
Grasp: Hardening Serverless Applications through Graph
Reachability Analysis of Security Policies
Isaac Polinsky

North Carolina State University
Department of Computer Science

Raleigh, NC, United States
ipolins@alumni.ncsu.edu

Pubali Datta
University of Massachusetts Amherst
Department of Computer Science

Amherst, MA, United States
pdatta@umass.edu

Adam Bates
University of Illinois Urbana-Champaign

Department of Computer Science
Champaign, Illinois, United States

batesa@illinois.edu

William Enck
North Carolina State University
Department of Computer Science

Raleigh, NC, United States
whenck@ncsu.edu

ABSTRACT

Serverless computing is supplanting past versions of cloud comput-
ing as the easiest way to rapidly prototype and deploy applications.
However, the reentrant and ephemeral nature of serverless func-
tions only exacerbates the challenge of correctly specifying security
policies. Unfortunately, with role-based access control solutions
like Amazon Identity and Access Management (IAM) already suf-
fering from pervasive misconfiguration problems, the likelihood of
policy failures in serverless applications is high.

In this work, we introduce Grasp, a graph-based analysis frame-
work for modeling serverless access control policies as queryable
reachability graphs. Grasp generates reusable models that repre-
sent the principals of a serverless application and the interactions
between those principals. We implement Grasp for Amazon IAM
in Prolog, then deploy it on a corpus of 731 open source Ama-
zon Lambda applications. We find that serverless policies tend to
be short and highly permissive, e.g., 92% of surveyed policies are
comprised of just 10 statements and 30% exhibit full reachability be-
tween all application functions and resources. We then use Grasp to
identify potential attack vectors permitted by these policies, includ-
ing hundreds of sensitive access channels, a dozen publicly-exposed
resources, and four channels that may permit an attacker to exfil-
trate an application’s private resources through one of its public
resources. These findings demonstrate Grasp’s utility as a means
of identifying opportunities for hardening application policies and
highlighting potential exfiltration channels.

CCS CONCEPTS

• Security and privacy → Distributed systems security; Access
control; Web application security.

KEYWORDS

Serverless Computing; Access Control; Security Policy Analysis

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05
https://doi.org/10.1145/3589334.3645436

ACM Reference Format:

Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck. 2024. Grasp:
Hardening Serverless Applications through Graph Reachability Analysis of
Security Policies. In Proceedings of the ACMWeb Conference 2024 (WWW ’24),
May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3589334.3645436

1 INTRODUCTION

Serverless computing has revolutionized how cloud-based appli-
cations are developed and deployed. The serverless computing
paradigm enables developers to focus on writing code that is up-
loaded to cloud providers as well-defined executable units called
functions. The complexities of scaling functions and hardware to
meet demand, load balancing traffic across functions, and system
security updates are all handled transparently by the cloud provider.
However, serverless faces unique challenges as compared to tradi-
tional cloud computing. In comparison to monolithic applications,
serverless lays bare the control flow of web applications creating
the opportunity to perform finer-grained authorization of activities.
At the same time, the serverless paradigm introduces many more
security principals in comparison to a monolithic web application,
increasing the difficulty of correctly specifying a least-privilege se-
curity policy. Consider Amazon’s Identity and Access Management
(IAM) [11], which can broadly be seen as a role-based access con-
trol model for the Amazon family of web services. IAM policies are
already notoriously difficult to maintain, with a 2021 threat report
finding that the majority of surveyed clients (over 63%) granted
excessive permissions in their IAM policies [45]. In fact, IAM mis-
configuration also played a role in the catastrophic SolarWinds
breach [23]. Worse, policy misconfiguration is also extraordinar-
ily costly to cloud customers, with a 2020 report estimating that
misconfigurations have cost companies over 5 trillion USD [30].
Given these existing difficulties, how can we expect developers to
make proper use of IAM in serverless environments, where policy
specification is even more complex?

In this work, we present Grasp, a system for analyzing serverless
security policies for potential misconfigurations. Grasp takes as
input an application specification and security policy, both of which
are already defined in serverless metadata (e.g., serverless.yaml).
It then produces a reachability graph that describes the permitted

1644

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645436
https://doi.org/10.1145/3589334.3645436
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645436&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck

interactions between application components. This graph can be
queried to identify publicly-accessible resources as well as channels
(paths) through which an attacker may be able to reach private
resources. Using the reachability graph, developers can use queries
to identify potential policy errors, e.g., Function X should not be
able to invoke Function Y, Resource 1 should not be accessible to
Function Z. After identifying such errors, the policy can then be
manually updated with minimal effort – usually by updating just
a handful of statements. Further, these graphs can also be used
to identify functions that should be regularly audited due to high
amounts of necessary privilege, or to understand how changes to
the policy would impact the application’s security posture. We im-
plement Grasp for AWS Lambda, Amazon’s serverless framework
that accounts for roughly 75% of the serverless market [24]; further,
because Grasp is based on the open serverless.yaml standard, it
can be easily extended to support additional frameworks such as
Azure, Google Cloud, and many others [49].

Grasp complements the capabilities of existing IAM policy anal-
ysis and verification tools, many of which have been developed by
Amazon itself. Their Zelkova tool uses an SMT solver to query
IAM policies, such as enumerating the subjects with permission to
access a given resource [14]. Their publicly available IAM Access
Analyzer provides a simplified abstraction for Zelkova, allowing
developers to specifically query the subjects that have access to
a given resource [12, 13]. Also built on a single class of Zelkova
queries, their Block Public Access tool detects when an S3 datas-
tore is accidentally made publicly accessible [18]. While Grasp can
also answer these resource accessibility queries, its distinguishing
feature is its ability to reason about emergent security issues in
serverless attacks. Given attackers’ ability to compromise functions
[37, 44], perform event injection [20, 36], and identify subsequent
targets with desirable IAM privileges [43], it is insufficient to enu-
merate the subjects that can access an object; one must also consider
the subjects that can indirectly access objects through an intermedi-
ary subject. Grasp assumes that all functions may be compromised,
and thus how an adversary can accumulate permissions through
multiple colluding functions. Consider the least privilege policy
(lower-right) in Figure 1. If we asked Zelkova “Can functionA read
from UploadBucket (the database)?” it would answer “No.”, whereas
Grasp would answer “functionA can read from UploadBucket via
functionB.” While Zelkova and its variants implicitly assume per-
fect application integrity, Grasp can identify and explain these
relationships through graph reachability models.

To evaluate Grasp, we collected a dataset of 731 AWS Lambda ap-
plications enabling us to perform the first empirical study of serverless
security polices. We first confirmed that the trend to specify over-
privileged IAM policies appears to have continued in serverless –
90% of applications only specify a global policy (i.e., no fine-grained
permissions), 92% of policies contain 10 or fewer statements, and
30% of policies permit full connectivity between all application
functions and resources. We then leveraged Grasp’s various query
capabilities to identify more nuanced threats. For example, we
identified 14 applications with publicly-accessible resources, 227
applications with a potential attack vector for sensitive data ac-
cess, and 4 applications with attack vector through which a private
resource may be indirectly exfiltrated through a public resource
within the same application. We supplement our analysis with four

A
B
C
D

A
B

C D

service: SlsApp
provider:
name: aws
iamRoleStatements:
- Effect: allow
Actions: ‘*’
Resource: ‘*’

functions:
functionA:
…

…
functionD:
…

resources:
Resources:
UploadBucket:
Type:

AWS::S3::Bucket
Properties:
BucketName:

UploadBucket
AccessControl:

PublicRead
…

UsersTable:
Type:

AWS::Dynamodb::Table
Properties:
TableName:

UsersTable
…

Actual Reachability Graph

Least-Privilege Reachability Graph

Figure 1: Example of a Serverless Framework YAML defini-

tion with a global policy with wildcards and the resulting

reachability graph.

case studies of popular open source serverless applications where
a manual review of the application, combined with Grasp’s anal-
ysis, unearthed opportunities for dramatic privilege reduction. In
summary, this work makes the following contributions:
• We define a logic-based reachability graph model for reasoning
about serverless applications security policies. We define platform-
agnostic primitives for functions, resources, and permissions, as
well as relationships that capture the flow of data and execution.
Our analysis engine identifies common misconfigurations (e.g.,
public resources) and potential attack paths to private resources.

• Open Source Serverless Dataset. We collect a dataset of 1,649 open
source serverless application repositories, including 731 appli-
cations with valid IAM security policies. Grasp code, data and
collection scripts are available on GitHub1.

