
Scrappy: SeCure Rate Assuring Protocol with
PrivacY

Kosei Akama
Keio University
akama@keio.jp

Yoshimichi Nakatsuka
ETH Zurich

yoshimichi.nakatsuka@inf.ethz.ch

Masaaki Sato
Tokai University and Keio University

masaaki@tsc.u-tokai.ac.jp

Keisuke Uehara
Keio University

kei@sfc.keio.ac.jp

Abstract—Preventing abusive activities caused by adversaries
accessing online services at a rate exceeding that expected by
websites has become an ever-increasing problem. CAPTCHAs
and SMS authentication are widely used to provide a solution
by implementing rate limiting, although they are becoming less
effective, and some are considered privacy-invasive. In light of
this, many studies have proposed better rate-limiting systems that
protect the privacy of legitimate users while blocking malicious
actors. However, they suffer from one or more shortcomings: (1)
assume trust in the underlying hardware and (2) are vulnerable
to side-channel attacks.

Motivated by the aforementioned issues, this paper pro-
poses Scrappy: SeCure Rate Assuring Protocol with PrivacY.
Scrappy allows clients to generate unforgeable yet unlinkable
rate-assuring proofs, which provides the server with cryptographic
guarantees that the client is not misbehaving. We design Scrappy
using a combination of DAA and hardware security devices.
Scrappy is implemented over three types of devices, including
one that can immediately be deployed in the real world. Our
baseline evaluation shows that the end-to-end latency of Scrappy
is minimal, taking only 0.32 seconds, and uses only 679 bytes of
bandwidth when transferring necessary data. We also conduct
an extensive security evaluation, showing that the rate-limiting
capability of Scrappy is unaffected even if the hardware security
device is compromised.

I. INTRODUCTION

The invention of the World Wide Web has facilitated the
hosting of many services online. While many services typically
anticipate users to access their resources at a moderate rate,
malicious users often attempt to exceed these limits. Conse-
quently, online services employ techniques to slow down such
users, commonly referred to as rate-limiting. Several scenarios
highlight the usefulness of rate-limiting users:

• Online polls and product ratings: to prevent manip-
ulation of poll outcomes and ratings.

• Services using third-party APIs (e.g., AI services,
SMS text messages): to prevent overuse and potential
high billing.

• Services with free trials: to increase the conversion
rate for sustainability.

• Preventing dictionary attacks: to limit the number
of login attempts.

• Online crawlers: to limit the collection of data.

Two major techniques commonly adopted to slow down
adversaries or limit their actions are SMS authentication
and CAPTCHAs. SMS authentication authenticates users via
phone numbers over the web while CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans
Apart) [14] distinguishes between humans and a machine (i.e.,
bot) through puzzles that are easy for humans to solve but
difficult for bots. Although both methods were not originally
designed for rate-limit users, many services employ them for
this purpose, as observed by [47] and [51]. However, SMS
authentication has privacy issues as all user actions are tied to a
user’s phone number, and studies have shown that CAPTCHAs
degrade user experience [22], [59].

In response to these challenges, there have been propos-
als for rate-limiting alternatives to SMS authentication and
CAPTCHAs with improved security, privacy, and efficiency.
Opaak (OPen Anonymous Authentication frameworK) [47]
allows users to prove possession of a unique phone number
without revealing it to the server. CACTI (Captcha Avoidance
via Client-side TEE Integration) [51] is a system that allows
users to generate CAPTCHA-avoiding rate-proofs proving to
servers that they are not engaging in abusive actions with-
out compromising their privacy, utilizing client-side Trusted
Execution Environments (TEEs). CAP (Cryptographic Attes-
tation of Personhood) [48] and PrivacyPass [16], [30] provide
CAPTCHA alternatives by using FIDO authenticators [17]
in CAP and anonymous cryptographic tokens in PrivacyPass.
However, these systems suffer from one or more of the
following issues: (1) Security of the system relies on the
security of the underlying hardware and/or (2) Vulnerability
to side-channel attacks.

Motivated by the aforementioned challenges, this paper
presents Scrappy, a novel system overcoming the limitations
of prior work while providing rate-limiting capabilities. When
contacted by users, the server defines a time window t and
requests a rate-assuring proof over t. In essence, rate-assuring
proofs show within which time window the user sent a
request to a certain server. These proofs are unforgeable and,
in Scrappy, are produced using widely available hardware
security devices, acting as a source of uniqueness. Malicious
users attempting to produce fake proofs are easily detectable.

As with prior work, ensuring user privacy is one of
the important goals of Scrappy. This is achieved through

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.24445
www.ndss-symposium.org

digital signatures that remain the same for the server-defined
t but become unlinkable once the rate-assuring proof uses a
different t or targets different servers. This prevents malicious
servers from tracking users while blocking malicious users
from accessing the server’s service too frequently.

Another highlight of Scrappy is that its rate-limiting
feature does not rely on the security of the underlying hardware
security device. Even if either the essential secret key proving
the device’s uniqueness or the secret key used to generate
rate-assuring proofs is leaked, servers can still block malicious
users.

Scrappy is agnostic concerning the underlying hardware
security device. We show this by implementing Scrappy
using three different devices: TPM, hardware security token,
and smartphone. The TPM implementation can be deployed
straight out of the box, while the other implementations require
a small modification to software and specifications. We also
list devices other than the above three that can be used in
Scrappy in Table VII.

To contribute to reproducible research, we have open-
sourced our implementation of Scrappy using TPMs at [44].
We hope this will allow future research to take advantage of
our system and help reduce the friction between users and
services due to rate-limiting.

Contribution. The anticipated contributions of this work are:

1) The introduction of rate-assuring proofs, a security
primitive allowing servers to prevent abusive activi-
ties from users while respecting their privacy.

2) Scrappy, a novel rate-limiting protocol that uses
rate-assuring proofs and the Direct Anonymous At-
testation protocol as building blocks and generic
hardware security devices as a source of uniqueness.

3) Three proof-of-concept implementations of
Scrappy, with one capable of being deployed
out of the box.

4) Contribution towards reproducible research by open-
sourcing implementation of Scrappy over a TPM.

5) A comprehensive analysis of the security of the
protocol, notably showing some guarantee of privacy
and rate-limiting even if keys are leaked.

6) An extensive evaluation of latency, bandwidth, and
storage of Scrappy, showing that our system is
practical for real-world usage.

II. RELATED WORK

This section summarizes the most relevant rate-limiting
schemes. A side-by-side comparison of these schemes along-
side the proposed method is shown in Table I.

A. Commonly used systems

SMS authentication [63] is a method of identification and
authentication using phone numbers. A server first sends a ran-
dom, variable-length number to a preregistered phone number
via SMS. By entering the random number into the server’s
website, users prove that they own the phone number. In
addition to user authentication, servers use SMS authentication
to block users who excessively access their resources. SMS
authentication raises privacy concerns because all user actions

are tied to a specific user via their phone number. Moreover, it
is trivial for an attacker to obtain multiple phone numbers [64].

CAPTCHA [14] is a mechanism that distinguishes a bot
from a human. This is achieved by challenging a user with a
task that is difficult for a bot to solve but easy for a human.
If the user fails they are determined to be a bot, and their
request is dropped. Due to the recent advancements in machine
learning, studies have demonstrated successful attacks against
CAPTCHAs [34]. In addition, CAPTCHA farms have dimin-
ished the efficacy of CAPTCHAs [53]. Despite these issues,
[51] observed that CAPTCHAs are currently used as rate-
limiters, raising the bar for attackers by forcing them to spend
monetary and computational resources. However, CAPTCHAs
have been criticized for reducing website usability [22], [59].

B. Techniques using hardware-assisted security

CAP [48] is a privacy-preserving CAPTCHA alternative
utilizing the FIDO framework [17]. Users are served a random
challenge and asked to use their FIDO-compatible device
(i.e., authenticator) to sign that challenge. This makes such
signatures unforgeable, as the private key is protected by the
authenticator’s secure element (SE) [35].

CACTI [51] is a privacy-preserving rate-limiting sys-
tem that utilizes client-side trusted execution environments
(TEEs) [25]. This is facilitated via rate-proofs that allow the
server to understand the number of user actions conducted
in a given time window. CACTI maintains a counter of the
number of users’ actions and generates the rate-proof by
signing the counter, which the server uses to check whether
the counter exceeds the threshold. Rate-proofs are difficult
to forge since CACTI stores the private key used for the
digital signature within the TEE. Moreover, CACTI uses group
signature schemes, preventing servers from linking rate-proofs
to users and other rate-proofs, thereby protecting user privacy.

The limitation of CAP and CACTI is that the rate-limiting
functionality depends on the security of the client-owned
device. Protecting the secret key within the SE is crucial for
CAP, as it is impossible to revoke the key, which is replicated
among many FIDO authenticators [56]. This is similar to
CACTI, as an adversary is able to forge rate-proofs once the
secret key is extracted from the TEE.

C. Cryptographic techniques

Privacy Pass [30], [16] allows users to obtain anonymous
cryptographic tokens each time they participate in a task (e.g.,
solving a CAPTCHA). They can then “spend” this token each
time they encounter such a task until they run out of tokens.
Privacy Pass protects its users’ privacy by implementing this
token using blind signature schemes. However, Privacy Pass
is vulnerable to timing correlation attacks, which use the time
difference between the generation and usage of tokens.

Opaak (OPen Anonymous Authentication frameworK) [47]
provides rate-limiting for mobile phone users by employing
a cryptographic primitive called periodic k-times anonymous
authentication (periodic k-TAA). Combining this cryptographic
primitive with SMS authentication, Opaak limits the number
of private keys each user can obtain, thus limiting the number
of times a user can generate signatures. There are several

2

TABLE I. COMPARISON OF THE PROPOSED METHOD (HIGHLIGHTED IN BOLD) AND RELATED WORK

CAPTCHA [14] SMS Auth CAP [48] CACTI [51] Privacy Pass [30] Opaak [47] This paper

Private key storage - - SE TEE Undefined *1 TPM
Resource for uniqueness - Phone number Attestation

Secret key*2
Provisioning Key Undefined Phone number Endorsement

Key
Resistance to timing correla-
tion attacks

- - Strong Strong Weak Strong Strong

Rate-limiting depends on de-
vice security

No No Yes Yes No No No

*1: Files encrypted with a master password, *2: Secret key installed by manufacturer

downsides to Opaak. First, Opaak assumes that a user cannot
possess many phone numbers. This assumption is unrealistic
due to services such as SMS farm services [64]. Second,
the Opaak architecture encrypts the private key using a user-
defined password. This puts a high burden on users as they
must create a password that is secure enough to withstand
brute-force attacks. Finally, the private key gets exposed to
untrusted memory. This makes Opaak vulnerable to attacks
such as side-channel attacks.

