
/ 23

Enabling Live Migration of Containerized
Applications Across Clouds

IEEE InfoCom ‘20

Thad Benjaponpitak, Meatasit Karakate, Kunwadee Sripanidkulchai

Chulalongkorn University

JaeHyun Lee (jhlee2021@mmlab.snu.ac.kr)

1

mailto:jhlee2021@mmlab.snu.ac.kr

/ 23

Contents

• Background
• Container based
• Cloud Provider and Live Migration

• System design
• Components
• Design Goals
• Migration Flow

• Evaluation and Result

• Conclusion

2

/ 23

Container

▪ Containers are becoming the de facto standard
• Application focused solution

• Abstraction of system call and resources

• But isolated from the host machine

3

Background

/ 23

Docker and Kubernetes (common sense)

▪Docker
• OS-level virtualization to deliver software in packages

called containers

• De facto standard of container

▪ Kubernetes
• Container orchestration system for automating

deployment, scaling and management

• De facto standard of docker-based web service

4

Background

/ 23

Cloud Service (common sense)

▪Cloud Service Provider

• 3 major commercial providers: Amazon / Google / MS

• Their Container Services
• AWS: EKS (Elastic Kubernetes Service)

• GCP: GKE (Google Kubernetes Engine)

• Azure: AKS (Azure Kubernetes Service)

5

Background

/ 23

Migration (common sense)

▪Why?
• In case of accident (reliability)

• Better functionality

• Business issue ($$$)

▪How?
• Service down (“Service Under Maintenance”)
• Blue-green deployment

• Canary deployment

6

Background

/ 23

Live migration

▪ Process of transferring the state of running application to
remote with minimum downtime

• Memory migration

• Storage migration

• Network migration

7

Background

/ 23

System Design

▪Components and terms

▪Design Goals

▪Migration Flow

8

Design

/ 23

Components (or Tools/Envs)

▪ StrongSwan
• Open source IPSec VPN
• All hosts and containers can communicate using private IP addresses

▪ HAProxy
• handle incoming connections at the host to support multiple container networking

▪ CRIU
• One of the most developed implementations of user-space-based migration (cf. kernel-based)

▪ rsync
• Efficient file transferring(sync) across networked computers by using delta-copy

▪ Holding Application
• Extra application for holding and redirecting

▪ WordPress / MySQL
• Sample application on this paper

9

Design

/ 23

Design Goals

A. Multi-cloud support
• AWS ↔ GCP ↔ Azure

B. Interdependent container support
• Web App + DB App (+ others)

C. Short migration time
• Optimization

D. Secure data transfer
• Between Source and Target cloud provider

E. No failed client connection during migration
• Bluegreen migration

F. Automated migration
• Using python based script Ansible, an open-source SW provisioning, conf. management and deployment tool

10

Design

/ 23

Design – key point (1/2)

C. Short migration time

✓ Memory and Storage Migration steps (typical way vs. this paper)

11

I. Checkpoint – freezing and dump

II. Transfer – transfer mem and storage

III. Restore

d
o
w

n
ti
m

e

Further consideration: NFS (Network File System)
NFS also had been considered as another optimization
But, there was significant performance overhead

<Three basic steps>

I. Pre-dump – pre-dump (CRIU)
II. Pre-copy – transfer pre-dump (rsync)
III. Checkpoint – iterative dump (CRIU)
IV. Transfer – transfer only diffs (rsync)
V. Restore

<Add pre-migration steps>

downtime

pre-
migration

Design

/ 23

Design – key point (2/2)

E. No failed client connection during migration

✓ Key Idea: Hold and Redirect

12

HAProxy App

Holding App

App HAProxy

Hold

Redirect

X

Ready?

<Source Cloud> <Target Cloud>

Design

/ 23

Migration Full-Flow

▪ Preparation
• Create target resources (via docker image)
• Deploy holding app
• Setup IPSec Tunnel

▪ Pre-Migration
• Pre-dump
• Pre-copy

▪ Migration
• Checkpoint
• Transfer
• Restore

▪ Finished
• Destroy source resources

13

Design

/ 23

Migration Flow (1/4)

14

▪ Preparation
▪ Pre-migration

Design

/ 23

Migration Flow (2/4)

15

▪ Migration

Design

/ 23

Migration Flow (3/4)

16

▪ Done

Design

/ 23

Migration Flow (4/4)

17

▪ Cleaning up

Design

/ 23

Evaluation

▪ Experiment specification

• An application consisting of 2 containers, ‘WordPress’ and ‘MySQL’

• Live-migration from AWS (Amazon Web Service) to GCP (Google Cloud Platform)

• Generate random load (60~70 TPS) using ‘Siege’

• Define 10 scenarios based on the number of concurrent clients

• Repeat 10 times for each

▪ Constraint

• Some outliers; perhaps due to dynamic conditions in the cloud

18

Evaluation

/ 23

Result – Time Spent

19

60~70 TPS

w/o optimization

don’t care

Acceptable?

Evaluation

/ 23

Result – Optimization

20

throughput between
AWS ↔ GCP

C1

C2

C3

C1

C3

C2

C1

C3

C2 $ rsync –z
(compression option)

Evaluation

/ 23

Result – Response Time

21

Normal State Pre-dump
& Pre-copy

Hold Redirect Normal State

Evaluation

/ 23

Critiques

✓ First approach of live migration using commercial cloud providers

✓ Well-organized migration flow and optimization techniques

✓ Too simple testbed (simple WebSite and DB container)

✓ Not enough load: 6~70rps (should be hundreds at least)

✓ Should consider de facto use case such as kubernetes (container orchestration)

✓ BTW, I cannot find ‘CloudHopper’ anywhere..

22

Conclusion

/ 23

Thank you

23

/ 23

Experiment environment

24

/ 23

TC Scenario

25

/ 23

Networking Interface

26

/ 23

Related works

27