• First empirical study of serverless security policies. We leverage
Grasp to provide the first glimpse into serverless application se-
curity within open source software. Our analysis uncovers wide-
spread use of overprivileged global policies and high levels of
connectivity between application components. Through several
case studies, we verify cases of overprivilege in popular web-
apps, including an application hosted by the US Cybersecurity &
Infrastructure Security Agency.

2 BACKGROUND AND MOTIVATION

Global vs. Function Policies: To restrict access to sensitive data
or internal services, serverless application developers specify access
control policies. The two primary methods of setting permissions
are through individual function policies or “global” policies that
apply to all functions. Intuitively, a global policy is prone to over-
privilege, granting individual functions access to permissions that
are not strictly needed in order for them to operate. On the other
hand, a policy comprised of a large number of individual function
policies becomes more difficult to reason about. Both policy types
can be deployed in tandem within a single application, in which
case the function-level policy supersedes the global policy.

Wildcards: Serverless policies consist of subjects (e.g., functions),
objects (e.g., resources), and permissions granted to a subject to

1https://github.com/wspr-ncsu/grasp

1645

https://github.com/wspr-ncsu/grasp

Grasp: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies WWW ’24, May 13–17, 2024, Singapore, Singapore

operate on an object. Each of these components can be specified in
two ways: (1) explicitly named, or (2) using wildcards. For example,
FuncA is an explicitly named subject and Func* and * are wildcard
subjects that match multiple subjects. Wildcard permissions are
often used by developers to avoid access control issues during
development when they are unsure which permissions are needed
to access an object. Unfortunately, the use of wildcards can result
in subjects with unintended permissions on an object.

Managed Policies. Managed policies are policies maintained by
cloud providers and they group common permissions to assist devel-
opers whomay not fully understand how to properly define a policy
for their environment. While managed policies are an improvement
over wildcard permissions, managed policies may still include per-
missions that may not be needed by the application. Further, they
introduce a new problem. As these policies are not controlled by
the developer themselves, any changes to the policy can have unin-
tended consequences and reasoning about these changes is difficult.
For example, in December 2021 AWS inadvertently included S3:Ge-

tObject permission to the AWSSupportServiceRolePolicy managed
policy, which should only have metadata visibility [2].

OurApproach: In this work, we propose that IAM security policies
are best analyzed through reachability graphs that describe the
permissible interactions between application components. Figure 1
depicts an example of how to translate an application manifest
into a reachability graph. In the left a simplified Serverless YAML
file is shown that describes four functions and two resources. It
can also be seen in the iamRoleStatements field that the policy
is fully permissive, allowing all actions on all resources. However,
even in this simplified example, it is clear that reasoning about
authorizations by reading raw policy statements would become
challenging as applications and policies grow in complexity. Grasp
models the policy as a reachability graph in which vertices are
functions or resources while an edge denotes a particular action
permitted between the two vertices, as shown in the right side of
Figure 1. Of course, this reachability graph is also an information
flow graph, well-known primitive for reasoning about complex
interactions between principals in access control models [21, 26, 46].

3 GRASP

We now present Grasp, a system that comprehensively models
serverless application specifications and security policies.

Threat Model and Assumptions: This work considers an adver-
sary external to the cloud provider. This attacker’s capabilities are
based on the widely-established presence of bugs in both serverless
function code and policy configurations – prior work has shown
that policy misconfigurations enable attackers to steal sensitive
information [29, 43], launch denial-of-service (or denial-of-wallet)
attacks [1, 54], and otherwise break isolation [16]. These policy mis-
configurations are exacerbated by the presence of software bugs
that combine to enable event injection attacks [20, 36, 44], arbitrary
code execution [52], and data exfiltration [37, 38].

We assume there are no vulnerabilities in the cloud platform’s ac-
cess control mechanisms that enable unauthorized users to interact
with private functions and resources. By extension, we assume that
the security policies enforced by the platform cannot be modified

or changed by the adversary; any misconfiguration of the policy
is the result of developer error. As a result, the adversary can only
interact with functions and resources declared as public by the
application’s security policy. We make no assumption about the
functions and resources themselves.

Design Challenges: Grasp computes a reachability graph that ex-
plains the function-resource interactionswithin a serverless applica-
tion. The goal is enabling developers to identify misconfigurations
and critical paths in their application, allowing them to correct the
policy and prioritize hardening their application against adversaries.
Our approach also needs to address the gaps left by prior work
where systems do not support serverless environments [27, 28] or
assume function integrity [12–14, 42]. To accomplish this goal, we
must overcome the following challenges:

• Serverless applications use a multitude of methods to interact be-
tween functions and resources. Functions can directly invoke an-
other function or indirectly invoke another function through
triggering an event. Further, functions may interact with cloud
infrastructure (e.g., data storage, virtual machines, event queues,
etc.) allowing functions to propagate state between each other
using intermediary resources.

• Serverless application IAM Policies are defined using multiple ab-
stractions. Function IAM policies can be defined globally for all
functions in an application, individually on functions, or a mixture
of both. Policies may be represented as a list of statements, as
reusable user-defined roles, or provider-managed roles. Further,
policies on a resource may also dictate what components in a
serverless application can access that resource.

• Serverless applications use proprietary cloud service APIs that are
security relevant. Each cloud provider offers proprietary services
(e.g., storage, message/event queues, compute instances) and each
service has unique set of APIs and permissions that enable access
to invoke the different APIs (e.g., StartInstances and StopInstances
actions for EC2) within that service.

Overview: Figure 2 depicts an overview of the architecture for
Grasp. The primary design components are the (1) Knowledge
Extractor (§3.1), (2) Serverless Access Control Model (§3.2), (3) Policy
Reasoner (a Prolog engine), and (4) Security Query Interface (§3.3).

The Knowledge Extractor takes a Serverless Application Man-
ifest and an IAM Policy as inputs and extracts facts. Functional
semantics of the serverless application (e.g., functions, resources,
and event triggers) are extracted from the application manifest and
the permission semantics are extracted from the IAM policy. These
facts create a base model for a serverless application that is fed into
the Policy Reasoner engine.

This base model is then extended with a Serverless Access Con-
trol Model which is an abstraction built on top of the base model
to describe higher level security concepts. These concepts are ex-
pressed as Prolog rules and capture the permissible flows of data in
the serverless application, such as reading and writing resources,
invoking other functions, and accessibility from the public Internet.
There are broadly three categories of flows in serverless– (1) control
flows occur when a function or public user can invoke a function,
(2) data flows occur when a function or public user can write to
a service that another function can read from and (3) event flows

1646

WWW ’24, May 13–17, 2024, Singapore, Singapore Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck

Reachability Graph

A
Public

C D

2

3 E

1

B

4

Serverless
Application

Manifest
IAM Policy

Knowledge
Extractor

Policy
Reasoner

Serverless
Access Control

Model

Security
Queries

Invoke Path

Event Trigger Path

Read/Write Path

Resource

Attack Path

Function

Figure 2: Overview Architecture of Grasp.

occur when a function or public user can generate some event (e.g.,
upload file) that automatically triggers another function to execute.

After populating the Policy Reasoner with facts output by the
Knowledge Extractor and Serverless Access Control Model, the Secu-
rity Query interface answers security-related queries in the form
of reachability graphs. The resultant reachability graph is a set of
nodes and edges where nodes represent functions and resources,
edges represent flows enabled by the IAM Policy, and an attack path
is a possible path from a public node to a given resource. The reach-
ability graph describes potentially vulnerable configurations (e.g.,
publicly readable/writeable storage) and attack paths to a private
resource (e.g., paths from a public user over the Internet to inter-
nal resources using other primitives as pivot points). This enables
developers to identify errors in their application specification (e.g.,
a resource that should not be public) and high-risk areas in their
application that should be scrutinized through careful code review
(e.g., a highly privileged function with access to private resources
that accepts data from untrusted users).

3.1 Knowledge Extractor

The Knowledge Extractor generates application semantics from the
application manifest and permission semantics from the IAM policy.

3.1.1 Modeling Application Semantics. Our serverless application
model represents functions, resources, and event triggers. These
primitives are translated into core facts representing the functional
semantics of the serverless application.

Functions: Function-facts capture two pieces of information (1)
name: the unique identifier for the function and (2) public_invoke: if
true the function can be invoked over the Internet by unauthorized
users, and if false the function can only be invoked by authorized
users using the Web GUI or CLI.
f u n c t i o n (name , pub l i c _ i n vok e) .

Resources: Resource-facts capture four pieces of information: (1)
type: the type of resource (e.g., s3 buckets or dynamodb tables), (2)
name: the unique identifier for the resource, (3) public_read: re-
source is publicly readable if true, and (4) public_write: resource is
publicly writeable if true.
r e s ou r c e (type , name , pub l i c _ r e ad , p u b l i c _w r i t e) .