III. BACKGROUND

A. Group signature scheme

Group signature schemes [23] allow signers to prove group
membership without revealing their identity by associating
multiple private keys with a single public key. Since signa-
tures generated using any private key can be verified by the
public key, group signature schemes make it impossible for
verifiers to distinguish users based on their signatures. A group
signature scheme consists of the following entities:

• Group Manager (GM) managing group members
(i.e., signers) by provisioning and revoking them;

• Signer generating signatures for verifiers; and
• Verifier verifying signatures produced by the signer.

B. Direct Anonymous Attestation (DAA)

DAA [19], [46] (depicted in Figure 1) is a special group
signature scheme that provides the following additional prop-
erties on top of those provided by group signature schemes:
(1) Neither a group member nor the GM can link a signer
to a signature (anonymity), and (2) Given two signatures
generated for two different verifiers, it is computationally
hard to determine whether they were signed by the same
signer (unlinkability). DAA also satisfies the pseudonymity
property, allowing the signer to choose whether to allow
multiple signatures directed to the same verifier to be linked
with each other. We briefly describe the details of the DAA
protocol below using the parameters shown in Table II1.

Setup. GM generates gpk and gsk.

Join. Signer obtains usk and cred2 by following the procedure
below.

1) Signer generates a key pair upk and usk.
2) Signer sends upk and EKCert to GM.
3) GM verifies EKCert.

1The details described here follow the DAA protocol [19] which uses TPM-
specific terminology. For the ECDAA protocol, see [46].

2cred is treated similarly to usk and therefore it is not sent to the verifier.

×

Verifier2

Verifier1
Public Key

Signature as A1

Signature as A2

A2
（Pseudonym）

A1
（Pseudonym）

A
（Real Identity）

Unlinkability
Verifiers cannot know if
signatures with different
pseudonym were created
by an identical signer

Secret
Key

Pseudonymity
Verifiers know that the
signature using the same
pseudonym was made by

an identical signer

Signature as A1

Signer Public Key

Fig. 1. Pseudonymity and Unlinkability of DAA

TABLE II. DAA PARAMETERS [19]

Notation Description

gpk Group public key.
gsk Private key of the GM.
upk Signer’s public key generated by the device.
usk Signer’s private key generated by the device.
cred Signer’s credential generated by GM.
msg Message to be signed.
bsn Basename (chosen by Verifier or device).
σr Probabilistic part of the signature, computed over msg using usk.
σd Deterministic part of the signature, computed over bsn using usk.
σ Signature. σ = (σr, σd)
RL Revocation list storing revoked private keys usk.
EK Endorsement Key, a unique private key for each device.

EKPub EK public key, corresponding to EK.
EKCert EK certificate for EKPub.

4) GM checks that it has not seen EKCert in the past.
5) GM generates cred based on upk and gsk.
6) GM computes ciphertext c = Enc(cred,EKPub)

using EKPub contained in EKCert.
7) GM sends c to signer.
8) Signer obtains cred = Dec(c, EK).

Sign. Signer computes σ = DAA Sign(msg, bsn, usk, cred)

3

Sign

Secret key

"00:00 -12:00"
Current period Signature σ = （σ , σ ）

Same private key +
Same period

→ Verifier obtains the
same σ

Computed
deterministically

from secret key and
period

Computed
randomly from
secret key and

period

Message

d r

d

Fig. 2. How periodic k-TAA works.

over msg and bsn, using usk, cred and gpk. σ and msg are
then sent to the verifier.

Verify. Using msg, bsn, RL, and gpk, verifier
checks the validity of σ by calculating 0|1 =
DAA V erify(σ,msg, bsn,RL, gpk). Signer is allowed
access to the requested resource if the verification returns 1.

Revoke. The signer and GM revoke usk as follows:

1) The signer sends usk to the GM.
2) GM adds usk to RL.

C. Periodic k-times anonymous authentication scheme (Peri-
odic k-TAA)

Periodic k-TAA [47] is a special group signature scheme
with the following features:

• Rate-limiting: The signer cannot create more than one
signature that is valid for a certain time period.

• Anonymity: No one, including the GM, can trace the
signer from the signature.

In the periodic k-TAA scheme, depicted in Figure 2, the
verifier can determine whether the same secret key has been
used to generate a signature more than once by comparing the
σd of the current signature with the one sent in the past. Any
σd that is calculated using the same secret key during the same
time window will generate the same value.

IV. SYSTEM AND THREAT MODEL

Our proposed system consists of four types of entities: GM,
signer, verifier, and hardware security device. We assume that
the number of hardware security devices is the same as the
signers, and each signer owns exactly one hardware security
device. Note that a signer can always purchase multiple such
devices and integrate them into their platform, but there exists
a clear limit that implies higher costs to the signer. This is
discussed further in Section X. Manufacturers of the hardware
security device are assumed to provide one attestation key
(e.g., EK) per device. Additionally, the GM is assumed to
not provide more than one private key to the device when
provisioning the device. Finally, we assume that all cryp-
tographic primitives are implemented correctly and that the
random oracle assumption holds.

All entities other than the hardware security device are
considered untrusted, i.e., they may act maliciously. The goal
of a malicious signer is to generate as many signatures as
possible in a short period of time in an attempt to maximize
access to resources. The goal of a malicious verifier is to
violate the signer’s privacy. The goal of a malicious GM is
to collude with either the signer or verifier to help achieve
their objectives.

The hardware security device acts as a source of uniqueness
and we assume it has the following properties: (1) Tamper-
resistant memory for storing secret data, (2) Is capable of
remote attestation, (3) Implements basic cryptographic primi-
tives, including key generation, encryption/decryption, digital
signatures, and (4) Supports a group signature scheme that pro-
vides privacy and pseudonymity. Most importantly, Scrappy
does not rely on the security of the hardware security device.
Although we assume that the device has tamper-resistant
memory, we also consider powerful adversaries that can extract
secret data stored in such memory. We show in Section VIII
that certain properties of the proposed system are not affected
even in the presence of these powerful adversaries.

Finally, we consider DoS attacks out-of-scope and do not
consider malware on the signer’s platform.

Our threat model yields the following security requirements
for the anticipated system:

• Rate-limiting: Signers cannot send requests that ex-
ceed the verifiers’ threshold.

• Unforgeability: Signers cannot forge or modify sig-
natures.

• Unlinkability: Given two signatures generated for two
different verifiers or at two different points in time,
it is hard to determine whether the signatures were
generated by the same signer.

We also consider the following non-security goals:

• Latency: The required latency should be minimal.
• Bandwidth: The amount of data transferred between

the entities should be minimal.
• Storage: Data stored in each entity should be minimal.

V. DESIGN & CHALLENGES

A. Conceptual Design

Rate-assuring proofs. In the heart of our design lies the
concept of rate-assuring proofs. The idea of the proof is as
follows: The signer provides the hardware security device
with a time window t obtained from “some source” and the
verifier’s basename bsn. The device then generates a signature
over the two pieces of data. This proof can be interpreted as
the signer assuring the verifier that it has requested access to
a specific bsn within a time window t. On the other hand,
the verifier keeps a “log of proofs” from various signers and
checks whether it has received a similar proof in the past. If
so, the verifier assumes that the signer requests resources too
frequently and drops the request.

Note that rate-assuring proofs generated by a signer for
different verifiers (thus resulting in different identities) should
generate indistinguishable proofs, meaning that no entity can

4

know whether the proofs came from the same signer. Similarly,
rate-assuring proofs generated by a signer within a different
time window for the same verifier should also be indistinguish-
able, thus preventing adversaries from linking the two proofs
to the signer.

B. Design Challenges

In realizing the design shown above, we identified the
following challenges.

Limitations in existing cryptographic primitive. Decid-
ing what cryptographic approach to use to produce the rate-
assuring proof is a challenge. The best fitting cryptographic
primitive is periodic k-TAA, which meets the requirements
raised in Section IV. However, there are several issues with
using periodic k-TAA in tandem with hardware security de-
vices. First, periodic k-TAA requires support for a special RSA
modulus. Specifically, it uses n = (2p+1)(2q+1) instead of
the widely supported n = p · q, where p, q are primes. Second,
periodic k-TAA needs to compute r · sk + c mod n, where r
is a random number, sk is a secret key, c is a hash, and n is
the aforementioned special RSA modulus. This calculation is
used to generate Zero Knowledge Proofs, although hardware
security devices do not normally support it.

Obtaining t without compromising security and privacy.
So far, we have assumed that the hardware security device
obtains t from “some source”. One source could be a clock on
the hardware security device owned by the signer. However,
many hardware security devices do not have a clock. Moreover,
the clock must be synchronized frequently to prevent any skew.
This process is difficult and, if done incorrectly, may lead to
privacy leakage due to differences in t caused by small skews.
The hardware security device could also obtain t from an
external source. However, since the source may be malicious
(e.g., the signer trying to cheat the system), the device must
first verify the authenticity of t. This is a drawback, as it
requires the hardware security device to be programmable and
also puts trust in the device, which does not align with our
threat model.

Managing logs without losing functionality. The verifier
must maintain a log of past interactions with signers for the
proposed system to function correctly. This obviously puts
strain on the verifier’s storage over time, as it must interact
with multiple signers.

C. Realizing the Design

This section presents a detailed design that addresses the
aforementioned design challenges.

Cryptographic primitive. Instead of the periodic k-TAA
scheme, we chose to use DAA to realize Scrappy. This
is because it has been the standard authentication scheme
for TPMs, enabling it to perform well even on resource-
constrained hardware security devices. Another key factor for
choosing DAA is that other hardware security devices also use
a similar scheme. For instance, FIDO has made the ECDAA
specification [46] publicly available, allowing future FIDO
devices to use DAA during attestation. Additionally, Intel

SGX [27], a widely available TEE, uses a similar primitive
called EPID [20], which could also be used instead of DAA3.

However, DAA does not provide the most important rate-
limiting property, i.e., it cannot be directly used to implement
rate-assuring proofs. To overcome this issue, we modify the
input to the DAA Sign function to cryptographically bind t
to the pseudonym used to generate the signature. This allows
verifiers to link multiple signatures generated during the same
t via the pseudonym. Note that once the t changes, the
signature also changes and cannot be linked to the previous
one, providing unlinkability between two time periods. We
describe how this works in detail in Section V-D.

Obtaining t. In the proposed system, the signer obtains t
from the verifier. A malicious verifier may provide an invalid t
or a maliciously crafted t to track the signer (see Section VIII
for more discussion). Therefore, the signer must check whether
the t is valid. Similarly, a malicious signer may ignore the t
provided by the verifier and use a fake one to cheat the system.
Therefore, the verifier must check whether the t included in
the rate-assuring proof is valid.

Managing logs. To reduce the impact on the verifier-side
storage, we designed Scrappy so that verifiers can delete old
entries that are no longer useful. In simple terms, any entries
created before the current t can be deleted without hindering
the system’s functionality.

In addition to the verifier, the signer maintains a log of
past t received from the verifier. This is to allow the signers to
check whether they have produced a rate-assuring proof within
the same time window and prevent them from generating
rate-assuring proofs that the verifier may reject. Scrappy is
designed so that the signer can also delete old records in its
log to reduce storage.

