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Container

▪ Containers are becoming the de facto standard
• Application focused solution

• Abstraction of system call and resources

• But isolated from the host machine
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Docker and Kubernetes (common sense)

▪Docker
• OS-level virtualization to deliver software in packages 

called containers

• De facto standard of container

▪ Kubernetes
• Container orchestration system for automating 

deployment, scaling and management

• De facto standard of docker-based web service
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Cloud Service (common sense)

▪Cloud Service Provider

• 3 major commercial providers: Amazon / Google / MS

• Their Container Services
• AWS: EKS (Elastic Kubernetes Service)

• GCP: GKE (Google Kubernetes Engine)

• Azure: AKS (Azure Kubernetes Service)
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Migration (common sense)

▪Why?
• In case of accident (reliability)

• Better functionality

• Business issue ($$$)

▪How?
• Service down (“Service Under Maintenance”)
• Blue-green deployment

• Canary deployment
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Live migration

▪ Process of transferring the state of running application to 
remote with minimum downtime

• Memory migration

• Storage migration

• Network migration
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System Design

▪Components and terms

▪Design Goals

▪Migration Flow
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Components (or Tools/Envs)

▪ StrongSwan
• Open source IPSec VPN
• All hosts and containers can communicate using private IP addresses

▪ HAProxy
• handle incoming connections at the host to support multiple container networking

▪ CRIU
• One of the most developed implementations of user-space-based migration (cf. kernel-based)

▪ rsync
• Efficient file transferring(sync) across networked computers by using delta-copy

▪ Holding Application
• Extra application for holding and redirecting

▪ WordPress / MySQL
• Sample application on this paper
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Design Goals

A. Multi-cloud support
• AWS ↔ GCP ↔ Azure

B. Interdependent container support
• Web App + DB App (+ others)

C. Short migration time
• Optimization

D. Secure data transfer
• Between Source and Target cloud provider

E. No failed client connection during migration
• Bluegreen migration

F. Automated migration
• Using python based script Ansible, an open-source SW provisioning, conf. management and deployment tool
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Design – key point (1/2)

C. Short migration time

✓ Memory and Storage Migration steps (typical way vs. this paper)

11

I. Checkpoint – freezing and dump

II. Transfer – transfer mem and storage

III. Restore
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Further consideration: NFS (Network File System)
NFS also had been considered as another optimization
But, there was significant performance overhead

<Three basic steps>

I. Pre-dump – pre-dump (CRIU)
II. Pre-copy – transfer pre-dump (rsync)
III. Checkpoint – iterative dump (CRIU)
IV. Transfer – transfer only diffs (rsync)
V. Restore

<Add pre-migration steps>

downtime

pre-
migration

Design



/ 23

Design – key point (2/2)

E. No failed client connection during migration

✓ Key Idea: Hold and Redirect
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HAProxy App

Holding App

App HAProxy

Hold

Redirect

X

Ready?

<Source Cloud> <Target Cloud>
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Migration Full-Flow

▪ Preparation
• Create target resources (via docker image)
• Deploy holding app
• Setup IPSec Tunnel

▪ Pre-Migration
• Pre-dump
• Pre-copy

▪ Migration
• Checkpoint
• Transfer
• Restore

▪ Finished
• Destroy source resources
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Migration Flow (1/4)
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▪ Preparation
▪ Pre-migration
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Migration Flow (2/4)
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▪ Migration
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Migration Flow (3/4)
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▪ Done
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Migration Flow (4/4)
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▪ Cleaning up
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Evaluation

▪ Experiment specification

• An application consisting of 2 containers, ‘WordPress’ and ‘MySQL’

• Live-migration from AWS (Amazon Web Service) to GCP (Google Cloud Platform)

• Generate random load (60~70 TPS) using ‘Siege’

• Define 10 scenarios based on the number of concurrent clients

• Repeat 10 times for each

▪ Constraint

• Some outliers; perhaps due to dynamic conditions in the cloud
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Result – Time Spent
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60~70 TPS

w/o optimization

don’t care

Acceptable?
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Result – Optimization
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throughput between 
AWS ↔ GCP

C1

C2

C3

C1

C3

C2

C1

C3

C2 $ rsync –z 
(compression option)
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Result – Response Time
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Normal State Pre-dump
& Pre-copy

Hold Redirect Normal State
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Critiques

✓ First approach of live migration using commercial cloud providers

✓ Well-organized migration flow and optimization techniques

✓ Too simple testbed (simple WebSite and DB container)

✓ Not enough load: 6~70rps (should be hundreds at least)

✓ Should consider de facto use case such as kubernetes (container orchestration)

✓ BTW, I cannot find ‘CloudHopper’ anywhere..
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Thank you
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Experiment environment

24



/ 23

TC Scenario
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Networking Interface
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