Events: Event-facts capture a resource that generates an event and
a function that is triggered in response to the event. An event-fact
may include a specific action on a resource. For example, the AWS
Simple Notification Service (SNS) can trigger a function each time
a new notification is written to the SNS queue. The fact for this

event requires only a SNS resource identifier and the name of the
triggered function. In contrast, the fact for S3 events considers an
action in addition to the resource and triggered function identifiers.
Example S3 actions are s3:PutObject and s3:CreateBucket.
event_sns_msg (sns_s t ream , t r i g g e r e d _ f n) .
e v en t _ s 3 (s 3 _ a c t i on , bucket_name , t r i g g e r e d _ f n) .

3.1.2 Modeling Access Ccontrol Semantics. Permissions to access
non-public resources are captured through the different access
control primitives described below.

Permission: Permission-facts capture three pieces of information:
(1) the function the permission is granted to, (2) the permission
being granted, and (3) the target resource of the statement. The per-
mission and resource fields may contain wildcard, which matches
all values.
pe rm i s s i on (f unc t i on , pe rmi s s ion , t a r g e t) .

Resource Access: Defining if a function has read or write access
to a resource not only requires knowledge of its permissions but
also knowledge of the permissions that enable reading and writ-
ing for a particular resource type. This knowledge is provided as
read and write permission facts. These facts are model constants
specific to a cloud provider and are identified from the provider
documentation. Each fact has two values: (1) the service type and
(2) the permission name. The following facts are examples of read
and write permissions for the AWS S3 service.
read_perm (' s3 ' , ' s3 : GetObjec t ') .
wr i te_perm (' s3 ' , ' s3 : Pu tOb jec t ') .

Rules defining if a function can read or write a resource use the
permission, read_perm, and write_perm facts above and take four
values: (1) a function identifier, (2) a resource type, (3) a resource
identifier, and (4) a permission. For read access, the rule checks
for values, such that, there exists a read_perm on a given resource
that enables reading and there is a permission defined for a given
function granting the read permission on the resource target. Write
access is resolved similarly.
can_read (Func , ResType , Resource , Perm) : −

read_perm (ResType , Perm) ,
p e rm i s s i on (Func , Perm , Resource) .

c an_wr i t e (Func , ResType , Resource , Perm) : −
wri te_perm (ResType , Perm) ,
p e rm i s s i on (Func , Perm , Resource) .

3.2 Serverless Access Control Model

The Serverless Access Control Model extends application and access
control semantics into flow semantics, allowing developers to reason
transitively across functions. We define three types of flows.

1647

Grasp: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies WWW ’24, May 13–17, 2024, Singapore, Singapore

Control Flows: These flows occur when a function or public user
can pass data by invoking another function. Control flows initiated
publicly are captured by the function(· · ·) fact described above.
Control flows for internal functions are represented by a rule with
two values: an initial function A and a target function B. Using these
values, the control flow rule finds a function with the given initial
function name and having a permission to invoke the target func-
tion (e.g., ’lambda:InvokeFunction’ for AWS Lambda applications).
Note, as a minor optimization we require that the target function
is not publicly accessible; otherwise the control flow could use the
public endpoint directly.
c on t r o l _ f l ow (A , B) : −

f u n c t i o n (A , _) , f u n c t i o n (B , f a l s e) ,
p e rm i s s i on (A , ' lambda : InvokeFunc t ion ' , B) .

Data Flows: These flows occur when a function or public user
can write to a service that another function can read from. Data
flows are represented by a rule with five values: an initial function
A, a target function B, a resource name used to pass data, a write
permission used by A to write to the resource, and a read permission
used by B to read from the resource. Using these values, the rule
finds an initial function that can write to the resource and a target
function that can read from the resource.
da t a_ f l ow (A , B , Resource , A_Perm , B_Perm) : −

f u n c t i o n (A , _) , f u n c t i o n (B , f a l s e) ,
r e s ou r c e (Type , Resource , _ , f a l s e) ,
c an_wr i t e (A , Type , Resource , A_Perm) ,
can_read (B , Type , Resource , B_Perm) .

Event Flows: Event flows occur when a function or public user can
generate an event that triggers a function to execute. Event flows are
represented by a rule with five values: an initial function A, a target
function B, a shared resource, an action on that resource, and an
event generated by the resource given the action. As an example, we
discuss how an SNS resource can be used in an event flow. For SNS
resources, publishing new notifications to the resource is an action
that generates a new message event. Using the values described
previously, the rule finds an initial function A, a target function B

and an SNS queue. Next the rule finds a permission that enables
A to write to the SNS queue. Finally, the rule verifies that when a
publish action occurs on the resource from A, function B is triggered.
Note that the Action and the Event values are used to construct a
human readable description of the flow.
even t_ f l ow (A , B , Resource , Act ion , Event) : −

f u n c t i o n (A , _) , f u n c t i o n (B , f a l s e) ,
r e s ou r c e (' sns ' , Resource , _ , f a l s e) ,
c an_wr i t e (A , ' sns ' , Resource , _) ,
event_sns_msg (Resource , B) ,
Ac t ion = ' sns pub l i sh ' ,
Event = ' sns new message ' .

3.3 Security Queries

Our model allows application developers to define queries to un-
derstand the security implications of their application’s IAM policy.
Security queries define a reachability graph of resources that can
be accessed publicly or through other functions either directly or
indirectly. Figure 2 shows that the queries can be viewed as operat-
ing on a graph where functions and resources are nodes, and edges
encode the flows. These queries highlight functions that need to be
hardened to secure access paths to sensitive resources, and explains
how modifications to an application’s IAM policy change what re-
sources can be accessed. In our evaluation, we focus on three types

of security queries implemented using the primitives defined before
– (1) detecting publicly exposed components; (2) computing read,
write, and read/write paths; and (3) computing paths for exfiltrating
private data to public resources. Implementation details of these
queries are described in Appendix B.

4 IMPLEMENTATION

We implemented Grasp to analyze security policies of AWS Lambda
applications created with the Serverless Framework. Grasp users
input their Serverless YAML definition to the Knowledge Extractor
(Figure 2) to create application specific facts, then pass these facts
along with the core knowledge base as input to the analysis engine.
Users then perform queries to analyze their application’s policy.

Grasp comprehensively supports Amazon Lambda configuration
fields as defined in the AWS documentation. The Knowledge Extrac-
tor was implemented in Python using the checkov [6] AWS Lambda
Serverless YAML parser. The generator takes a Serverless YML file
as input and outputs SWI-Prolog facts. Because we are analyzing
application configurations in an offline setting, extra care is taken
with configuration values that are dynamically resolved, such as
environment variables or command line arguments. If such values
are referenced, the unresolved value is treated as a string literal
throughout analysis. This is a limitation of performing offline anal-
ysis on a large dataset and is discussed further in Appendix C. Once
fully parsed, the serverless definition is used to build the knowledge
base. Appendix A describes special implementation considerations
in generating the facts for our experiments.

5 OPEN SOURCE SERVERLESS DATASET

Although serverless success stories are prominently advertised in
industry [5, 7, 8], these applications are proprietary and thus not
available for analysis. As we are not aware of any public dataset of
serverless applications, we create the first such dataset based on
the serverless applications available on GitHub. This dataset will
be made publicly available upon publication.

Data Collection: Our collection tool was a GitHub scraper written
in Python and focused on applications built using the Serverless
Framework [3], a popular framework for building serverless appli-
cations for deployment on the major cloud providers. In order to
identify whether a repository contained a serverless application,
the scraper searched for a Serverless Framework definition file.

The GitHub scraper collected data in two phases. In the first
phase, the scraper identified all projects on GitHub with at least 10
stars (an indicator of popularity) to filter out low quality applica-
tions. Phase 1 was performed over a 2 day period from 9/16/2021 to
9/17/2021. During this time the scraper identified 1,292,868 reposito-
ries with at least 10 stars. It was estimated that there were 1,374,108
repositories at this time but networking limitations prevented the
full collection. Factoring in the popularity indicator in application
selection ensures that the dataset remains valid for further research
in future. For example, the Cisagov/Crossfeed application had 135
stars in 2021 which increased to 329 stars in 2023.

In the second phase, the scraper searched the identified reposito-
ries for a Serverless Framework YAML definition (e.g., serverless.yml)
using the GitHub API. Phase 2 was performed over a 8 day period
from 9/29/2021 to 10/6/2021. Of the 1.3 million repositories, 1,649

1648

WWW ’24, May 13–17, 2024, Singapore, Singapore Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck

contained a serverless application. Of the serverless application
repositories, 578 (35%) of the projects defined an IAM policy. Within
the repositories that contained an IAM policy, we identified 1,064
serverless.yml files, 731 (68.7%) parsed without error.