D. The Scrappy Protocol

The sequence diagram of the Scrappy protocol is shown
in Figures 3 and 4. We assume that the communication
channels between the signer and verifier are protected via
standard means, such as TLS. This means that the verifier holds
valid certificates signed by trusted CAs that bind their domain
name to a certain public key. In addition to the parameters
shown in Table II, the proposed scheme uses three additional
parameters:

• t: A verifier-defined time window that encompasses
the current time of signing (e.g., 10:00-11:00).
The time window is inclusive at the start and cannot
overlap with prior or future time windows.

• Logs: A list of pair (t, bsn) received from the verifier
in the past, i.e., Logs = {(t1, bsn1), ..., (tn, bsnn)}
where n is the number of items in the list.

• Logv: A list of pair (t, σd) received from the signer in
the past, i.e., Logv = {(t1, σd1)), ..., (tn, σdn} where
n is the number of items in the list.

Scrappy consists of the following four phases: (1) ini-
tialization, (2) proof generation, (3) proof verification, and (4)
cleanup. In this section, we describe each phase in detail.

3Although Intel has officially announced to deprecate SGX from consumer-
grade CPUs [55], there is a possibility that the CPUs may still support EPID,
allowing them to be used for Scrappy.

5

Hardware Security Device Signer Group Manager

Generate
gpk, gsk.

Generate
upk, usk. EKCert, upk

EKCert, upk

Verify EKCert.
Generate cred.

c = EncEKPub(cred)
c

Obtain
cred = DecEK(c).

Fig. 3. Initialization Phase of Scrappy protocol. Enck(m) and Deck(c) denotes a cryptographic encryption/decryption operation over m/c using key k,
respectively.

Hardware Security Device Signer Verifier
Request access

Request rate-assuring proof, t

Validate t.
Check t, bsn in Logs.

h = t||bsn, msg

Generate σ.
σ = (σr, σd) = DAA Sign(msg, h, usk, cred)

Add t, bsn in Logs.

A: Proof
Generation
Phase

σ, msg

Check t, σd in Logv .
Verify σ via

DAA V erify(σ,msg, h,RL, gpk).
Add t, σd to Logv .

B: Proof
Verification
Phase

Allow access

Fig. 4. Proof Generation and Verification Phases of Scrappy protocol. DAA Sign() and DAA V erify() are the DAA-specific operations described in
Section III-B.

Initialization phase. During this phase, the GM4, verifier,
and signer initialize various variables as follows.

• GM: generates gpk and gsk.
• Verifier: initializes its log Logv = {}.
• Signer: generates usk and upk, obtains cred from

GM, and initializes its log Logs = {}.

Proof generation phase. After the signer requests access
to the verifier’s resource, the verifier responds by requesting
a rate-assuring proof over a t. The proof is generated using t,
bsn, usk, and cred, following the process shown below.

1) Check whether t is valid, e.g., check that it covers
the current time. Abort signing if not.

2) Obtain bsn from the domain included in the verifier’s
certificate and check its validity. Abort signing if not.

4The GM would be required to maintain a list of certificates of trusted hard-
ware security device vendors, which is used during verification of attestation
proofs. It is worth noting that the number of vendors is expected to be small
(26 for TPM [41]).

3) Check whether the pair (t, bsn) exists in Logs. If
so, abort signing.

4) Compute value h = bsn || t.
5) Forward msg and h to hardware security device to

generate σ5:

σ = (σr, σd) = DAA Sign(msg, h, usk, cred)

6) Add new pair (t, bsn) to Logs.
7) Send σ and msg to verifier.

Proof verification phase. Upon receiving σ and msg from
the signer, the verifier proceeds with the verification phase by
following the below process.

1) Check whether t is valid and reject proof if not.
2) Check whether the pair (t, σd) exists in Logv . If so,

the signer has reached the rate limit, and the request
must be rejected.

5In the actual implementation, msg is represented as an empty string.
Nevertheless, we leave msg present here in the design, anticipating that it
may be used as an extension in the future.

6

3) Compute value h = bsn || t.
4) Verify σ via DAA V erify(σ,msg, h,RL, gpk). If

verification fails, reject the signer request.
5) Add pair (t, σd) for the verified signature to Logv .
6) Return success and allow access to the signer.

Cleanup phase. To reduce the storage overhead of the
signer and verifier, the two entities periodically “clean up” their
logs. Signers delete pairs (t, bsn) for a certain verifier bsn that
are older6 than the newest t. On the other hand, verifiers delete
all entries as soon as the current t expires.

VI. IMPLEMENTATION

We implemented a Proof of Concept (PoC) of the proposed
design presented in the previous section. The baseline imple-
mentation consists of browser extension, signer application,
TPM (see Section VI-E for implementations over additional
devices), and verifier server.

All entities use SHA256 [29] for the hash function and
BN256 [39] for the pairing curve. Note that BN638 [39] is
recommended over BN256 due to security reasons [62], and
the only reason we use BN256 is that it is the only pairing
curve supported by our TPM.

The verifier is set to allow one access per minute. There-
fore, all t is expressed as Unix timestamps, rounded up to the
nearest minute. Note that this can be changed to adopt other
formats of t.

The implementation of Scrappy and the ECDAA library
can be found at [44]. Note that this release only includes
the TPM implementation and we plan to release the other
implementations in the future.

A. Browser extension

The browser extension of the PoC is built for the Chrome
browser (version 100.0.4896.60) [37]. Note that many browsers
provide similar interfaces, allowing our extension to be easily
ported to other browsers. The browser extension consists of 2
scripts: content script and background script.

Content script: responsible for obtaining the data sent
from the verifier. To do this, it looks for a special HTML tag
in the verifier’s HTML file. The script parses this tag, obtains
the contained parameters and the verifier’s origin, and finally
sends all the data to the background script. For the PoC, we
use the following implementation: <input period="t"
value="" />, where t is the server-defined time window.

The content script also sends the data received from the
background script to the server. We use the same HTML tag
shown above for this purpose. Specifically, the parameters
of the HTML tag are filled in as follows: <input pe-
riod="t" value="σ" />, where t is the period provided
by the verifier, and σ is the signature generated by the hardware
security device.

Background script: forwards the data obtained by the
content script to the signer application. This script is necessary
because the content script is designed so that it cannot directly
communicate with external applications. The communication

6“Old” time windows are those no longer encompassing current time.

between the background script and the signer application uses
the standard I/O and follows the Chrome Native Messaging
Protocol [31].

B. Signer application

The signer application running on the signer is responsible
for (1) generating the credential by cooperating with the TPM
and GM, (2) producing the rate-assuring proof with the help of
the TPM using the data received from the browser extension,
(3) storing the period t and signature σd in its log, and (4)
returning the proof to the browser extension.

All signer application implementations are implemented in
Golang [9] due to its high performance and memory safety. In
addition, we used the AMCL (MIRACL/core) [58], [7] library
for cryptographic operations. To communicate with the TPM,
the signer application uses a modified version of the go-tpm
library [3], which includes support for the TPM2_Commit
command [40].

We chose to use an SQLite [13] database to implement the
logging system. This database has a table with one column
named BASENAME, which stores bsn and t as VARCHAR
(56 bytes). To fix the size of the otherwise variable data, the
signer application calculates hash(bsn)||“ ”||t and stores the
result in the database.

Before the signer application generates the rate-assuring
proof, it queries this database to check whether a proof for
the same period t and origin bsn has been created in the past.
After the rate-assuring proof has been generated, the signer
application also makes sure to update the t for the bsn.

C. TPM

TPM was our first choice for the hardware security device
because it supports DAA by default and does not require
any hardware modifications to be used for Scrappy. This
enables Scrappy to be deployed in the real world, allowing
both users and services to immediately take advantage of
the various functionalities provided by Scrappy. Moreover,
TPM on client-side devices is becoming more widely adopted,
especially since Microsoft officially announced that the Win-
dows 11 OS requires a TPM [50], and we envision that more
devices support TPMs (or similar cryptographic hardware)
as time progresses. We refer the reader to Section VI-E for
implementations using devices other than TPM.

We used the ST33TPHF2ESPI TPM manufactured by
ST Microelectronics [49]. The TPM clock speed is es-
timated to be around several tens to hundreds of MHz.
The TPM is housed within a machine owned by the
signer and generates rate-assuring proofs upon receiving re-
quests from the signer application. The signer application
uses the following TPM functions [38], [40] when gen-
erating the credential or the proof: TPM2_CreatePri-
mary, TPM2_NVReadPublic/TPM2_NVRead, TPM2_-
AcativateCredential, TPM2_Create, and TPM2_-
Commit/TPM2_Sign7.

7Although FIDO specification adopts TPM2_Certify, we use TPM2_-
Sign instead of TPM2_Certify, as it supports any message type [11].

7

Browser

Browser
Extension

Signer
Application

TPM

1.

2.

3. 4.

5.

6.

Browser
Extension

Signer
Application

Secure Hard-
ware Token

1.

2.

3. 4.

5.

6.

Browser

Baseline
 Implementation

Other
Implementations

Secure Hard-
ware TokenTPM

Browser

Signer
Mobile

Application

1. 4.

Android
Smartphone

TEE
2. 3.

Fig. 5. Implementation of signer-side components and their relationship.

TABLE III. COMPARISON OF THE TYPE OF IMPLEMENTATION

Baseline Hardware Token Smartphone

Device PC (carrying
TPM)

Hardware Token Android Phone

Private key stor-
age

TPM Hardware Token Encrypted File
using TEE

Unique Resource Endorsement Key Manufacturer-
Installed Private
Key

Serial Number,
IMEI/MEID *1

Method of Prov-
ing Unique Re-
source

TPM Attestation Proof of
Possession of
Private Key

Android ID
Attestation (ARM
TrustZone)

Rate-limiting De-
pends on Device
Security

No No Yes

*1 Serial Number of Phone, IMEI (International Mobile Equipment Identifier) and
MEID (Mobile Equipment IDentifier)

D. Verifier server

The verifier server conducts the following: (1) Sends the
data necessary for the rate-assuring proof to the signer by
embedding it into the HTML tag, and (2) verifies the proof sent
by the signer. Similar to the signer application, the server was
written using Golang and uses the gin web framework [2].
SQLite stores the logs and AMCL (MIRACL/core) for crypto-
graphic operations. The database has a table with one column
named “K” as VARCHAR (45bytes), and stores concatenated
values σd||“ ”||t.

E. Implementing Scrappy on other devices

TPM was our device of choice when implementing
Scrappy. However, signers may only have access to com-
puters that do not have TPM or not even have access to
computers at all. To accommodate such users, we implemented
Scrappy on two other devices: a secure hardware token
and a smartphone. Although we had to make slight modi-
fications to the specifications and the software stack during
the implementation, this shows the versatility of Scrappy
and its potential for being deployed to many users. Figure 5
provides an overview of the implementation with respect to the
relationship of each component regarding the different devices.

