-1

Target GCP nl-standard-1 1 3.75 asia-northeast-a
Target VPN GCP nl-standard-1 1 3.75 asia-northeast-a

Target Azure Standard D1 v2 1 3.5 Japan East
Target VPN Azure Standard D1 v2 1 3.5 Japan East

Client Azure Standard D2s v3 2 8 Japan East

TC Scenario

TABLE II
EXPERIMENT SCENARIOS.
Scenario Workload Optimization
Name Concurrent Throughput Parallel | Scheduling | Compression
connections | (transaction/s)
Oc 0 0 v v
lc 1 27.34 v v
5¢ 5 68.12 v v
10c 10 71.53 v v
50c 50 68.14 v v
100c 100 65.74 v v
200c 200 64.04 v v
400c 400 63.12 v v
Unscheduled 400 63.12 v
Sequential 400 63.12
Compressed 400 63.12 v v v

Networking Interface

Host machine

WordPress

vethA . e
N fo,. /I)g
S o War COnn
TS \ded by e;llbns
S -~ foxy
bridge » ethO
Outgoing connections

vethB ¥

Fig. 2. Container networking setup using namespaces, virtual interfaces,
bridge, and HAProxy.

Related works

holding and redirection

TABLE V
COMPARISON BETWEEN RELATED WORK.
Name Target Network Migration Memory and Storage Migration Application Environment
CloudHopper Multi-container VPN, connection pre-copy, scheduling Web server/database AWS, GCP, Azure

Different datacenter

MIGRATE [45]

Multi-container

Container-level

pre-copy

Web server/database

(testbed)
Same datacenter

post-copy, layered FS

Voyager [28] Single container -
ElasticDocker [29] | Single container by Cloud provider pre-copy Web server Same datacenter
CloudNet [8] Multi-VM Commercial VPLS/ pre-copy, DRDB SP_ECjbb 2005, Kernel Different datacenter
Layer-2 VPN Compile, TPC-W (testbed)
COMMA [30] Multi-App, VPN pre-copy, controlled SPECWeb 2005, RUBis AWS,
Multi-VM pace, scheduling 3-tier web app Hybrid-Cloud
Supercloud [31] Multi-VM SDN, VXLAN post-copy, layered storage Zookeeper, Cassandra AWS, GCP

27/ 23