Parsing Failures. We manually reviewed the 343 (31.3%) configu-
ration files that encountered parsing errors. 289 failures were due to
invalid configuration files causing the underlying parser [6] to fail.
The remaining 54 files query a live API, e.g., using Fn::ImportValue.
Because we do not have access to these API’s, we configured Grasp
to throw a warning and abort in these cases. In practice, however,
developers will be able to access their own API’s, so this limitation
is experimental rather than methodological.

Remarks: Our scrape of GitHub serverless applications identified
three classes of IAM policies that will become relevant in the re-
mainder of our analysis. Of the 731 applications, security policy
is specified in one of the following three ways: (1) DS1: Applica-
tions defining only a global IAM policy for functions (658 total).
(2) DS2: Applications only defining function-specific IAM policies
(49 total). (3) DS3: Applications using a composition of global and
function-specific policies (22 total).

Applications in DS1 necessarily define a course-grained policy
due to the fact that all functions possess the same permissions. In
contrast, applications in DS2 and DS3 may define finer-grained
permissions such that not all functions possess the same privilege
set. In the following section, we explore the repercussions of coarse-
grained security policies.

6 CHARACTERIZING SERVERLESS SECURITY

POLICIES

Using our dataset of open source serverless applications, we now
leverage Grasp to provide further insight into the security policies
defined for AWS Lambda applications.

6.1 Application Complexity

We begin by describing the complexity of applications in terms
of the number of functions and data resources identified in their
reachability graphs. The cumulative density of functions per appli-
cation is given in Figure 3a. While up to 35 functions were seen in a
single serverless application, the vast majority of applications (91%)
have 5 or fewer functions. Across the three data sets, 608 (92%) of
DS1, 38 (77.6%) of DS2, and 17 (77%) of DS3 applications have 5 or
fewer functions defined.

The cumulative density of data resources per application is given
in Figure 3b. As with function definitions, we observe a long tail
in which some applications define up to 14 distinct data resources.
That said, 721 (99%) applications have 5 or fewer resources and the
median number of resources per application is just 1. A notable
number of applications (224) define no resource at all, leaving just
485 in our dataset with at least one resource. Interestingly, many
more applications in the DS2 group feature no resource at all as
compared to the DS1 and DS3 groups.

6.2 Policy Complexity

Statement Density: Figure 3c describes the number of policy state-
ments per application by policy type (Global-Only, Function-Only,

Global and Function). Developers can define statements that de-
scribe a single permission on a single resource and more complex
statements that describe a list of permissions on a list of resources.
The latter is actually translated by IAM into a cross product of
individual statements between the permissions and resource lists.
For our analysis we count the individual number of statements
generated as a result of these expanded statements, when appli-
cable. As can be seen, the vast majority of policies (𝑛=670, 92%)
are comprised of 10 or fewer statements. In fact, policies contained
10 or fewer statements in 91.8% of DS1 (𝑛=604), and 96.0% of DS2
(𝑛=47), and 86.4% of DS3 (𝑛=19). The largest observed policy was
in DS3, comprised of 76 statements.

Function-Resource Connectivity: The permissiveness, or con-
nectivity, of a given application could be described as the number
of authorized function-to-resource flows relative to the number
of possible function-to-resource flows. Specifically, we calculate
an application’s connectivity ratio as |Function-to-Resource Flows |

|Functions | · |Resources | . Fig-
ure 4 reports on the cumulative density of connectivity ratios in
our dataset, considering both direct connections and indirect con-
nections. Over 30% of applications have a connectivity ratio of 1,
indicating a highly permissive security policy.

Wildcards: Recall that, in a given policy statement, wildcards can
be used in one or both of the permission or resource fields. We
distinguish between two kinds of wildcard use in our analysis: (1)
a full wildcard (i.e., *) and (2) a partial wildcard (e.g., s3:*). The use
of wildcards can not only lead to overly permissive policies by in-
troducing unintended permissions, they also make reasoning about
the correctness of a policy more difficult. Fortunately, Grasp is able
to precisely quantify the effect of these wildcards by expanding
wildcards into concrete statements applied on a subject and object.

Across all applications, 6 policy statements featured a full wild-
card permission and 347 statements featured a full wildcard re-
source. We observed 2 statements in which a full wildcard permis-
sion was granted to a full wildcard resource. For partial wildcards,
we found 160 policy statements in which they were used in the
permissions field and 41 statements in which they appeared in the
resources field. We observed just 1 statement that featured a par-
tial wildcard permission to a partial wildcard resource. However,
collapsing across the two wildcard types, we observed a total of
130 policy statements in which a wildcard permission was specified
for a wildcard resource. This once again stresses the potential of
creating overly permissive policies and enabling functions to access
resources or other functions with no legitimate business purpose.

6.3 Grasp Queries

Publicly Exposed Components: Fully public application com-
ponents are very sensitive because they are directly accessible by
attackers. Of the 485 applications that define at least one resource,
346 contain only privately-defined resources. Of the 476 applica-
tions that define a publicly invocable function, 342 (71.8%) also
define a private resource. Verifying the correctness of security pol-
icy is especially important in these cases, as permissive policies may
permit indirect access to the private resource. Data resources that
are directly accessible are also sensitive. We identify 13 applications
with a read-only public resource, 1 with a public read-write resource,

1649

Grasp: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies WWW ’24, May 13–17, 2024, Singapore, Singapore

0 5 10 15 20 25 30 35
Number of Functions

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

All Applications
Global Policy Only
Function Policy Only
Both Global and Function Policies

0 2 4 6 8 10 12 14
Number of Resources

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

All Applications
Global Policy Only
Function Policy Only
Both Global and Function Policies

0 10 20 30 40 50 60 70
Number of Statements

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

All Applications
Global Policy Only
Function Policy Only
Both Global and Function Policies

Figure 3: Figure 3a describes cumulative density of serverless functions per application. 91% of applications define 5 or fewer

functions. Figure 3b describes cumulative density of data resources per application. 99% of applications define 5 or fewer

resources. Figure 3c describes cumulative density of policy statements defined per application. 92% of applications define fewer

than 10 statements.

0.2 0.4 0.6 0.8 1.0
Connectivity Ratio

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Direct Connections
Indirect Connections

Figure 4: Cumulative density of connectivity ratios in the

analyzed Lambda applications.

and 0 with a write-only resource. A publicly accessible resource is
not necessarily a policy misconfiguration; for example, a readable
resource could host download images that could be directly linked
from other websites. However, carefully auditing public resources is
vital to application security. Grasp simplifies this task by unifying
distributed security policies into a single graph.

Read, Write, Read/Write Path: Non-public application resources
also may be vulnerable if a workflow path exists in which attacker-
controlled inputs cause the resource to be accessed. Grasp identified
227 applications that include at least one read path, 243 applications
that contained at least one write path, and 219 applications that
contained at least one read/write path. The existence of such paths
does not necessarily imply an IAM policy misconfiguration, but
does suggest that the components in the path must be considered
as part of the attack surface of the application. By enumerating
these paths, Grasp can enable the developer to comprehensively
audit permissions to determine if the discovered paths are strictly
necessary for the application’s business logic.

Exfiltrate to Public Resource: Even when attackers gain read
access to a private resource, they must identify a policy-permitted
method of exfiltrating the data. Grasp identified 4 applications that
contained a path in which a public user could invoke a publicly
accessible function to read from a private resource and then write

to a publicly readable resource. While the existence of these paths
do not guarantee a vulnerability, it is important that paths from
private resources to public resources be carefully audited.

Performance: We briefly remark on the speed of Grasp offline
policy analysis. Of the 731 application policies analyzed, all but
one finished in under a second. The remaining application was
a proof-of-concept application for storing time-based events in
DynamoDB2. Policy analysis for this application took 3.9 seconds.
Even in the most extreme cases, Grasp is able to return results for
an IAM policy extremely quickly.

6.4 Policy Hardening Case Study

Next we will explore the difference between an overly permissive
policy and a hardened policy through case studies. We selected four
practical applications that have recent GitHub activity. We describe
one of them in detail here, and discuss the rest in Appendix D.

The Shan18/Flash application creates an end-to-end Deep Learn-
ing platform that allows users to create, train, and deploy their own
neural network models. Grasp generated the paths to important re-
sources in Shan18/Flash application according to the original policy
defined within it. The original policy use global permissions and re-
veal a number of privilege violations when manually analyzed. We
describe our findings from analyzing Shan18/Flash below followed
by a suggested hardened policy for this application that adheres to
the principle of least privilege. The hardened policy was created
by manually reviewing the application source code and reviewing
which functions interacted with the public, other functions, and re-
sources. Only functions that accessed resources or other functions
in code were granted permissions that enabled them do so.