1) Secure hardware token: We used Solokey
Hacker [60] for this implementation. The token includes
an STM32L432KC microprocessor with an Arm Cortex-
M4 MCU running at 80 MHz, 64 kB of RAM, 256 kB
of flash memory, and a true random number generator.
Solokey supports the FIDO API [61], and we extended the

Client to Authenticator Protocol (CTAP) API to support the
FIDO ECDAA [18] functionalities. We chose to use the
Xaptum ECDAA library [68], as it is compatible with FIDO
ECDAA version 1.1 [67]. The library uses the Miracl AMCL
cryptographic library [66] for the necessary BN256 curve.
Our custom Solokey firmware was written in C language.

Solokey exposes a custom ECDAA_SIGN API through a
modified FIDO CTAP1 (U2FHID) API that takes message
and basename as inputs and outputs an ECDAA digital
signature over the two pieces of data. To simplify the imple-
mentation process, we assume that the secure hardware token
has already run the ECDAA Join protocol and has obtained a
valid cred.

Challenges and solutions. The challenge of implementing
Scrappy on secure hardware tokens is that no tokens support
FIDO ECDAA in the wild, including Solokey. This is a
drawback, since it does not enable users to purchase a token
and start using Scrappy immediately. However, we presume
that some tokens will support ECDAA in the future, which
we simulated by adding ECDAA functionalities to the FIDO
software stack on Solokey.

Another challenge is that the FIDO ECDAA specification
does not allow the use of basenames when producing digital
signatures to ensure signer privacy [18] (see Section VIII for
more discussion). This required the Scrappy implementation
on the token to slightly deviate from the official specification,
which, again, prevents this implementation from being used
in the real world. Nonetheless, the Xaptum ECDAA [12]
implementation supports the usage of basenames, allowing us
to implement the PoC.

Security of device. Although current secure hardware
tokens share the same public/private key pair to ensure device
privacy [56], we envision tokens used in Scrappy to have
unique key pairs per device. This is possible because ECDAA
allows such tokens to achieve the same level of privacy
provided to current tokens. Moreover, with this assumption,
we can guarantee the rate-limiting functionality of Scrappy
even if per-device unique key pairs get leaked from tokens, as
GMs can reject multiple Join requests from the same public
key.

2) Smartphone: We used an Android [10] smartphone for
this implementation. The signer application was implemented
as an Android mobile application (hereafter referred to as
“Signer mobile application”). The main Signer mobile applica-
tion was written in Kotlin [5], while the ECDAA library and
other cryptographic schemes were written in Golang due to
security and efficiency reasons. Since Golang is not supported
natively on Android, we used Gomobile [36] to convert these
libraries. The Signer mobile application also used Android
Room [8] and SQLite to store its log.

Challenges and solutions. The challenge of implementing
Scrappy on a smartphone is that most mobile browsers do
not support browser extensions. To overcome this, we used
a custom URL to communicate between the browser and
the Signer mobile application. Briefly, the URL allows the
browser to open the Signer mobile application and share the
necessary information. Similarly, the application jumps back
to the browser by following a callback URL, which allows
the browser to send the generated proof back to the verifier

8

server. Note that the user must check the callback URL to
prevent generating proofs for unintended basenames.

Another challenge is storing private keys securely. This is
an issue for Scrappy because Android does not have any API
that supports the storage and usage of ECDAA keys within
hardware, unlike TPM. We overcame this by encrypting the
ECDAA private key using standard methods and decrypting
it when needed. This way, the encryption key can be stored
securely using the Android Keystore API [1], which uses
a TEE for storage. However, it is worth noting that this
requires the plaintext ECDAA private key to briefly exist on
the smartphone memory. Although this occurs only for a short
time, it makes this implementation less secure against side-
channel attacks compared to the baseline implementation. We
envision that this will no longer be an issue once the Android
Keystore API supports ECDAA signing operations within a
TEE.

An additional challenge is integrating smartphone iden-
tification schemes to Scrappy. This is required as the
smartphone acts as a source of uniqueness for Scrappy,
similar to attestation keys in TPM and secure hardware tokens.
Although we could potentially use Android ID Attestation8 [4],
integrating it into the ECDAA Join protocol is no easy task.
Since this requires a large implementation effort, we leave this
for future work. Therefore, similar to the secure hardware
token implementation, we assume that the smartphone has
already obtained a valid cred.

Security of device. The Android ID attestation documen-
tation does not clearly describe whether the public/private key
pair used to generate the proof of the device serial number is
unique to the device. However, the fact that the public key is
not listed in the identifying information in the documentation
leads us to believe that the key pair is shared across multiple
devices. Therefore, once an adversary can extract the private
key protected by ARM TrustZone via side-channel attacks,
they can forge valid proofs of identifiers of phones that do not
exist. We, thus, determine that the rate-limiting functionality
of Scrappy using Android phones depends on the security
of the TEE.

VII. PERFORMANCE EVALUATION

This section presents the latency, bandwidth, and storage
evaluation results of the proposed system.

For the TPM and secure hardware token evaluation, we
used a Lenovo ThinkPad A285 [45] with an AMD Ryzen 5
PRO 2500U CPU (4 cores, 2 GHz) with 16 GB of RAM,
representing a standard consumer-grade laptop. For this evalu-
ation, the signer application ran within a Docker container. The
containers ran Ubuntu 22.04 and utilized standard Docker APIs
to mount necessary hardware devices to the signer container.
For the TPM it was /dev/tpm and for the secure hardware
token it was either /dev/ttyUSB0 or /dev/ttyACM0.
For the smartphone evaluation, we used an Android Pixel 6a
smartphone with a Google Tensor CPU (2×2.8 GHz, 2×2.25
GHz, 4×1.8 GHz) and 6 GB of RAM, running Android version

8Android ID Attestation relies on ARM TrustZone for protecting resources
proving device uniqueness. Thus, adversaries may steal this resource via side-
channel attacks. Table III reflects this fact.

TABLE IV. END-TO-END LATENCY EVALUATION OF SCRAPPY
(CRYPTOGRAPHIC OPERATION + DATABASE OPERATION)

Proof generation Proof verification

Hardware Device Measurement [ms] Measurement [ms]

TPM (baseline) 243.16 (236 + 7.16)
84.1 (73.7 + 10.4)Hardware Token 2771 (2764 + 7.16)

Smartphone 26.4 (23 + 3.4)

13. The signer application ran as a smartphone application.
All verifier-side experiments ran on an AS-2024US-TRT/3Y
machine with two AMD EPYC 7513 CPUs (32 cores, 2.6
GHz) with 512 GB of RAM, representing a standard server-
grade machine. Unless otherwise stated, the numbers reported
are an average of 20 measurements.

A. Latency Evaluation

1) Baseline latency evaluation: We first present the proof
generation latency of the three devices as well as the proof
verification latency under simulated baseline conditions. For
the setup, we do not populate the signer-side log with any
entries, simulating a situation where a user has not visited
websites with Scrappy. On the other hand, the verifier-side
log is populated with 100,000 entries to simulate a situation
where the verifier has been running for some time. The results
are presented in Table IV.

For the proof generation phase, we can see that the smart-
phone is the fastest, taking 26.4 ms (cryptographic operation:
23 ms, database operation: 3.4 ms), the TPM the second fastest,
taking 243.16 ms (236 ms, 7.16 ms), and the hardware token
the slowest, taking 2771 ms (2764 ms, 7.16 ms).

It is interesting to observe that the TPM exhibits a speed
that is an order of magnitude faster than that of the secure hard-
ware token when generating signatures, despite both devices
having processors with similar frequencies. We hypothesize
that this is because TPM has optimized hardware for producing
DAA signatures, whereas the secure hardware token does not.

The average latency for the proof verification phase is
84.1 ms, with the verification operation taking about 73.7 ms
and the database lookup and insert taking 10.4 ms. This is
an acceptable latency since the AMCL cryptographic library
benchmark test results on the same server-grade machine were
in the same order of magnitude (i.e., tens of milliseconds).
Additionally, [69] reports similar numbers for the DAA veri-
fication process on a CPU with a faster clock frequency. Note
that the verification operation currently uses only one CPU
core and could benefit from muti-threading as well as standard
load-balancing techniques when dealing with a large number
of verification requests.

2) Latency evaluation under extreme conditions: Next, we
evaluated the latency of proof generation and verification
phases under certain extreme conditions. For the proof gen-
eration phase, the signer-side log was populated with a large
number of entries, and the verifier was required to check a
revocation list with a large number of entries for the proof
verification phase.

The results are presented in Table V. Differences between
Table IV and V are highlighted in bold text. We observe that

9

TABLE V. END-TO-END BASELINE LATENCY EVALUATION OF
SCRAPPY UNDER EXTREME CONDITIONS (CRYPTOGRAPHIC OPERATION +

DATABASE OPERATION). DIFFERENCES ARE HIGHLIGHTED IN BOLD.

Condition Proof generation [ms] Proof verification [ms]

Large signer log 243.23 (236 + 7.23) 84.1 (73.7 + 10.4)
Large revocation list 243.16 (236 + 7.16) 151.4 (141 + 10.4)

while the overhead of having a large signer-side log is minimal,
having a large revocation list introduces a large overhead. A
thorough analysis of these results is shown below.

Latency of signing with a large number of signer logs.
This evaluation simulates where a signer visits a large number
of websites that support Scrappy. For this experiment, we
populated Logs with 1,000 entries and measured how long
it took to generate a signature. 1,000 entries are significantly
larger than the number of distinct web pages9 visited by a user
per day (163 web pages) [28], representing an upper bound.

The average latency for this measurement was 243.23 ms.
The signing operation took 236 ms, while database lookup and
insertion took 7.23 ms. Comparing this to the results presented
in Section VII-A1, we can see that the database operation
latency increased by 0.07 ms, which is negligible. This shows
that the signer-side latency does not get affected even if signers
visit a large number of websites.

Latency of verifying with a large number of revocations.
This evaluation simulates where many signers had their group
private keys revoked. The number of entries in the revocation
list was set to 50, which is the number of maximum allowed
entries in a revocation list in EPID [57].

The average verification latency with 50 entries in the
revocation list was 151.4 ms, with the verification operation
taking 141 ms and the database lookup operation taking 10.4
ms. This is nearly two times slower than the latency reported in
the baseline evaluation, although the overall end-to-end latency
is still within the order of hundreds of milliseconds. Even
though it is highly unlikely that there are this many entries
in the revocation list, this shows that verifiers must take into
account such a case when designing their services.

3) Comparison of latency results: Overall, we conclude
that Scrappy introduces minimal latency overhead, even
under extreme conditions. Table VI compares the latency of
Scrappy with the numbers reported in related work. While
evaluation environments vary across different papers, we can
observe that the latency does not drastically differ (except for
Opaak). It is worth noting that our baseline evaluation uses
a resource-limited TPM, whereas others use more powerful
devices.

