Stateful Greybox Fuzzing

Jinsheng Ba' , Marcel Bohme?:3, Zahra Mirzamomen2 , and Abhik Roychoudhury’

National University of Singapore, 2Monash University, SMPI-SP
USENIX ’22

mhkang 2022-11-28

Outline

* Introduction

* Related works

* Automatic state identification
o Stateful greybox fuzzer

o State fuzzing algorithm

e Evaluation

e Conclusion

2 /27

Introduction

o Stateful programs

* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

3 /27

Introduction

o Stateful programs

* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

stateless
program

4 /27

Introduction

o Stateful programs

* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

stateless
program

5 /27

Introduction

o Stateful programs

* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

stateful
program

stateless
program

6 /27

Introduction

o Stateful programs

* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

Inout A stateful
P program

stateless
program

7 /27

Introduction

o Stateful programs

* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

Bug!

stateless
program

8 /27

Introduction

o Stateful programs
* require input messages to be sent in a certain expected order

* e.g., protocol implementations

o Stateful bugs

* triggered when a sequence of messages, events, or actions are given as an input

 How to efficiently find stateful bugs?

* How to cover the state space without a specification of the required event sequences

9 /27

Limitations of Related works

e AFL, Libfuzzer &
stateful
« stateless fuzzers fuzzer —’
e cannot generate a sequence of inputs

return code!

o AFLNet @
stateful
« exploit return code to infer states fuzzer

expert guide!

* |JON
* requires manual effort, ver @ stateful
l.e., knowledge of state specification program

10 /27

Automatic state identification

 Most of stateful softwares use named constants to represent internal states

* e.d., enumeration type or #define macro

- H20O HTTP server

35 typedef enum enum_h2o_http2_stream_state_t {

36 / k%

37 * stream in idle state (but registered; i.e. priority stream)
38 %/

39 H20_HTTP2_STREAM_STATE_IDLE,

40 VES

41 * receliving headers

42 %/

43 H20_HTTP2_STREAM_STATE_RECV_HEADERS,

44 YESS

45 * receiving body (or trailers), waiting for the arrival of END_STREAM
46 %/

47 H20_HTTP2_STREAM_STATE_RECV_BODY,

48 VES:

49 * received request but haven't been assigned a handler

50 %/

51 H20_HTTP2_STREAM_STATE_REQ_PENDING,

- openss|

1007 typedef enum {

1008 TLS_ST_BEFORE,

1009 TLS_ST_OK,

1010 DTLS_ST_CR_HELLO_VERIFY_REQUEST,
1011 TLS_ST_CR_SRVR_HELLDO,
1012 TLS_ST_CR_CERT,

1013 TLS_ST_CR_COMP_CERT,

1014 TLS_ST_CR_CERT_STATUS,
1015 TLS_ST_CR_KEY_EXCH,

1016 TLS_ST_CR_CERT_REQ,

1017 TLS_ST_CR_SRVR_DONE,

1018 TLS_ST_CR_SESSION_TICKET,
1019 TLS_ST_CR_CHANGE,

1020 TLS_ST_CR_FINISHED,

1021 TLS_ST_CW_CLNT_HELLDO,

11 /27

Automatic state identification

 Most of stateful softwares use named constants to represent internal states

* e.d., enumeration type or #define macro

o State representation using named constants can be seen in Top-50 most
widely used protocol implementations

* e.g., FTP, SFTP, TLS, SMTP, HTTP2, RDP, NTP, IMAP, IRC, SMB, DAAP, SIP, DICOM, VNC,
RTSP, MQTT

* 44 use enumeration type and 6 use #define macro

12 /27

Automatic state identification

e |dea

* Approximate state variables
(variables used to represent state in stateful programs)
by the variables with named constants!

* False positives?

* other variables such as configuration variables or error code variables sometimes take
named constants

e authors show that over 99% of extracted variables are true state variables!

13 /27

Stateful greybox fuzzer (SGFuzz)

coverage feedback

state feedback O@

fuzzer

r

.

state
scheduler

~

.

code coverage map

state transition tree

—>
iInput

monitoring result

stateful
program

14 /27

State transition tree construction

* Jo construct state transition tree, SGFuzz monitors the changes of values of
enumeration variables

- monitor ‘stream-state’ variable in h2o

—> RECV_HEADERS

RECV_BODY
___END_STREAM > REQ_PENDING

SEND_HEADERS

SEND_BODY

15 /27

State fuzzing algorithm

+ Procedure < mE >+ meovmabes

1. save the inputs that trigger new
state transition
2. assign more energy on the “core-
logic” state sequences
C__END.STREAM >

3. correlate input bytes and state
transitions, giving more
SEND_HEADERS
SEND_BODY

new

opportunities on mutating these transition|

bytes

16 /27

State fuzzing algorithm

seeds that have triggered core logic transitions
are more likely to be chosen

* Procedure — RECV_HEADERS

1. save the inputs that trigger new
state transition RECV BODY
2. assigh more energy on the
“core-logic” state sequences
C___END_STREAM > REQ_PENDING

3. correlate input bytes and state
transitions, giving more
opportunities on mutating these
bytes

SEND_HEADERS

SEND_BODY

17 /27

State fUZZi ng algorith m seeds that have triggered core logic transitions

are more likely to be chosen

e Procedure RECV HEADERS

T
1. save the inputs that trigger new
state transition RECV BODY
2. assign more energy on the
“core-logic” state sequences
C___END_STREAM > REQ_PENDING