Shan18/Flash: The Flash application implements two service work-
flows, namely training and inference, consisting of eight functions
and two resources, as described in Figure 5. The described policy
of this application allows full global access to its resources and,
resulted in the access paths shown in the left side of Figure 5. Af-
ter examining these paths and reviewing the application code, we
found out that, only the train (f7) function requires full access to

2https://github.com/alessandrobologna/dynamodb-event-store

1650

https://github.com/alessandrobologna/dynamodb-event-store

WWW ’24, May 13–17, 2024, Singapore, Singapore Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck

Inference Service

f1

R2

R1

f2

f3 f4

Check Inference

Download Clean

Training Service

f5 f6

f7 f8

Start Stop

Train Status

Model Training
Resources

Server
Configuration

Inference Service

f1

R2

R1

f2

f3 f4

Check Inference

Download Clean

Training Service

f5 f6

f7 f8

Start Stop

Train Status

Model Training
Resources

Server
Configuration

Paths in Original Policy Paths in Suggested Hardened Policy

Read path

Write path

Read-Write
path

Resource

Function

R

f

Figure 5: Grasp discovered all access paths in original policies defined in the Shan18/Flash application as described in the

left-hand side of the figure, and helps in creating a hardened policy that only allows the intended access paths required as

shown in the right-hand side.

R1, i.e. the model training resources. Similarly, other accesses in the
original policy can be trimmed down to enforce only read accesses
for check (f1), inference (f2), and the download (f3) functions to R1;
write access for clean (f4) to R1 and read-write access for train (f7)
to R1; write access for start (f5) and stop (f6) functions to R2, i.e the
server configuration resource. Consequently, our suggested least
privilege policy following the Grasp-analysis dropped the number
of paths to 3 read paths, 3 write paths, and 1 read/write path.

Validation fromDevelopers:We contacted the repository owners
of the aforementioned four applications on Github through opening
an issue in their repository. Three of them acknowledged our raised
issues, and the Shan18/Flash application policy was updated by the
owner to restrict the overprivileged functions.

7 RELATEDWORK

Our work joins a rich literature that draws on formal methods to
analyze security policies and identify misconfigurations. We have
already highlighted prior analysis of IAM policies [12–14, 42]. Al-
ternative security modules such as Tomoyo [31] and SubDomain
[22] were specifically designed with the goal of enabling simpler
specification of coarser-grained policies. Wang et al. demonstrate
through their EASEAndroid system that policies can be automat-
ically refined using semi-supervised learning [53]. Some notable
works include verification of the security properties of SELinux
policies [32, 34, 50], mandatory access control security policy anal-
ysis to identify the attack surface of applications [51], to reduce
software measurements in attestation [33], and to reduce the num-
ber of subjects in auditing policies [17]. Beyond access control
policy analysis, formal methods have been employed for verify-
ing policy correctness [41], in privacy compliance [28, 48] and,
analyzing social network policies [39]. Our work is most clearly
distinguished from these past efforts through its explicit support for
serverless frameworks and ability to reason about complex attack
paths through indirect resource access.

Researchers have considered serverless flow control (e.g., Trapeze
[10], Valve [25], SecLambda [35]) and other access control models

(e.g., Will.IAM [47]) to deny suspicious access requests on-the-
fly. Orchestration frameworks have also been enhanced [19] with
security policy support for serverless applications. While not a
security mechanism in itself, Obetz et al.’s method of construction
call graphs of serverless applications [42] may identify security
vulnerabilities; note that these graphs are based on dynamic analy-
sis of serverless control flows, not policy-based information flow
graphs like Grasp’s. While not designed for serverless, Baig et
al.’s Cloudflow presents methods for cloud platform information
flow control through VM introspection [15], while McCune et al.’s
Shamon system demonstrates how to extend reference monitor
guarantees into distributed environments [40]. However, the above
works do not address the risks of policy misconfiguration in today’s
widely-used access control models such as Amazon IAM.

8 CONCLUSION

This work presented Grasp, an automated policy analysis frame-
work for serverless applications. Grasp defined a logic-based model
for serverless security policies that captures the flow of data and ex-
ecution within a serverless application. This model can then be used
to produce reachability graphs that identify potential misconfigura-
tions and paths to resources in an application. Using this framework,
Grasp performed the first empirical study of open source serverless
security policies. Our study discovered that serverless policies tend
to be short and highly permissive, e.g., 92% of surveyed policies com-
prised of just 10 statements and 30% of them had full reachability
among all application functions and resources. This study demon-
strates Grasp’s utility in identifying potential exfiltration channels
and lays the path forward for automated policy hardening.

9 ACKNOWLEDGEMENTS

This work was supported in part by NSF CNS 19-55228. The views
expressed are those of the authors only.

1651

Grasp: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES

[1] 2019. New Attack Vector - Serverless Crypto Mining. https://www.puresec.io/
blog/new-attack-vector-serverless-crypto-mining.

[2] 2021. AWSSupportServiceRolePolicy Informational Update. https://aws.amazon.
com/security/security-bulletins/AWS-2021-007/.

[3] 2021. Serverless Framework. https://www.serverless.com/.
[4] 2021. Serverless IAM Roles Per Function Plugin. https://github.com/

functionalone/serverless-iam-roles-per-function.
[5] 2022. AWS Lambda Customer Case Studies. https://aws.amazon.com/lambda/

resources/customer-case-studies/.
[6] 2022. checkov. https://www.checkov.io/.
[7] 2022. Google Cloud Cloud Functions Customers. https://cloud.google.com/

functions.
[8] 2022. Microsoft Customer Stories. https://customers.microsoft.com/en-us/

search?sq=%22Azure%20Functions%22.
[9] 2022. Terraform Cloud. https://cloud.hashicorp.com/products/terraform.
[10] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,

Thomas Schmitz, and Keith Winstein. 2018. Secure Serverless Computing Using
Dynamic Information Flow Control. Proc. ACM Program. Lang. 2, OOPSLA,
Article 118 (Oct. 2018), 26 pages. https://doi.org/10.1145/3276488

[11] Amazon Web Services. 2020. Identity and access management for AWS Lambda.
https://docs.aws.amazon.com/lambda/latest/dg/security-iam.html.

[12] Amazon Web Services. 2023. IAM Access Analyzer Guides You Toward Least-
Privilege Permissions. https://aws.amazon.com/iam/features/analyze-access/.

[13] John Backes, Ulises Berrueco, Tyler Bray, Daniel Brim, Byron Cook, Andrew
Gacek, Ranjit Jhala, Kasper Luckow, Sean McLaughlin, Madhav Menon, Daniel
Peebles, Ujjwal Pugalia, Neha Rungta, Cole Schlesinger, Adam Schodde, Anvesh
Tanuku, Carsten Varming, and Deepa Viswanathan. 2020. Stratified Abstraction
of Access Control Policies. In Computer Aided Verification, Shuvendu K. Lahiri
and Chao Wang (Eds.). Springer International Publishing, Cham, 165–176.

[14] John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek,
Kasper Luckow, Neha Rungta, Oksana Tkachuk, and Carsten Varming. 2018.
Semantic-based Automated Reasoning for AWS Access Policies using SMT. In
2018 Formal Methods in Computer Aided Design (FMCAD). 1–9. https://doi.org/
10.23919/FMCAD.2018.8602994

[15] M.B. Baig, C. Fitzsimons, S. Balasubramanian, R. Sion, and D.E. Porter. 2014.
CloudFlow: Cloud-wide Policy Enforcement Using Fast VM Introspection. In
Cloud Engineering (IC2E), 2014 IEEE International Conference on. 159–164. https:
//doi.org/10.1109/IC2E.2014.64

[16] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, NickMitchell, VinodMuthusamy, Rodric Rabbah, Aleksander Slominski,
and Philippe Suter. 2017. Serverless Computing: Current Trends and Open Problems.
Springer Singapore, Singapore, 1–20. https://doi.org/10.1007/978-981-10-5026-
8_1

[17] Adam Bates, Dave Tian, Grant Hernandez, Thomas Moyer, Kevin R.B. Butler, and
Trent Jaeger. 2017. Taming the Costs of Trustworthy Provenance through Policy
Reduction. ACM Trans. on Internet Technology 17, 4 (sep 2017), 34:1–34:21.