B. Bandwidth Evaluation

We measured the amount of data transferred between the
signer and verifier when using Scrappy. Recall that the
verifier sends t to the signer when requesting the rate-assuring
proof, and the signer responds by sending σ to the verifier.

The size of t is 19 bytes, which is a 64-bit Unix timestamp
encoded as a string. The size of the raw signature σ is 261

9Note that “distinct web page” refers to a unique URL and not necessarily
a unique domain, i.e., the actual number of distinct domains may be smaller.

TABLE VI. COMPARISON OF LATENCY MEASUREMENTS BETWEEN
SCRAPPY (HIGHLIGHTED IN BOLD) AND RELATED WORK.

Work Proof generation [ms] Proof verifi-
cation [ms]

Scrappy (TPM, baseline) 243.16 84.1
Scrappy (Hardware Token) 2771 84.1
Scrappy (Smartphone) 26.4 84.1
CACTI [51] 211.9 27.3
Privacy Pass (N tokens) [30] 341.48 + 180.87 × N 57.8
Opaak [47] 2550 (combined measurement)

bytes, consisting of five 33-byte elliptic curve points and three
32-bit big integers. Note that we use Base64 when encoding
the raw data and gob (Golang encoding format) when bundling
the signature parameters. Thus the actual size of σ is 660
bytes. We can observe that this number is small, thus deploying
Scrappy should only introduce minimal bandwidth overhead.

C. Storage Evaluation

Finally, we measured the amount of storage it takes to store
the logs for both the signer and verifier sides.

The amount of storage required to store 1,000 entries in
the signer-side log is 94.2 KB and 6.64 MB for the 100,000-
entry verifier-side log. This indicates that our PoC stores only
a small amount of data for a large number of logs and can be
further optimized.

VIII. SECURITY EVALUATION

In this section, we provide a security analysis of Scrappy
based on the threat model and requirements defined in Sec-
tion IV.

Signature forgery attacks. A malicious signer may at-
tempt to generate a fake rate-assuring proof to cheat the
system. The proposed system prevents this, as it is impossible
for signers to receive a valid cred from GMs without a genuine
hardware security device. Even if the signer skips the above
step altogether and generates a fake cred, it will still get caught
since the cred used to generate the rate-assuring proof will not
be valid.

Timestamp forgery attacks. A malicious signer may
attempt to use a t that the verifier did not provide. For instance,
if the valid t is 10:00-11:00, the malicious signer may
try to create a rate-assuring proof on 10:00-10:10 in an
attempt to get more access to the verifier’s resource. This is
preventable by the verifier, since the proof provided by the
signer will include a different t than the one provided.

Generating multiple proofs upfront. A malicious signer
could generate multiple rate-assuring proofs with different t
upfront and send them all at once to the verifier. However,
this will not grant the signer with the same amount of access
as the number of generated proofs, since the t in the proof
will not match the one expected by the verifier and will be
rejected.

Obtaining multiple credentials. A malicious signer may
attempt to generate multiple usks and obtain credentials over
them, allowing the signers to generate multiple rate-assuring
proofs for a given set of t and bsn. This is impossible, as

10

the GM will know that the same signer is requesting multiple
credentials via their attestation key (i.e., EK).

Device Reset attacks. Malicious signers can always reset
their hardware security device and re-run the Join protocol
claiming that they are a fresh device. The proposed method
prevents this by having the GM limit the number of times a
device can run the Join protocol. This is possible because the
GM can keep track of the number of times it has observed the
same EK.

Signer tracking via proofs. A malicious verifier may
attempt to track signers using their rate-assuring proofs in the
following two ways: (1) linking two proofs from two periods
in time; and/or (2) colluding with another verifier and linking
proofs that were sent to the two verifiers. These attacks are not
possible because using either a different t or bsn will generate
a signature that is indistinguishable from other signatures.

Signer tracking via t. A malicious verifier may attempt
to track signers using t which they provide during the proof
generation phase. For instance, a verifier may provide a signer
of interest with t′ while providing the rest with t. Sometime in
the future, a verifier suspects that the same signer is requesting
access, and provides the suspected signer with t′. If the signer
cannot respond with the proof, the verifier’s suspicion is
correct and has successfully identified a signer. This is easily
detectable since t′ is from the past.

Similarly, a malicious verifier may provide a signer with
a t which is valid for an extremely long time. If a verifier
suspects that the same signer is requesting access, they provide
the signer with t′ that overlaps with t. If the signer is in fact
the same, they cannot generate proof, allowing the verifier
to confirm its suspicion. This is also detectable since the
signer observes that the verifier is providing overlapping time
windows, which violates the protocol.

In either case, signers should report such malicious activi-
ties to third-party auditors so that malicious verifiers are held
accountable.

The use of basenames in Scrappy and its privacy
implications. We have discussed in Section VI-E1 that the
FIDO ECDAA specification prohibits the use of basenames
due to privacy concerns. This is because FIDO ECDAA
aims to provide full anonymity to its users and the use of
basenames may cause signatures to be linked to each other
(i.e., pseudonymity, see Section III-B for more details).

This pseudonymity property is necessary for Scrappy
as it is what enables verifiers to know that a certain signer
is conducting multiple actions within a given time window.
Although this may seem that Scrappy is unable to provide
full anonymity to its signers, this is not the case. This is
because malicious signers are the only entities that produce
signatures that can be linked to each other. On the other hand,
legitimate signers do not send multiple rate-assuring proofs
within the same time window. In addition, the use of Logs
during the proof generation phase described in Section V-D
allows legitimate signers to keep track of whether they have
generated proofs for the same verifier within the same time
window. Therefore, as long as signers abide by the Scrappy
protocol they can maintain full anonymity.

Violating signer privacy via side-channel attacks. Ma-
licious actors may attempt to steal the usk from signers
using side-channel attacks. This is an issue since once an
attacker steals the usk, they are able to link rate-assuring
proofs to an individual signer, by calculating the pseudonym
used by the signer. Although it is not possible to prevent this
via cryptographic approaches, the use of secure hardware in
Scrappy significantly increases the difficulty of the attack
for adversaries (except for the smartphone implementation, see
Section VI for more details).

Network attacks. A malicious party on the network may
change the values for t and/or bsn in an attempt to mount a
DoS attack against an unsuspecting signer. This is preventable
since the signer checks whether the t and bsn are valid before
generating the proof. Furthermore, an honest signer will detect
that there is a network adversary, as their requests will be
denied despite legitimately producing the proof.

Compromised Devices. Malicious signers may attempt to
extract the EK and/or the usk from hardware security devices
owned by other signers through various means, including side-
channel and physical attacks. We investigate the consequences
of an adversary obtaining the two keys.

Leaked EK. A large number of devices may have their
EK extracted while in possession of other parties after manu-
facturing (e.g., during shipping). This allows a malicious signer
to generate valid rate-assuring proofs for a given t and bsn,
granting them an abnormal number of accesses. However, this
is detectable by the victim, as a GM will refuse to issue a
cred as it has already done so to the same EK in the past.
Moreover, even if a GM issues a valid cred to the victim, the
leaked EK does not violate the privacy of the victim, since
the usk generated by a victim cannot be linked to EK.

Leaked usk. Extracting usk from the hardware security
device allows the adversary to not only generate valid rate-
assuring proofs but also violate the privacy of the victim. This
is because the adversary can link victim-generated proofs to
usk. However, extracting usk is extremely challenging for the
adversary. First, the adversary is required to have access to the
victim’s device (e.g., via malware), This is because the victim
generates usk only when the device is within their possession.
Second, the hardware security device stores usk within its
tamper-proof memory. This would be even more challenging
if the device is detachable (e.g., secure hardware token). In
essence, the tamper-proof assumption of the hardware security
device can be seen as a means to protect the signer privacy
property of Scrappy.

Leaked EK and usk. The unforgeability and unlinkability
properties of Scrappy would be violated if both EK and usk
are stolen. However, we would like to emphasize that even in
this situation, the rate-limiting property remains intact. The
intuition behind this is that the verifier will accept a proof
generated by either the adversary or the victim, but not both.

Rogue GMs. A malicious GM may attempt to compromise
signer privacy by colluding with a malicious verifier. However,
this is prevented by the use of DAA, as it is impossible to link
EK and usk, even by the GM.

A malicious signer may also attempt to produce multiple
rate-assuring proofs within the same period of time for the

11

same verifier with the help of a malicious GM. This is done by
having the malicious GM produce credentials for the multiple
usks generated within the single hardware security device.
However, once caught (e.g., through community reporting),
verifiers will stop verifying proofs that use gpks issued from
these GMs, essentially losing the trust of the public. Therefore,
we assume that a rational GM will not engage in such activities
and will be heavily penalized if discovered.

GM with only one member. It is easy to imagine that
malicious verifiers will be able to track a signer that generates
proofs that are verifiable using a gpk of a group of which they
are the sole member. Since Scrappy does not regulate such
behavior, it cannot prevent such incidents from happening.
Signers must be aware of the GM they are interacting with and
should consider joining a group that is reputable and popular.
GMs can use this information to stand out from other GMs, for
example by publishing the number of current group members.

Summary. Overall, we claim that the proposed system suc-
cessfully meets the security requirements defined in Sec-
tion IV. Specifically, the Unforgeability requirement is sat-
isfied since it is impossible for the signer to generate rate-
assuring proofs without a genuine device and using valid t and
bsn. The Unlinkability requirement is also satisfied because
of the use of DAA and the rate-assuring proofs not leaking
any information regarding the signer’s identity. The Rate-
limiting requirement is met because rate-assuring proofs that
carry invalid timestamps will not be accepted by the verifier,
thus preventing any access above the rate set by the verifier.
Moreover, any signer attempting to collude with a malicious
GM will be detected and punished.

IX. USABILITY ANALYSIS

In this section, we provide an analysis of Scrappy from
the perspective of signer usability.

Installation. Installing Scrappy on the signer platform
requires the Scrappy browser extension and native ap-
plication to be downloaded and installed. We implemented
Scrappy to ensure that the installation process does not
impose excessive overhead on the user. However, the process
can be further improved by integrating the extension logic and
native application functionalities directly into the browser. This
way, Scrappy’s signer-side logic will work “out of the box”,
providing a seamless user experience.

Signer-perceived latency. Minimizing the time a signer
needs to spend when using the system is crucial for its
usability. As shown in Tables IV and VI, the end-to-end latency
of Scrappy ranges between 100 and 2800 ms, comparable to
other state-of-the-art rate-limiting systems. Therefore we claim
that the latency introduced by Scrappy is minimal and does
not degrade user experience.

Signer involvement. Scrappy is designed to be fully
transparent to the signer, i.e., signer input is not required when
creating rate-assuring proofs. However, there are cases where
signer input may be useful.

For instance, a malicious verifier may use t to track
signers (see Section VIII). Such an attack can be automatically
detected via the aid of signer-side software (e.g., Scrappy
browser extension). However, there may be cases where the

software is not confident enough to either reject or accept a
t. In such a case, signer input would be required to make the
final decision.