3. correlate input bytes and state
transitions, giving more
opportunities on mutating these SEND_HEADERS
bytes 80% ~ 99%

SEND_BODY

1% ~ 20%

18 /27

State fuzzing algorithm

* Procedure —>

1. save the inputs that trigger new
state transition
2. assign more energy on the “core-
logic” state sequences w

3. correlate input bytes and state
transitions, giving more
opportunities on mutating these
bytes

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

19 /27

State fuzzing algorithm

» Procedure —>

1. save the inputs that trigger new
state transition
2. assign more energy on the “core-
logic” state sequences w

3. correlate input bytes and state
transitions, giving more
opportunities on mutating these
bytes

seed t N I S S N N A N

mutated t A A S I U) A I

RECV_HEADERS

RECV_BODY

REQ_PENDING

SEND_HEADERS

SEND_BODY

20 /27

State fuzzing algorithm

+ Procedure < mE > meovmabms

1. save the inputs that trigger new
state transition
2. assign more energy on the “core-
logic” state sequences
C__END.STREAM >
opportunities on mutating these

3. correlate input bytes and state
transitions, giving more
bytes
seed t [N A N

new
transition!

mutated t A A S I U) A I

21 /27

State fuzzing algorithm

+ Procedure < mE > meovmabms

1. save the inputs that trigger new
state transition
2. assign more energy on the “core-
logic” state sequences
C__END.STREAM >
opportunities on mutating these

3. correlate input bytes and state
transitions, giving more
bytes
seed t [N A N

new
transition!

mutated t A A S I U) A I

* A \ mutate only these bytes

~_ when t’ is selected next time 22 /27

Evaluation setup

e Jarget programs
* run 20 times for each target program

e fuzz 23 hours for each run

Program Protocol
H20 HTTP
MbedTLS SSL/TLS
OpenSSL SSL/TLS
Curl Several
Gstreamer Custom
Live555 RTSP
Owntone DAAP
DCMTK DICOM

23 /27

Evaluation: state transition coverage

 Measure the number of state transition sequences in the State Transition Tree

m AFLNet ___lLibFuzzer __JON ____SGFuzz___Factor ___

70.80 91.85 1849.30 25l

MbedTLS - 22.80 32.45 50.80)0
Curl - 150.25 375.75 14630.80 97.3
Gstreamer - 49.40 134.20 4067.30 82.3
OpenSSL 13.25 23.95 29.60 33.10 1.4
Live555 138.27 184.15 405.3 1162.30 6.3
OwnTone 1.00 46.40 426.00 930.15 20.0
DCMTK 68.10 189.25 267.50 6737.05 35.6
Avg: 33.9x

On average, SGFuzz covers state transition sequences 30 times more than
the baseline LibFuzzer.

24 /27

Evaluation: state identification effectiveness

e 99.5% nodes are related to the true states.

. State Transition Tree
Subject

H20
MbedTLS
Curl
Gstreamer
OpenSSL
Live555
OwnTone
DCMTK

6418
167
35690
11240
817
17446
3671
27178

6417
167
35629
11224
789
17446
3671
27109

99.98%
100.00%
99.83%
99.86%
96.57%
100.00%
100.00%

99.75%
Avg: 99.50%

25 /27

Evaluation: new bugs

 Found 12 previously unknown bugs in 23 hours, and 10 of 12 are stateful
bugs

Subject _Nersion _yoe __________________________________ Soteful

ive555 1.08 Stack-based overflow in liveMedia/MP3FileSource.cpp v CVE-2021-38380
ive555 1.08 Heap use after free in liveMedia/MatroskaFile.cpp v CVE-2021-38381
ive555 1.08 Heap use after free in liveMedia/MPEG1or2Demux.cpp v CVE-2021-38382
ive555 1.08 Memory leak in liveMedia/AC3AudioStreamFramer.cpp v CVE-2021-39282
Live555 1.08 Assertion in UsageEnvironment/UsageEnvironment.cpp v CVE-2021-39283
ive555 1.08 Heap-based overflow in BasicUsageEnvironment/BasicTaskScheduler.cppv’ CVE-2021-41396
ive555 1.08 Memory leak in liveMedia/MPEGlor2Demux.cpp v CVE-2021-41397
OwnTone 28.2 Heap use after free in src/misc.c X CVE-2021-38383
DCMTK 3.6.6 Memory leak in dcmnet/libsrc/dulparse.cc X CVE-2021-41687
DCMTK 3.6.6 Memory leak in decmnet/libsrc/dulparse.cc v CVE-2021-41688
DCMTK 3.6.6 Heap use after free in demqrdb/libsrc/dcmaqrsrv.cc v CVE-2021-41689
DCMTK 3.6.6 Heap-based overflow in dcmnet/libsrc/diutil.cc v CVE-2021-41690

26 /27

Conclusion

* Present Stateful greybox fuzzer (SGFuzz)

* automatically identify and monitor state of target program

 Show SGFuzz outperforms baseline fuzzers in terms of state transition
coverage

e covers 30 times more than the baseline LibFuzzer

e Show the effectiveness of state identification

* On average, 99.5% nodes are related to the true states

27 /27