[18] Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek,
Liana Hadarean, Ranjit Jhala, Brad Marshall, Dan Peebles, Neha Rungta, Cole
Schlesinger, Chriss Stephens, Carsten Varming, and Andy Warfield. 2020. Block
Public Access: Trust Safety Verification of Access Control Policies. In Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (Virtual Event, USA)
(ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA,
281–291. https://doi.org/10.1145/3368089.3409728

[19] Giuliano Casale, Matej Artač, W-J van den Heuvel, André van Hoorn, Pelle
Jakovits, Frank Leymann, Mike Long, Vasilis Papanikolaou, Domenico Presenza,
Alessandra Russo, et al. 2020. RADON: rational decomposition and orchestration
for serverless computing. SICS Software-Intensive Cyber-Physical Systems 35, 1
(2020), 77–87.

[20] Check Point Software. 2019. A Deep Dive into Serverless Attacks, SLS-1: Event
Injection. https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-
event-injection/.

[21] D. D. Clark and D. Wilson. 1987. A comparison of military and commercial
security policies. In IEEE Symposium on Security and Privacy.

[22] Crispin Cowan, Steve Beattie, Greg Kroah-Hartman, Calton Pu, Perry Wagle, and
Virgil Gligor. 2000. SubDomain: Parsimonious Server Security. In Proceedings of
the 14th USENIX Conference on System Administration (New Orleans, Louisiana)
(LISA ’00). USENIX Association, USA, 355–368.

[23] Noam Dahan. 2020. Cloud infrastructure is not immune from the SolarWinds
Orion breach . https://securityboulevard.com/2020/12/cloud-infrastructure-is-
not-immune-from-the-solarwinds-orion-breach/.

[24] Datadog. 2022. The State of Serverless. https://www.datadoghq.com/state-of-
serverless/.

[25] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,
, and Adam Bates. 2020. Valve: Securing Function Workflows on Serverless
Computing Platforms. In Proceedings of The Web Conference 2020 (WWW ’20),
April 20–24, 2020, Taipei, Taiwan. Association for Computing Machinery, New

York, NY, USA. https://adambates.org/documents/Datta_Www20.pdf
[26] Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun.

ACM 19, 5 (May 1976), 236–243. https://doi.org/10.1145/360051.360056
[27] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. 2006. Specifying

and Reasoning about Dynamic Access-Control Policies. In Proceedings of the Third
International Joint Conference on Automated Reasoning (Seattle, WA) (IJCAR’06).
Springer-Verlag, Berlin, Heidelberg, 632–646.

[28] Eslam Elnikety, Aastha Mehta, Anjo Vahldiek-Oberwagner, Deepak Garg, and
Peter Druschel. 2016. Thoth: Comprehensive Policy Compliance in Data Re-
trieval Systems. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 637–654. https://www.usenix.org/conference/
usenixsecurity16/technical-sessions/presentation/elnikety

[29] Frederik Willaert. 2019. AWS Lambda Container Lifetime and Config Re-
fresh. https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-
refresh-frederik-willaert/.

[30] Jonathan Greig. 2020. 2020 Cloud Misconfigurations Report. https://divvycloud.
com/misconfigurations-report-2020/.

[31] Toshiharu Harada, Takashi Horie, , and Kazuo Tanaka. 2004. Task oriented
management obviates your onus on Linux. In Linux Conference, Vol. 3.

[32] Boniface Hicks, Sandra Rueda, Luke St.Clair, Trent Jaeger, and Patrick McDaniel.
2010. A Logical Specification and Analysis for SELinux MLS Policy. ACM Trans.
Inf. Syst. Secur. 13, 3, Article 26 (July 2010), 31 pages. https://doi.org/10.1145/
1805874.1805982

[33] Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: Policy-reduced
Integrity Measurement Architecture. In Proceedings of the 11th ACM Symposium
on Access Control Models and Technologies (Lake Tahoe, California, USA) (SACMAT
’06). ACM, New York, NY, USA, 19–28. https://doi.org/10.1145/1133058.1133063

[34] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. 2003. Analyzing Integrity Pro-
tection in the SELinux Example Policy. In Proceedings of the 12th Conference on
USENIX Security Symposium - Volume 12 (Washington, DC) (SSYM’03). USENIX
Association, Berkeley, CA, USA, 5–5. http://dl.acm.org/citation.cfm?id=1251353.
1251358

[35] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, Thomas Ristenpart, and
Michael Swift. 2020. Guarding Serverless Applications with SecLambda.
arXiv:2011.05322 [cs.CR]

[36] Jeremy Daly. 2020. Event Injection: Protecting your Serverless Applica-
tions. https://www.jeremydaly.com/event-injection-protecting-your-serverless-
applications/.

[37] Rich Jones. 2019. Gone in 60Milliseconds: Intrusion and Exfiltration in Server-less
Architectures. https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds.

[38] Andrew Krug and Graham Jones. 2019. Hacking serverless runtimes: Profiling
AWS Lambda, Azure Functions, And more. https://www.blackhat.com/us-
17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-
azure-functions-and-more-6434.

[39] Paul Marinescu, Chad Parry, Marjori Pomarole, Yuan Tian, Patrick Tague, and
Ioannis Papagiannis. 2017. IVD: Automatic Learning and Enforcement of Autho-
rization Rules in Online Social Networks. In 2017 IEEE Symposium on Security
and Privacy (SP). 1094–1109. https://doi.org/10.1109/SP.2017.33

[40] Jonathan M. McCune, Trent Jaeger, Stefan Berger, Ramon Caceres, and Reiner
Sailer. 2006. Shamon: A System for Distributed Mandatory Access Control. In
2006 22nd Annual Computer Security Applications Conference (ACSAC’06). 23–32.
https://doi.org/10.1109/ACSAC.2006.47

[41] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2011. Verification of
Information Flow andAccess Control Policies with Dependent Types. In 2011 IEEE
Symposium on Security and Privacy. 165–179. https://doi.org/10.1109/SP.2011.12

[42] Matthew Obetz, Stacy Patterson, and Ana Milanova. 2019. Static Call Graph
Construction in AWS Lambda Serverless Applications. In Proceedings of the
11th USENIX Conference on Hot Topics in Cloud Computing (Renton, WA, USA)
(HotCloud’19). USENIX Association, USA, 20.

[43] Ory Segal. 2019. Securing Serverless: Attacking an AWS Account via a Lambda
Function. https://www.darkreading.com/cloud/securing-serverless-attacking-
an-aws-account-via-a-lambda-function/a/d-id/1333047.

[44] PureSec. 2019. Hacking a Serverless Application: Demo. https://www.youtube.
com/watch?v=TcN7wHuroVw.

[45] Nathaniel Quist. 2021. Unit 42 Cloud Threat Report Update: Cloud SecurityWeak-
ens as More Organizations Fail to Secure IAM. https://unit42.paloaltonetworks.
com/iam-misconfigurations/.

[46] R.S. Sandhu. 1993. Lattice-based access control models. Computer 26, 11 (1993),
9–19. https://doi.org/10.1109/2.241422

[47] Arnav Sankaran, Pubali Datta, and Adam Bates. 2020. Workflow Integration
Alleviates Identity and Access Management in Serverless Computing. In Annual
Computer Security Applications Conference (Austin, USA) (ACSAC ’20). Association
for Computing Machinery, New York, NY, USA, 496–509. https://doi.org/10.
1145/3427228.3427665

[48] Shayak Sen, Saikat Guha, Anupam Datta, Sriram K. Rajamani, Janice Tsai, and
Jeannette M. Wing. 2014. Bootstrapping Privacy Compliance in Big Data Systems.
In 2014 IEEE Symposium on Security and Privacy. 327–342. https://doi.org/10.
1109/SP.2014.28