Another example is malware on signer-side devices. This
allows malicious signers to use other legitimate signers’
devices to generate valid rate-assuring proofs (i.e., cuckoo
attack). Preventing such an attack would require signer con-
firmation via I/O which is hardwired to the hardware security
device (e.g., secure I/O in ARM TrustZone).

In short, incorporating signer input improves security.
However, requiring frequent input degrades user experience
due to UI fatigue. To strike a balance between user experience
and security, we envision signer-side software allowing signers
to choose from the following options: (1) Ask every time:
Requires signer input each time it generates a proof (default).
(2) Ask for untrusted: Requires signer input only for websites
that are not trusted by the signer. (3) Do not ask: Does not
require any signer input.

Usability of supported devices. Supporting many devices
is crucial for adoption, as it allows signers to use their preferred
device. Here, we assess the usability of the three devices used
in this paper. Signers that want absolutely no involvement
during the proof generation phase are recommended to use
devices with TPM. Signers comfortable with minimal user
involvement may opt to use smartphones. Secure hardware
tokens require high signer involvement as they need to be
plugged in every time.

Summary. Overall, we claim that Scrappy is designed and
implemented with usability in mind. The installation process
is minimal, with potential optimization, and signer-perceived
latency is comparable to other related work. In addition, signer
involvement in Scrappy is optional. While important when
mitigating some attacks, we have demonstrated that the level
of involvement can be adjusted according to the signer’s
preference. Furthermore, signers have a wide selection of
devices to choose from when participating in the Scrappy
system.

X. DISCUSSION

A. Fallback options

Signers who cannot participate in the Scrappy protocol
due to lack of access to applicable devices or do not want to
participate in the protocol will fall back to the current rate-
limiting services provided by the verifier. Note that this does
not change the current state of security and privacy provided
to the verifiers and signers. Moreover, as we have shown in
Section VI, Scrappy can be implemented and deployed on
various types of devices. We are certain that users will have
at least one device compatible with Scrappy.

B. Deployment considerations and incentives

1) CDN and 3rd party integration: Although Scrappy
was designed in mind to reduce deployment effort by using
well-known components (e.g., DAA, SQLite, Golang), we
expect that verifier operators may not be familiar with the un-
derlying technology stack used in Scrappy. To accommodate
such needs, we envision Content Delivery Networks (CDNs)

12

and other 3rd parties operating the Scrappy verifier on behalf
of its customers.

CDNs host the content of their customers in servers dis-
tributed across the globe, reducing delivery latency to users.
Recently, CDNs started to offer security services to their
customers, especially protection against abusive actions. The
three most popular CDNs – Cloudflare [24], Akamai [15],
and Fastly [32] – all offer rate-limiting services, using var-
ious methods ranging from basic threshold-based limiting
to CAPTCHAs. Scrappy can be easily integrated into the
CDN gateways, providing stronger rate-limiting capabilities for
customers who are interested.

2) Website operator incentives: Websites have several in-
centives to integrate Scrappy into their services. First of all,
Scrappy provides strong guarantees of rate-limiting through
proven cryptographic schemes. Secondly, Scrappy requires
minimal latency when generating and verifying rate-assuring
proofs, limiting the impact on user experience. Thirdly, the
unlinkability property of Scrappy enables users to participate
in a private manner.

Website operators can leverage Scrappy’s privacy aspect
and promote their commitment to safeguarding users’ privacy.
This can have a positive impact on their service, as it may
attract additional privacy-conscious users.

3) GM operator incentives: The role of the GM in
Scrappy is to check the genuineness of the hardware security
device and issue a credential if confirmed. Since this only
occurs once every lifetime of a hardware security device (un-
less it gets reset, see Section VIII for more information about
this), the operation of the GM is relatively lightweight. Various
organizations could run a GM, each with different incentives,
such as online identity providers providing federated login
services and non-profit organizations (e.g., Let’s Encrypt [6]).

C. Supporting multiple GMs

So far, we have not considered more than one GM in the
Scrappy ecosystem, but given the incentives shown above,
many GMs may want to benefit from Scrappy. Scrappy
does not put a limit on the number of GMs it supports.
However, this allows a malicious signer to obtain multiple
credentials for a pair of upk and EKCert. This is an issue
since malicious signers would be able to generate multiple
rate-assuring proofs that are unlinkable to each other.

Depending on the services they operate, verifiers may want
to choose one of the following solutions: (1) For verifiers that
cannot allow more than one access to a certain resource per
signer at a given point in time (e.g., online ticket sellers),
they may want to notify the signers that they will only accept
signatures from certain single GM to prevent such issue; or
(2) For verifiers that have some tolerance, they may want to
opt to support as many GMs as possible to attract signers.

It is easy to imagine that verifying the proof one by one
against a list of GM public keys is not efficient. Therefore,
once support for multiple GMs in the ecosystem is introduced,
we propose to make the following modifications to the proof
generation phase: (1) When submitting the rate-assuring proof
to the verifier, the signer must also include the identifier of the
GM (e.g., the domain name). (2) The verifier must maintain a

one-to-one mapping of GM identifiers and their group public
keys, which allows efficient lookup and verification of the
proof. (3) When the verification fails, verifiers can either
choose to cross-check the proof against all public keys within
the table or deny access to the service.

D. Different TPM implementations

There are four types of TPMs: discrete, integrated [26],
firmware-based [54], and virtual/software-based [52]. Discrete
TPMs are dedicated cryptoprocessors separate from the CPU
and are normally plugged into the motherboard. Integrated
TPMs are CPUs that provide functionalities and security
guarantees similar to those of TPMs without a dedicated pro-
cessor. Firmware TPMs (fTPMs) use TEEs to store necessary
secret keys and to protect the integrity of important data.
Virtual/Software-based TPMs are a full software implemen-
tation of TPM functionalities and do not utilize hardware to
store secrets nor carry valid proof of uniqueness.

Discrete and integrated TPMs satisfy the four requirements
discussed in Section IV, while firmware and virtual/software-
based TPMs do not satisfy some requirements. In particular,
fTPMs cannot protect secret keys such as EK from side-
channel attacks due to using TEEs (e.g., [43]). However,
fTPMs can still be used in Scrappy, as the underlying
TEE acts as a source of uniqueness. On the other hand,
virtual/software-based TPMs do not provide proof of unique-
ness and, thus, do not have valid EK. Therefore, they would
not be able to be used in Scrappy.

E. Balancing deployability and rate-limiting functionality

Supporting different types of hardware security devices
is crucial for deployability so that services would be more
willing to employ Scrappy. As we have shown in Section VI,
Scrappy can be deployed on a wide range of devices. How-
ever, there is a clear trade-off between increasing deployability
and providing rate-limiting functionality. This is because as
more devices support Scrappy, the easier it is for an attacker
to operate farms that employ a large number of such devices.
In this section, we take a closer look into device farms and
their effect on Scrappy.

Similar to CAPTCHA farms, a device farm is an operation
that uses a large number of devices to generate numerous
valid rate-assuring proofs, attempting to attack the rate-limiting
capability provided by Scrappy. Although Scrappy does
not (and cannot) prevent such farms from being operated, it
certainly can discourage them from forming. This is because
(1) each device can only produce one proof for the same t and
bsn, and (2) the cost of purchasing such a large amount of
devices would be significantly higher than other alternatives.
For example, some CAPTCHA farms charge as little as 0.5
to 1 USD for solving 1,000 text-based CAPTCHAs and 3
USD for 1,000 reCAPTCHAs [53]. In comparison, TPM chips
usually cost around 20 USD each, requiring the adversary to
spend 20, 000 USD as an initial investment to provide the same
number of rate-proofs.

It is important to note that these farms are not a unique
issue to Scrappy, as other related work also cannot defend
against such farms (e.g., CACTI farms [51]). What is unique to
Scrappy is, however, the fact that supporting a wide variety

13

of devices for deployability allows adversaries to operate
different kinds of farms. For instance, secure hardware tokens
may be easier to farm compared to TPM chips since they
use standard USB interfaces rather than manufacturer-specific
ones. Moreover, USB hubs are extremely easy to obtain and
make such tokens easier to connect to a host computer on a
large scale.

To deal with device farms, we envision verifiers to accept
rate-proofs according to the GM public key provided by the
signer, similar to the discussion in Section X-F. For example,
for actions requiring stricter rate-limiting policies (e.g., account
creation, purchasing high-value items), verifiers may choose
to accept proofs from devices that are more expensive and
difficult to farm (e.g., firmware TPMs that cost several hundred
USD per chip).

F. Supporting additional devices

Not all users may have access to the three devices we
have shown in this paper. In this section, we discuss additional
devices10 that may potentially be used in Scrappy. Table VII
compares the list of devices.

SIM cards. SMS authentication provides proof of posses-
sion of a certain phone number. Similar to Opaak [47], SIM
cards can be used as a source of uniqueness in Scrappy.

Intel SGX CPUs. Intel CPUs from 6th generation to 10th
generation support Intel SGX [27], which is a form of a
TEE. Such CPUs have secret keys that are used to prove
the genuineness of the platform as well as the code running
inside the TEE. Using Intel SGX in Scrappy is fairly
straightforward: prove to the GM during the Join protocol
that it has not registered in the past and produce rate-assuring
proofs within the TEE.

PUFs. Physical Unclonable Function (PUF) [33], [42] is a
one-way function that is unique per device. PUFs utilize the
subtle differences in the physical characteristics of the compo-
nents of the device to provide such uniqueness. Attestation of a
PUF uses a standard challenge-response protocol that is similar
to HMAC. Using PUFs in Scrappy is challenging because
PUF keys are symmetric. Therefore, we envision that either
the vendor of the PUF device will operate a GM or provide
third-party GMs with proof of verification of responses.

Assuming that we have deployed Scrappy that accepts all
the different devices we have listed above, several points must
be taken into consideration. First, Scrappy does not (and
cannot) prevent GMs from accepting a source of uniqueness.
As some resources are easier to obtain than others, verifiers are
advised to decide whether to accept rate-assuring proofs based
on the signer’s group affiliation. For example, verifiers that can
tolerate high-rate access (e.g., API access, website viewing)
may choose to allow signers with easily obtainable devices.
Others may choose GMs that only provide cred to hard-to-
obtain devices (e.g., integrated TPMs running on Intel Xeon
CPUs). Second, the security and privacy guarantees of devices
differ. Some devices require the device to be trusted to provide

10Devices that cannot provide proof of uniqueness cannot be used in
Scrappy, including virtual TPM [52], [65] and virtual secure hardware
tokens [21]. However, such devices could be used if they can be cryptograph-
ically bound to a source of uniqueness shown in this section.

