
mhkang 2022-11-28

Stateful Greybox Fuzzing
Jinsheng Ba1 , Marcel Böhme2,3, Zahra Mirzamomen2 , and Abhik Roychoudhury1 

1National University of Singapore, 2Monash University, 3MPI-SP

USENIX ’22 



/ 27

Outline

• Introduction


• Related works


• Automatic state identification


• Stateful greybox fuzzer


• State fuzzing algorithm


• Evaluation


• Conclusion

2



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input

3



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input

4

stateless 
program



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input

5

stateless 
programInput A

Bug!



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input

6

stateless 
programInput A

Bug!

stateful 
program



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input

7

stateless 
programInput A

Bug!

stateful 
programInput A

OK!



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input

8

stateless 
programInput A

Bug!

stateful 
programInput A

Bug!



/ 27

Introduction

• Stateful programs 

• require input messages to be sent in a certain expected order


• e.g., protocol implementations


• Stateful bugs

• triggered when a sequence of messages, events, or actions are given as an input


• How to efficiently find stateful bugs?

• How to cover the state space without a specification of the required event sequences

9



/ 27

Limitations of Related works

• AFL, Libfuzzer

• stateless fuzzers


• cannot generate a sequence of inputs


• AFLNet

• exploit return code to infer states


• IJON

• requires manual effort,  

i.e., knowledge of state specification

10

stateful 
programfuzzer

stateful 
programfuzzer

return code!

stateful 
programfuzzer

expert guide!



/ 27

Automatic state identification

• Most of stateful softwares use named constants to represent internal states

• e.g., enumeration type or #define macro

11

- H2O HTTP server - openssl 



/ 27

Automatic state identification

• Most of stateful softwares use named constants to represent internal states

• e.g., enumeration type or #define macro


• State representation using named constants can be seen in Top-50 most 
widely used protocol implementations

• e.g., FTP, SFTP, TLS, SMTP, HTTP2, RDP, NTP, IMAP, IRC, SMB, DAAP, SIP, DICOM, VNC, 

RTSP, MQTT


• 44 use enumeration type and 6 use #define macro 

12



/ 27

Automatic state identification

• Idea

• Approximate state variables  

(variables used to represent state in stateful programs) 
by the variables with named constants!


• False positives?

• other variables such as configuration variables or error code variables sometimes take 

named constants 


• authors show that over 99% of extracted variables are true state variables!

13



/ 27

Stateful greybox fuzzer (SGFuzz)

14

fuzzer


inputstate

 scheduler

code coverage map

state transition tree

stateful 
program

monitoring result

coverage feedback

state feedback



/ 27

State transition tree construction

• To construct state transition tree, SGFuzz monitors the changes of values of 
enumeration variables

15

- monitor ‘stream-state’ variable in h2o

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition 

2. assign more energy on the “core-
logic” state sequences


3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

16

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM

new  
transition!



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition


2. assign more energy on the 
“core-logic” state sequences 

3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

17

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM

seeds that have triggered core logic transitions 

are more likely to be chosen



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition


2. assign more energy on the 
“core-logic” state sequences 

3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

18

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM

seeds that have triggered core logic transitions 

are more likely to be chosen

Error

Handle

Core 
Logic

80% ~ 99%

1% ~ 20%



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition


2. assign more energy on the “core-
logic” state sequences


3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

19

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition


2. assign more energy on the “core-
logic” state sequences


3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

20

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM

seed t 

mutated t’



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition


2. assign more energy on the “core-
logic” state sequences


3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

21

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM

new  
transition!

seed t 

mutated t’



/ 27

State fuzzing algorithm

• Procedure

1. save the inputs that trigger new 
state transition


2. assign more energy on the “core-
logic” state sequences


3. correlate input bytes and state 
transitions, giving more 
opportunities on mutating these 
bytes

22

RECV_HEADERSIDLE

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

END_STREAM

seed t 

mutated t’

new  
transition!

mutate only these bytes  
when t’ is selected next time



/ 27

Evaluation setup

• Target programs

• run 20 times for each target program


• fuzz 23 hours for each run

23

Program Protocol
H2O HTTP

MbedTLS SSL/TLS
OpenSSL SSL/TLS

Curl Several
Gstreamer Custom

Live555 RTSP
Owntone DAAP
DCMTK DICOM



/ 27

Evaluation: state transition coverage

• Measure the number of state transition sequences in the State Transition Tree


• On average, SGFuzz covers state transition sequences 30 times more than 
the baseline LibFuzzer.

24



/ 27

Evaluation: state identification effectiveness

• 99.5% nodes are related to the true states.

25



/ 27

Evaluation: new bugs

• Found 12 previously unknown bugs in 23 hours, and 10 of 12 are stateful 
bugs

26



/ 27

Conclusion

• Present Stateful greybox fuzzer (SGFuzz)

• automatically identify and monitor state of target program


• Show SGFuzz outperforms baseline fuzzers in terms of state transition 
coverage

• covers 30 times more than the baseline LibFuzzer


• Show the effectiveness of state identification

• on average, 99.5% nodes are related to the true states

27