1652

https://www.puresec.io/blog/new-attack-vector-serverless-crypto-mining
https://www.puresec.io/blog/new-attack-vector-serverless-crypto-mining
https://aws.amazon.com/security/security-bulletins/AWS-2021-007/
https://aws.amazon.com/security/security-bulletins/AWS-2021-007/
https://www.serverless.com/
https://github.com/functionalone/serverless-iam-roles-per-function
https://github.com/functionalone/serverless-iam-roles-per-function
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://www.checkov.io/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://customers.microsoft.com/en-us/search?sq=%22Azure%20Functions%22
https://customers.microsoft.com/en-us/search?sq=%22Azure%20Functions%22
https://cloud.hashicorp.com/products/terraform
https://doi.org/10.1145/3276488
https://docs.aws.amazon.com/lambda/latest/dg/security-iam.html
https://aws.amazon.com/iam/features/analyze-access/
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.23919/FMCAD.2018.8602994
https://doi.org/10.1109/IC2E.2014.64
https://doi.org/10.1109/IC2E.2014.64
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1145/3368089.3409728
https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/
https://www.protego.io/a-deep-dive-into-serverless-attacks-sls-1-event-injection/
https://securityboulevard.com/2020/12/cloud-infrastructure-is-not-immune-from-the-solarwinds-orion-breach/
https://securityboulevard.com/2020/12/cloud-infrastructure-is-not-immune-from-the-solarwinds-orion-breach/
https://www.datadoghq.com/state-of-serverless/
https://www.datadoghq.com/state-of-serverless/
https://adambates.org/documents/Datta_Www20.pdf
https://doi.org/10.1145/360051.360056
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/elnikety
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/elnikety
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://www.linkedin.com/pulse/aws-lambda-container-lifetime-config-refresh-frederik-willaert/
https://divvycloud.com/misconfigurations-report-2020/
https://divvycloud.com/misconfigurations-report-2020/
https://doi.org/10.1145/1805874.1805982
https://doi.org/10.1145/1805874.1805982
https://doi.org/10.1145/1133058.1133063
http://dl.acm.org/citation.cfm?id=1251353.1251358
http://dl.acm.org/citation.cfm?id=1251353.1251358
https://arxiv.org/abs/2011.05322
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://media.ccc.de/v/33c3-7865-gone_in_60_milliseconds
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://www.blackhat.com/us-17/briefings/schedule/#hacking-serverless-runtimes-profiling-aws-lambda-azure-functions-and-more-6434
https://doi.org/10.1109/SP.2017.33
https://doi.org/10.1109/ACSAC.2006.47
https://doi.org/10.1109/SP.2011.12
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-account-via-a-lambda-function/a/d-id/1333047
https://www.darkreading.com/cloud/securing-serverless-attacking-an-aws-account-via-a-lambda-function/a/d-id/1333047
https://www.youtube.com/watch?v=TcN7wHuroVw
https://www.youtube.com/watch?v=TcN7wHuroVw
https://unit42.paloaltonetworks.com/iam-misconfigurations/
https://unit42.paloaltonetworks.com/iam-misconfigurations/
https://doi.org/10.1109/2.241422
https://doi.org/10.1145/3427228.3427665
https://doi.org/10.1145/3427228.3427665
https://doi.org/10.1109/SP.2014.28
https://doi.org/10.1109/SP.2014.28

WWW ’24, May 13–17, 2024, Singapore, Singapore Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck

[49] Serverless, Inc. 2023. Serverless Infrastructure Providers. https://www.serverless.
com/framework/docs/providers.

[50] Katsuya Sueyasu, Toshihiro Tabata, and Kouichi Sakurai. 2003. On the security
of SELinux with a simplified policy. In Proceedings of the IASTED International
Conference on Communication, Network, and Information Security, M.H. Hamza
(Ed.). 79–84.

[51] Hayawardh Vijayakumar, Guruprasad Jakka, Sandra Rueda, Joshua Schiffman,
and Trent Jaeger. 2012. Integrity Walls: Finding Attack Surfaces from Mandatory
Access Control Policies. In Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security (Seoul, Korea) (ASIACCS ’12). ACM, New
York, NY, USA, 75–76. https://doi.org/10.1145/2414456.2414500

[52] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2018. Peeking Behind the Curtains of Serverless Platforms. In 2018 USENIX
Annual Technical Conference (USENIX ATC 18). USENIX Association, Boston, MA,
133–146. https://www.usenix.org/conference/atc18/presentation/wang-liang

[53] Ruowen Wang, William Enck, Douglas Reeves, Xinwen Zhang, Peng Ning, Ding-
bang Xu, Wu Zhou, and Ahmed M. Azab. 2015. EASEAndroid: Automatic Pol-
icy Analysis and Refinement for Security Enhanced Android via Large-Scale
Semi-Supervised Learning. In 24th USENIX Security Symposium (USENIX Security
15). USENIX Association, Washington, D.C., 351–366. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen

[54] Yan Cui. 2021. Many-faced threats to Serverless security. https://hackernoon.
com/many-faced-threats-to-serverless-security-519e94d19dba.

A SPECIAL IMPLEMENTATION

CONSIDERATIONS

While Grasp was designed to be independent of the underlying
technologies and cloud platforms, Grasp is implemented for server-
less applications running on the popular AWS Lambda platform and
specified using the widely used Serverless Framework. Currently,
Grasp handles the following AWS services: S3, DynamoDB, SNS,
SQS, IoT, CloudWatch, logs, Kinesis, Sagemaker, SDB, AppSync,
RDS, Neptune, and Lambda. These services all enable control, data,
or event flows and are common services used in applications. How-
ever, there are 362 different services in AWS ecosystem and 14708
possible privileged operations across all these services in total. But
not all of them are relevant to serverless applications. Grasp ’s im-
plementation can be extended to support additional AWS services
pertinent to serverless applications in future. Moreover, Grasp can
be extended to other platforms (e.g., Azure Functions or Google
Cloud Functions) or other deployment frameworks (e.g., Terraform).
To expand to these other platforms, primitives for each of the plat-
forms will have to be added to the core knowledge base and the
graph generator will have to understand and parse specifications
in other formats.

Functions and Events: Functions are defined in the YML func-

tions object. In Lambda, functions can only be invoked from the
command-line or web GUI by authorized users unless there are
events defined. Therefore, when building the function facts, all
functions start out as initially private until an HTTP(S) event or
API event is encountered in the YML. During the parsing of events,
the generator also builds event facts such as event_sns_msg(·). and
event_s3(·).

Resources: Grasp considers two types of resource definitions.
First, there are explicitly listed resource in the resources.Resources
object. Second, there are implicit resources that are used in IAM
statements but not defined in the YML. To build the resource facts,
a first pass is done to collect all explicitly named resources, appli-
cable resource policies, and implicitly named resources from IAM
statements. Once all resources and resource policies are collected,

the generator checks if there is a policy for each resource. If no
policy is found, the resource is considered private and the public
cannot read or write to the resource. However, if a policy is found
the public read and write permissions are extracted from the policy.

Permissions: Permissions for functions can be defined as global
statements, individual function level statements, within a user-
defined role resource applied to functions, orwithin platform provider
managed roles applied to functions. Permission facts are built by
first collecting all the IAM role statements at the global level, then
the generator checks for defined roles in resource.Resources, and
finally at the function level. If no role or permissions are defined for
a function, the function is assigned the global statements. If a role
is defined for the function, the function is assigned the statements
from that role. Finally, if permissions are defined at the function
level, those statements are assigned to the function. Note, Grasp
supports legacy statement definitions, the current statement defini-
tions, and the Serverless IAM Roles Per Function Plugin [4] that
extends the framework and enables role statements to be declared
on an individual function.

We manually identified 42 read and write permissions across
13 AWS services that store or transmit data in November 2021
using the AWS documentation. Note, the list of 13 services is not
complete and does not cover every service offered by AWS. This
work only focused on services used by the applications in the data
set. Additionally, we identified 2 permissions related to control
flows and an S3 permission related to event flows. Further, we
expand all platform managed roles (e.g., AWS Managed Policies)
into a complete list of permission statements.

Read and Write Permissions: As mentioned above, we manually
identified 42 read and write permissions across 13 AWS services, 2
permissions for invoking functions, and a S3 permission for deleting
object that would cause an event trigger. This process needs to
be completed for each service and provider supported by Grasp.
Initially, we focused only on the services that were defined and
used the applications in our data. We envision expansion to other
services and providers through automatically identifying supported
permissions as an important future work.

Once the application specific facts are generated, they can be
combined with the core knowledge base and queries can be per-
formed. The Grasp implementation generates SWI-Prolog facts.
The core knowledge base follows the base design described above,
but it was extended in three ways for better usability. First, addi-
tional variables are used to create human readable path descriptions
to better understand an attack path and what permissions are used
at every hop. Second, an overall length is reported that counts the
number of functions that would need to be compromised in order
to use that path in a successful attack. Third, a count of control
flows, data flows, and event flows is reported for each path. The
last two extensions also enable the developer to specify a how long
a path should be (e.g., only show paths of length 1) and how many
flows should be present in the path (e.g., do not include data flows
or event flows in resulting paths). Using these tuning variables,
developers can exclude paths that are outside of their risk model
and less likely to happen.