TABLE VII. COMPARISON OF ADDITIONAL SOURCES OF UNIQUENESS
AND THEIR SECURITY

SIM Card Intel SGX
CPU [27]

PUF [33] [42]

Unique Resource Phone Number Provisioning Se-
cret

PUF Response

Method of Prov-
ing Unique Re-
sources

SMS Authentica-
tion

Remote
attestation

Challenge
and Response
Authentication

Rate-limiting De-
pends on Device
Security

No No No

necessary security and privacy guarantees (see Section VIII for
more discussion). Moreover, vulnerabilities of the underlying
hardware may also cause further disruption to the guarantees
(e.g., TEE side-channel attacks, attacks on PUF).

However, it is worth emphasizing that the security of
the devices do not impact the rate-limiting functionality of
Scrappy. The reason behind this is similar to that discussed
in Section VIII: Even if the source of uniqueness gets stolen
from the device, the GM will only provide a valid cred to only
one device, be that the legitimate signer’s or the attacker’s.

G. Device interoperability

Supporting many types of hardware security devices may
also raise interoperability concerns. This is not an issue for
Scrappy as long as the device and the signer owning the
device adhere to the following restrictions: (1) The device
satisfies the four properties shown in Section IV, and (2) The
signer does not deviate from the protocol in Section V-D.

XI. LIMITATIONS

Features other than rate limiting: Scrappy is a system
that provides rate limiting. This implies that it cannot fully
replace existing systems such as CAPTCHAs and SMS au-
thentication. For instance, websites that rely on CAPTCHAs
to provide human-bot distinction or SMS authentication to
provide second-factor authentication cannot utilize Scrappy.
However, we believe certain use cases exist where websites can
benefit from Scrappy; for example, servers that can tolerate
a certain amount of bot activity.

Requires supported devices: Scrappy requires signers
to own at least one of the devices shown in the paper. In
theory, Scrappy can incorporate any device that satisfies the
requirements listed in Section IV, and there are a wide variety
of devices to choose from, as we have shown in Table VII.
However, in reality, the GM is the entity that decides whether
to support a particular device. It is highly unlikely that a GM
will support every single type of device since it will increase
the maintenance cost. Therefore, we presume that GMs will
support only a handful of devices, restricting the choice of
devices available for use in Scrappy.

Actions are time-window-based: Signers who have taken
action within a time window are required to wait until the
next time window. This is by design, as it is a clear violation
of rate-limiting if a signer can produce multiple valid rate-
assuring proofs within the same t for the same origin. However,
waiting for the next time window introduces user friction and
constitutes another limitation of Scrappy.

14

XII. CONCLUSION & FUTURE WORK

This paper proposes Scrappy, a novel rate-limiting proto-
col that uses unforgeable yet privacy-preserving rate-assuring
proofs allowing verifiers to have strong assurance that signers
are not acting abusively. In contrast to previous approaches,
the rate-limiting capability of our method does not rely on the
security of the underlying hardware security device. Through a
comprehensive security evaluation of Scrappy, we show that
the proposed system can defend against adversaries targeted in
our threat model. We also provide an extensive performance
evaluation of our proof-of-concept implementation, showing
its practicality under both realistic and extreme conditions. We
identify the following as potential directions for future work:

• Extend Scrappy to support EPID and other hardware
security devices,

• Explore methods to protect secret keys from side-
channel attacks,

• Optimize the system to further reduce latency and
storage overhead, and

• Investigate the deployment of Scrappy in real-world
scenarios.

ACKNOWLEDGMENT

We thank the anonymous reviewers and the shepherd for
providing us with valuable feedback on prior versions of this
paper. The first author was supported in part by the Cybozu
Lab Youth program. Authors from Keio University received
support from the Keio SFC Internet Research Laboratory.
The second author was supported in part by The Nakajima
Foundation.

REFERENCES

[1] Android Keystore system — Android Developers. [Online]. Available:
https://developer.android.com/training/articles/keystore?hl=en

[2] Gin Web Framework. [Online]. Available: https://gin-gonic.com/ja/
[3] google/go-tpm. [Online]. Available: https://github.com/google/go-tpm
[4] Key and ID Attestation — Android Open Source Project.

[Online]. Available: https://source.android.com/docs/security/features/
keystore/attestation

[5] Learn the Kotlin programming language — Android Developers.
[Online]. Available: https://developer.android.com/kotlin/learn?hl=en

[6] Let’s Encrypt. [Online]. Available: https://letsencrypt.org/
[7] miracl/core: MIRACL Core. [Online]. Available: https://github.com/

miracl/core
[8] Save data in a local database using Room — Android

Developers. [Online]. Available: https://developer.android.com/training/
data-storage/room?hl=en

[9] The Go Programming Language. [Online]. Available: https://go.dev/
[10] What is Android — Android. [Online]. Available: https://www.android.

com/intl/en us/what-is-android/
[11] xaptum/ecdaa: A C implementation of elliptic-curve-based Direct

Anonymous Attestation (DAA) signatures. Created to support
the Xaptum Edge Network Fabric, an IoT Network Solution.
[Online]. Available: https://github.com/xaptum/ecdaa/blob/master/doc/
IMPLEMENTATION.md

[12] xaptum/ecdaa: A C implementation of elliptic-curve-based Direct
Anonymous Attestation (DAA) signatures. Created to support the
Xaptum Edge Network Fabric, an IoT Network Solution. [Online].
Available: https://github.com/xaptum/ecdaa

[13] (October, 2021) About SQLite. [Online]. Available: https://www.sqlite.
org/about.html

[14] L. v. Ahn, M. Blum, N. J. Hopper, and J. Langford, “CAPTCHA: Using
hard AI problems for security,” in International conference on the theory
and applications of cryptographic techniques. Springer, 2003, pp. 294–
311.

[15] Akamai. (2022, 03) Rate limiting. [Online]. Available: https:
//techdocs.akamai.com/adaptive-media-delivery/reference/rate-limiting

[16] C. A. W. Alex Davidson, Jana Iyengar. (2022, October) draft-ietf-
privacypass-architecture-08 - The Privacy Pass Architecture. Internet
Engineering Task Force. [Online]. Available: https://datatracker.ietf.
org/doc/draft-ietf-privacypass-architecture/

[17] F. Alliance. FIDO Alliance Specifications Overview - FIDO Alliance.
[Online]. Available: https://fidoalliance.org/specifications/

[18] ——. FIDO ECDAA Algorithm Overview. [Online].
Available: https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/
fido-ecdaa-algorithm-v1.1-id-20170202.html#overview

[19] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attesta-
tion,” in Proceedings of the 11th ACM conference on Computer and
communications security, 2004, pp. 132–145.

[20] E. Brickell and J. Li, “Enhanced Privacy Id: A Direct Anonymous
Attestation Scheme with Enhanced Revocation Capabilities,” in
Proceedings of the 2007 ACM Workshop on Privacy in Electronic
Society, ser. WPES ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 21–30. [Online]. Available:
https://doi.org/10.1145/1314333.1314337

[21] Bulwark. Virtual FIDO. [Online]. Available: https://github.com/
bulwarkid/virtual-fido

[22] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Jurafsky, “How
Good Are Humans at Solving CAPTCHAs? A Large Scale Evaluation,”
in 2010 IEEE Symposium on Security and Privacy, 2010, pp. 399–413.

[23] D. Chaum and E. v. Heyst, “Group signatures,” in Workshop on the
Theory and Application of Cryptographic Techniques. Springer, 1991,
pp. 257–265.

[24] Cloudflare. (2022, 11) Configuring Cloudflare Rate Limiting.
[Online]. Available: https://support.cloudflare.com/hc/en-us/articles/
115001635128-Configuring-Cloudflare-Rate-Limiting

[25] C. C. Consortium, “Confidential Computing: Hardware-Based Trusted
Execution for Applications and Data,” A Publication of The Confidential
Computing Consortium, January 2021.

[26] I. Corporation. (2014) Strengthening Security with Intel (R)
Platform Trust Technology. [Online]. Available: https://www.
intel.com/content/dam/www/public/us/en/documents/white-papers/
enterprise-security-platform-trust-technology-white-paper.pdf

[27] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology ePrint
Archive, 2016.

[28] K. Crichton, N. Christin, and L. F. Cranor, “How Do Home Computer
Users Browse the Web?” ACM Transactions on the Web (TWEB),
vol. 16, no. 1, pp. 1–27, 2021.

[29] Q. H. Dang et al., “Secure hash standard,” 2015.
[30] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda,

“Privacy Pass: Bypassing Internet Challenges Anonymously.” Proc.
Priv. Enhancing Technol., vol. 2018, no. 3, pp. 164–180, 2018.

[31] G. Developers. (2018, May) Native Messaging - Chrome
Developers. [Online]. Available: https://developer.chrome.com/docs/
apps/nativeMessaging/

[32] Fastly. Rate limiting. [Online]. Available: https://developer.fastly.com/
learning/concepts/rate-limiting/

[33] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,”
Nature Electronics, vol. 3, no. 2, pp. 81–91, 2020.

[34] D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla, C. Laan,
B. Marthi, X. Lou, Z. Meng, Y. Liu, H. Wang et al., “A generative
vision model that trains with high data efficiency and breaks text-based
CAPTCHAs,” Science, vol. 358, no. 6368, p. eaag2612, 2017.

[35] I. GlobalPlatform. (2018, May) Introduction to Secure Elements.
[Online]. Available: https://globalplatform.org/wp-content/uploads/
2018/05/Introduction-to-Secure-Element-15May2018.pdf

[36] Go. gomobile. [Online]. Available: https://pkg.go.dev/golang.org/x/
mobile/cmd/gomobile

[37] Google. Google Chrome - Download the Fast, Secure Browser

15

https://developer.android.com/training/articles/keystore?hl=en
https://gin-gonic.com/ja/
https://github.com/google/go-tpm
https://source.android.com/docs/security/features/keystore/attestation
https://source.android.com/docs/security/features/keystore/attestation
https://developer.android.com/kotlin/learn?hl=en
https://letsencrypt.org/
https://github.com/miracl/core
https://github.com/miracl/core
https://developer.android.com/training/data-storage/room?hl=en
https://developer.android.com/training/data-storage/room?hl=en
https://go.dev/
https://www.android.com/intl/en_us/what-is-android/
https://www.android.com/intl/en_us/what-is-android/
https://github.com/xaptum/ecdaa/blob/master/doc/IMPLEMENTATION.md
https://github.com/xaptum/ecdaa/blob/master/doc/IMPLEMENTATION.md
https://github.com/xaptum/ecdaa
https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://techdocs.akamai.com/adaptive-media-delivery/reference/rate-limiting
https://techdocs.akamai.com/adaptive-media-delivery/reference/rate-limiting
https://datatracker.ietf.org/doc/draft-ietf-privacypass-architecture/
https://datatracker.ietf.org/doc/draft-ietf-privacypass-architecture/
https://fidoalliance.org/specifications/
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html#overview
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html#overview
https://doi.org/10.1145/1314333.1314337
https://github.com/bulwarkid/virtual-fido
https://github.com/bulwarkid/virtual-fido
https://support.cloudflare.com/hc/en-us/articles/115001635128-Configuring-Cloudflare-Rate-Limiting
https://support.cloudflare.com/hc/en-us/articles/115001635128-Configuring-Cloudflare-Rate-Limiting
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/enterprise-security-platform-trust-technology-white-paper.pdf
https://developer.chrome.com/docs/apps/nativeMessaging/
https://developer.chrome.com/docs/apps/nativeMessaging/
https://developer.fastly.com/learning/concepts/rate-limiting/
https://developer.fastly.com/learning/concepts/rate-limiting/
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://globalplatform.org/wp-content/uploads/2018/05/Introduction-to-Secure-Element-15May2018.pdf
https://pkg.go.dev/golang.org/x/mobile/cmd/gomobile
https://pkg.go.dev/golang.org/x/mobile/cmd/gomobile

from Google. [Online]. Available: https://www.google.com/intl/us en/
chrome/

[38] T. C. Group. (2019, November) Trusted Platform Module Library Part
1: Architecture. [Online]. Available: https://trustedcomputinggroup.org/
wp-content/uploads/TCG TPM2 r1p59 Part1 Architecture pub.pdf

[39] ——. (2020, June) TCG Algorithm Registry. [On-
line]. Available: https://trustedcomputinggroup.org/wp-content/uploads/
TCG- Algorithm Registry r1p32 pub.pdf

[40] ——, “Trusted Platform Module Library Part 3: Commands,”
https://trustedcomputinggroup.org/wp-content/uploads/TCG TPM2
r1p59 Part3 Commands pub.pdf, June 2020.