1653

https://www.serverless.com/framework/docs/providers
https://www.serverless.com/framework/docs/providers
https://doi.org/10.1145/2414456.2414500
https://www.usenix.org/conference/atc18/presentation/wang-liang
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba
https://hackernoon.com/many-faced-threats-to-serverless-security-519e94d19dba

Grasp: Hardening Serverless Applications through Graph Reachability Analysis of Security Policies WWW ’24, May 13–17, 2024, Singapore, Singapore

B GRASP SECURITY QUERIES

Publicly Exposed Components: In this query we demonstrate
how Grasp supports the “public access” query also supported by
prior work [12–14, 18]. The following queries compute resources
defined as public and identify common mistakes such as public S3
buckets.
% Pu b l i c l y i nvokab l e f u n c t i o n query .
f u n c t i o n (Func , t r u e) .
% P u b l i c l y r e a d a b l e r e s ou r c e query .
r e s ou r c e (_ , Resource , t rue , _) .
% P u b l i c l y w r i t e a b l e r e s ou r c e query .
r e s ou r c e (_ , Resource , _ , t r u e) .
$ P u b l i c l y r e a d a b l e / w r i t e a b l e r e s ou r c e query .
r e s ou r c e (_ , Resource , t rue , t r u e) .

The first query above is searching for all functions Func that are
publicly accessible (i.e., the public_invoke parameter is true). We
also make use of the Prolog anonymous variable (_) in the queries
as a way to match any value. For example, it is used in the above
queries except the first to match any service, because the service
type is not needed to determine if the resource is publicly accessible.

Read, Write, and Read/Write Paths: In addition to the queries
described above Grasp also supports significantly complex queries
to compute indirect access paths from an application entrypoint
to a given resource. A read path may allow an adversary to com-
promise a series of functions and exfiltrate data by embedding the
data in the function response and a write path may allow an ad-
versary to corrupt persistent storage or install a backdoor in the
application. Knowing read and write paths to sensitive resources
enables developers to prioritize code reviews of critical functions
or remove permissions to prevent unintended paths.

Identifying these paths is achieved through the queries find-

_read_paths., find_write_paths, and find_rw_paths. A path from
the Internet to an internal resource can start in three ways: (1)
a function is public (e.g., control flow), (2) a function reads from
a publicly writeable resource (e.g., data flow), or (3) a function is
triggered by an event caused by a public entity (e.g., event flow). To
account for these three cases, each query identifies an entrypoint
for a path that determines the first function in a path and then finds
a path from that function to the internal resource.

Exfiltrate to Public Resource: The queries above assumed that
the adversary could return data in the function’s HTTP response.
However, that might not always be possible and in order to exfiltrate
data the adversary must read data from an internal resource and
then write that data to a publicly readable resource. The exfil_to_p-
ublic_res query checks for paths that support this attack flow. This
query first finds a read path to a private resource and then finds a
write path to a public resource through the same entrypoint. Note
that this query is different than the “public access” query supported
by prior work – here, Grasp can identify whether a private resource
may be written into a public resource as a means of exfiltration.

C DISCUSSION AND LIMITATIONS

Knowledge Extraction Limitations: Resolving dynamic config-
uration fields (for example,fields assigned through environment
variables or command-line arguments) during parsing the server-
less.yml configuration file introduced few issues that may prevent

an accurate reachability graph from being generated. Dynamically-
resolved fields come in three forms in IAM policies. The first is a
reference to a variable that was defined elsewhere in the policy.
Because there is an unambiguous 1-1 mapping between the variable
name and its value, we treat this case as a string literal; it is not
necessary to resolve it. The second case is when a variable is used
in the file() function. For example, if the configuration file imported
definitions from a file named $file(defs-${env:stage}.txt). In this
situation we do not have the environment variable set to open the
correct file and might miss critical policy statements resulting in
an incomplete or incorrect graph. This is a limitation of analyzing
a public data set and not a limitation of Grasp. The third case is
when a field invokes an API call, e.g., Fn::ImportValue. In these
cases the value of the field is ambiguous and cannot be resolved
outside of the live application environment, so Grasp throws a
warning and aborts. This affected 54 (5%) of the serverless.yml files
in our dataset.

Additionally, Grasp operates offline and does not use the cloud
provider API to resolve all possible resources available to the user’s
account. Therefore, Grasp cannotmodel resources defined or shared
with the user outside of the current configuration. Additionally,
the model itself has the limitation that all services and permissions
were manually analyzed to determine if it could support a flow
in the model. This is a laborious and error-prone process that is
sensitive to any changes to the services or permissions by the cloud
provider. Future work should explore automating this process to
identify services and permissions that enable flows.

Dataset Limitations: The dataset collected and used in the empir-
ical evaluation has the two primary limitations. First, the dataset
may not be representative of how actual developers use serverless
in practice. While our goal was to create the first known dataset
of serverless applications, a well-known issue with serverless re-
search is the lack of public production quality serverless applica-
tions. While there are many success stories of serverless being
used in industry, very few of these applications are made public;
therefore the applications in the dataset may not represent how
developers are using serverless IAM policies in production. Even
with this limitation, the dataset does capture public examples of
serverless applications and problems foundwithin this dataset could
potentially influence developers new to serverless development to
propagate the same issues. Second, our dataset only explores the
use of the Serverless Framework for AWS Lambda applications.
Future work should extend to support other frameworks (e.g., Ter-
raform [9]) and cloud providers (e.g., Google Cloud Platform and
Microsoft Azure).

Discovery of Real Exploits: Grasp models serverless access con-
trol policies as queryable reachability graphs, and enables a variety
of queries including queries to compute publicly reachable paths to
private resources. The existence of such paths does not guarantee a
vulnerability, but creates an opportunity for developers to audit the
access configuration. Whether these paths are exploitable depends
on the semantics of the application code and artifacts, for example,
the nature of the information stored in a private S3 bucket (i.e.,
credit card information). An instance of real exploit from our case
study Shan18/Flash application described in Section 6.4 would be
the ‘inference’ function maliciously modifying training parameters

1654

WWW ’24, May 13–17, 2024, Singapore, Singapore Isaac Polinsky, Pubali Datta, Adam Bates, and William Enck

stored in 𝑅1 (Figure 5) to attack the learning performance of the
application. In the original policy of the application, the overpriv-
ileged ‘inference’ function would succeed in its attack because it
is able to write to 𝑅1. But the hardened policy permits ‘inference’
only to read 𝑅1 thus eliminating the possibility of malicious modifi-
cations. However, such discovery of real exploits requires in-depth
semantic understanding of the application logic, and such semantic
information is unavailable in the IAM policy document, and conse-
quently cannot be analyzed by Grasp. In future combining policy
analysis with code analysis could provide a more concrete idea of
potentially vulnerable paths in an application.

D ADDITIONAL POLICY HARDENING CASE

STUDIES

• Cisagov/Crossfeed This is an application that monitors an orga-
nization’s public-facing attack surface in order to discover assets
and potential security flaws and allows customers to view scan-
reports.

• Arackaf/Booklist This web application keeps track of user’s
book collections and enables searching, tagging, and organizing
books with hierarchical subjects.

• Connorads/Lockbot This applications helps coordinating the
use of shared resources in an organization’s communication plat-
forms (e.g., Slack).
We analyzed the above application with Grasp and generated

the paths to important resources in these applications according

to the original policy defined within the applications. The original
policies use global permissions and reveal a number of privilege
violations when manually analyzed.

Cisagov/Crossfeed: The policy for this application enables lambda
invoke, S3 GET and PUT, and SES send permissions for all functions.
This policy resulted in 1 read, write, and read/write paths. Note that
Grasp identifies only the shortest path to each resource. Since the
entrypoint function api has full access to all resources the only path
considered by Grasp is from the Internet through api and directly to
the single s3 bucket. If we remove this optimization and consider all
possible paths, using different read/write permissions for each path
and different intermediate functions, we find the original policy
enabled 6,331 paths and our suggested policy remains at 1 read,
write, and read/write path. This shows the original policy enabled
many non-required flows.

Arackaf/Booklist: The policy for this application enables Dy-
namoDB, S3, and Secret Manager access and resulted in 9 read
paths, 9 write paths, and 9 read/write paths. Our suggested least
privilege policy dropped the number of paths to 5 read paths, 5
write paths, and 5 read/write paths.

Connorads/Lockbot: The policy for this application enables Dy-
namoDB access for all functions and resulted in 9 read paths, 9
write paths, and 9 read/write paths. Our suggested least privilege
policy dropped the number of paths to 7 read paths, 7 write paths,
and 7 read/write paths.

1655

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Grasp
	3.1 Knowledge Extractor
	3.2 Serverless Access Control Model
	3.3 Security Queries

	4 Implementation
	5 Open Source Serverless Dataset
	6 Characterizing Serverless Security Policies
	6.1 Application Complexity
	6.2 Policy Complexity
	6.3 Grasp Queries
	6.4 Policy Hardening Case Study

	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Special Implementation Considerations
	B Grasp Security Queries
	C Discussion and Limitations
	D Additional Policy Hardening Case Studies