[41] ——. (2023, August) Vendor ID Registry. [Online]. Available:
https://trustedcomputinggroup.org/resource/vendor-id-registry/

[42] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical Un-
clonable Functions and Applications: A Tutorial,” Proceedings of the
IEEE, vol. 102, no. 8, pp. 1126–1141, 2014.

[43] H. N. Jacob, C. Werling, R. Buhren, and J. Seifert, “faulTPM: Exposing
AMD fTPMs’ Deepest Secrets,” in 8th IEEE European Symposium
on Security and Privacy, EuroS&P 2023, Delft, Netherlands, July
3-7, 2023. IEEE, 2023, pp. 1128–1142. [Online]. Available:
https://doi.org/10.1109/EuroSP57164.2023.00069

[44] A. Kosei. akakou/scrappy: SeCure Rate Assuaring Protocol with
PrivacY. [Online]. Available: https://github.com/akakou/scrappy

[45] Lenovo. (2020, July) ThinkPad A285 Spec.PDF. [Online]. Avail-
able: https://psref.lenovo.com/syspool/Sys/PDF/ThinkPad/ThinkPad
A285/ThinkPad A285 Spec.PDF

[46] R. Lindemann. (2017, February) FIDO ECDAA Algorithm. FIDO
Alliance. [Online]. Available: https://fidoalliance.org/specs/fido-uaf-v1.
1-ps-20170202/fido-ecdaa-algorithm-v1.1-ps-20170202.pdf

[47] G. Maganis, E. Shi, H. Chen, and D. Song, “Opaak: using mobile
phones to limit anonymous identities online,” in Proceedings of the 10th
international conference on Mobile systems, applications, and services,
2012, pp. 295–308.

[48] T. Meunier. (March, 2021) Humanity wastes about 500 years
per day on CAPTCHAs. It’s time to end this madness.
Cloudflare Inc. [Online]. Available: https://blog.cloudflare.com/
introducing-cryptographic-attestation-of-personhood/

[49] S. Microelectronics, “ST33TPHF2ESPI Product Brief,” 2019.

[50] Microsoft. Windows 11 requirements. [Online].
Available: https://learn.microsoft.com/en-us/windows/whats-new/
windows-11-requirements#hardware-requirements

[51] Y. Nakatsuka, E. Ozturk, A. Paverd, and G. Tsudik, “{CACTI}: Captcha
Avoidance via Client-side {TEE} Integration,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 2561–2578.

[52] R. Perez, R. Sailer, L. van Doorn et al., “vTPM: virtualizing the trusted
platform module,” in Proc. 15th Conf. on USENIX Security Symposium,
2006, pp. 305–320.

[53] Prowebscraper. (2017, December) Top 10 Captcha Solving
Services Compared. [Online]. Available: https://prowebscraper.com/
blog/top-10-captcha-solving-services-compared/

[54] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner,
K. Kinshumann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson,
R. Spiger, S. Thom, and D. Wooten, “fTPM: A Software-Only Im-
plementation of a TPM Chip,” in 25th USENIX Security Symposium
(USENIX Security 16). Austin, TX: USENIX Association, aug 2016,
pp. 841–856.

[55] A. Rao. (2022, January) Rising to the Challenge – Data
Security with Intel Confidential Computing. [Online]. Available:
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/
Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/
1353141

[56] E. T. Rolf Lindemann. (2017, February) FIDO UAF Protocol
Specification. [Online]. Available: https://fidoalliance.org/specs/
fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html

[57] X. Ruan, “Privacy at the next level: Intel’s enhanced privacy identifi-
cation (epid) technology,” in Platform Embedded Security Technology
Revealed. Springer, 2014, pp. 117–141.

[58] M. Scott, “The Apache Milagro Crypto Library (Version.”

[59] A. Searles, Y. Nakatsuka, E. Ozturk, A. Paverd, G. Tsudik, and
A. Enkoji, “An Empirical Study & Evaluation of Modern CAPTCHAs,”
in 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim,
CA, USA, August 9-11, 2023, J. A. Calandrino and C. Troncoso, Eds.
USENIX Association, 2023. [Online]. Available: https://www.usenix.
org/conference/usenixsecurity23/presentation/searles

[60] Solokeys. SoloKeys. [Online]. Available: https://solokeys.com/
[61] ——. SoloKeys Solo1. [Online]. Available: https://github.com/solokeys/

solo1
[62] P. I. E. Staffs. (2018, August) Security Concerns Surrounding

WebAuthn: Don’t Implement ECDAA (Yet) - Paragon Initiative Enter-
prises Blog. [Online]. Available: https://paragonie.com/blog/2018/08/
security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet

[63] J. Sumrak. (2021, December) SMS Verification: What It Is
& How It Works — Twilio. Twilio inc. [Online]. Available:
https://www.twilio.com/blog/what-is-sms-verification

[64] TextFree. Free Texting and Calling — TextFree. [Online]. Available:
https://textfree.us/

[65] VMWare. (2021, 08) Virtual Trusted Platform Module
Overview. [Online]. Available: https://docs.vmware.com/
en/VMware-vSphere/7.0/com.vmware.vsphere.vm admin.doc/
GUID-6F811A7A-D58B-47B4-84B4-73391D55C268.html

[66] Xaptum. amcl. [Online]. Available: https://github.com/xaptum/amcl
[67] ——. Details of the ECDAA Algorithm Used. [On-

line]. Available: https://github.com/xaptum/ecdaa/blob/master/doc/
IMPLEMENTATION.md

[68] ——. ecdaa. [Online]. Available: https://github.com/xaptum/ecdaa
[69] L. Xi, D. Feng, Y. Qin, F. Wei, J. Shao, and B. Yang, “Direct

Anonymous Attestation in practice: Implementation and efficient
revocation,” in 2014 Twelfth Annual International Conference on
Privacy, Security and Trust, Toronto, ON, Canada, July 23-24, 2014,
A. Miri, U. Hengartner, N. Huang, A. Jøsang, and J. Garcı́a-Alfaro,
Eds. IEEE Computer Society, 2014, pp. 67–74. [Online]. Available:
https://doi.org/10.1109/PST.2014.6890925

16

https://www.google.com/intl/us_en/chrome/
https://www.google.com/intl/us_en/chrome/
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part1_Architecture_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-_Algorithm_Registry_r1p32_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-_Algorithm_Registry_r1p32_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_TPM2_r1p59_Part3_Commands_pub.pdf
https://trustedcomputinggroup.org/resource/vendor-id-registry/
https://doi.org/10.1109/EuroSP57164.2023.00069
https://github.com/akakou/scrappy
https://psref.lenovo.com/syspool/Sys/PDF/ThinkPad/ThinkPad_A285/ThinkPad_A285_Spec.PDF
https://psref.lenovo.com/syspool/Sys/PDF/ThinkPad/ThinkPad_A285/ThinkPad_A285_Spec.PDF
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-ecdaa-algorithm-v1.1-ps-20170202.pdf
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-ecdaa-algorithm-v1.1-ps-20170202.pdf
https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
https://learn.microsoft.com/en-us/windows/whats-new/windows-11-requirements#hardware-requirements
https://learn.microsoft.com/en-us/windows/whats-new/windows-11-requirements#hardware-requirements
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://community.intel.com/t5/Blogs/Products-and-Solutions/Security/Rising-to-the-Challenge-Data-Security-with-Intel-Confidential/post/1353141
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-ps-20170202/fido-uaf-protocol-v1.1-ps-20170202.html
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://www.usenix.org/conference/usenixsecurity23/presentation/searles
https://solokeys.com/
https://github.com/solokeys/solo1
https://github.com/solokeys/solo1
https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet
https://paragonie.com/blog/2018/08/security-concerns-surrounding-webauthn-don-t-implement-ecdaa-yet
https://www.twilio.com/blog/what-is-sms-verification
https://textfree.us/
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6F811A7A-D58B-47B4-84B4-73391D55C268.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6F811A7A-D58B-47B4-84B4-73391D55C268.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6F811A7A-D58B-47B4-84B4-73391D55C268.html
https://github.com/xaptum/amcl
https://github.com/xaptum/ecdaa/blob/master/doc/IMPLEMENTATION.md
https://github.com/xaptum/ecdaa/blob/master/doc/IMPLEMENTATION.md
https://github.com/xaptum/ecdaa
https://doi.org/10.1109/PST.2014.6890925

	Introduction
	Related work
	Commonly used systems
	Techniques using hardware-assisted security
	Cryptographic techniques

	Background
	Group signature scheme
	Direct Anonymous Attestation (DAA)
	Periodic k-times anonymous authentication scheme (Periodic k-TAA)

	System and Threat model
	Design & Challenges
	Conceptual Design
	Design Challenges
	Realizing the Design
	The Scrappy Protocol

	Implementation
	Browser extension
	Signer application
	TPM
	Verifier server
	Implementing Scrappy on other devices
	Secure hardware token
	Smartphone

	Performance Evaluation
	Latency Evaluation
	Baseline latency evaluation
	Latency evaluation under extreme conditions
	Comparison of latency results

	Bandwidth Evaluation
	Storage Evaluation

	Security evaluation
	Usability Analysis
	Discussion
	Fallback options
	Deployment considerations and incentives
	CDN and 3rd party integration
	Website operator incentives
	GM operator incentives

	Supporting multiple GMs
	Different TPM implementations
	Balancing deployability and rate-limiting functionality
	Supporting additional devices
	Device interoperability

	Limitations
	Conclusion & Future work
	References

