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Abstract

Despite global efforts to secure Internet routing, attack-

ers still successfully exploit the lack of strong BGP security

mechanisms. This paper focuses on an attack vector that is

frequently used: Forged-origin hijacks, a type of BGP hijack

where the attacker manipulates the AS path to make it im-

mune to RPKI-ROV filters and appear as legitimate routing

updates from a BGP monitoring standpoint. Our contribution

is DFOH, a system that quickly and consistently detects forged-

origin hijacks in the whole Internet. Detecting forged-origin

hijacks boils down to inferring whether the AS path in a BGP

route is legitimate or has been manipulated. We demonstrate

that current state-of-art approaches to detect BGP anomalies

are insufficient to deal with forged-origin hijacks. We identify

the key properties that make the inference of forged AS paths

challenging, and design DFOH to be robust against real-world

factors (e.g., data biases). Our inference pipeline includes two

key ingredients: (i) a set of strategically selected features, and

(ii) a training scheme adapted to topological biases. DFOH

detects 90.9% of the forged-origin hijacks within only ≈5min.

In addition, it only reports ≈17.5 suspicious cases every day

for the whole Internet, a small number that allows operators

to investigate the reported cases and take countermeasures.

1 Introduction

On 3 February 2022, the cryptocurrency platform KLAYswap

was targeted by hackers who stole $1.9 million worth of digi-

tal assets [59]. More recently, on 17 August 2022, an attack

to cBridge—a crypto-asset bridge—affected 32 victims, who

lost $235,000 [4]. Both attacks were the result of a forged-

origin BGP hijack, a type of routing hijack where the attack-

ers announce forged AS paths towards a victim prefix by

prepending the victim’s origin AS number in order to make

them appear legitimate. Clearly, BGP hijacking attacks are not

a surprise anymore. They repeatedly make the headlines [1,2]

and are known as attack vectors to steal cryptocurrency [8],

obtain bogus certificates [15], or deanonymize Tor users [62].

The vulnerability they exploit is simply the result of BGP

being designed without security in mind: An attacker can ma-

nipulate every attribute in a BGP message (including the AS

path and its origin AS) and illegitimately announce a prefix

owned by its victim so as to divert the traffic to its network.

Proactive solutions against BGP hijacks are being grad-

ually deployed. However, forged-origin hijacks have been

left uncovered by such solutions—despite these attacks being

actively used in the wild. In fact, network operators attempt to

proactively thwart BGP hijacks by configuring their routers to

filter hijacked routes [46] using (i) RPKI-based Route Origin

Validation (ROV) and (ii) data from Internet Routing Reg-

istries (IRR). Unfortunately, RPKI-ROV filters do not help

to detect forged-origin hijacks, since the forged origin in the

AS path is actually valid, while IRR-based filters are known

to be inaccurate, incomplete [25], and far too often missing

given the increasing number of observed BGP hijacks [7].

Today, network operators do not have many options left other

than waiting for the deployment of new security extensions to

BGP to consistently prevent forged-origin hijacks [44]. Such

deployment—if it will happen at all—might take more than a

decade, as in the case of RPKI-ROV [21].

In this paper, we present DFOH, the first locally-deployable

system that widely, quickly, and accurately Detects Forged-

Origin Hijacks on the Internet. With a single deployment

of DFOH on a commodity server, any attacker performing a

forged-origin hijack is likely to be quickly detected, the hijack

publicly reported, and the victim immediately notified. Being

aware of the attack, the victim can apply countermeasures

and the community can take actions to prevent similar attacks

from happening again. Additionally, DFOH can detect past

attacks, allowing the community to measure the frequency of

such attacks or profile forged-origin hijackers.

DFOH is a passive system that processes the AS paths

observed in publicly collected BGP routes to detect forged-

origin hijacks. The problem of detecting forged-origin hijacks

can be reduced to identifying whether a link between two

ASes is real or fake. Unfortunately, there are multiple reasons

why two ASes might connect, whereas there is no simple





the attacker’s AS. The attack is successful because the origin

of the hijacked route is valid. Consequently, the RPKI-based

filters miss the hijacked route, which also remains invisible

from all the hijack detection systems that solely look at the

origin AS. For instance, AS4 in Fig. 1 receives a route for

9.0.0.0/8with AS path AS6-AS9 and accepts it given that its

origin (AS9) is valid. Observe that AS1 and the CDN receive

the two routes for 9.0.0.0/8 with the same AS path length,

in which case their local preferences determine whether they

use the legitimate route or the hijacked one.

Definition: A forged-origin hijack is a BGP hijack where an

attacker AS announces a route for an IP prefix that it is not

authorized to originate and with an AS path that the attacker

purposely manipulates so that the origin AS is valid.

The flip side of a forged-origin hijack is that it makes the AS

path longer, which results in fewer ASes using the hijacked

route compared to a misorigin (Type-0) hijack.

More specific prefixes are not better off. Despite RPKI,

forged-origin hijacks can also succeed towards more spe-

cific prefixes. Operators oftentimes set a loose RPKI

MaxLength [31] (sometimes confusingly [21]), allowing the

attacker to launch successful forged-origin hijacks on more

specific prefixes—a particularly harmful attack, since all traf-

fic from all ASes is directed to the attacker [30, 32].

More advanced path manipulations are possible. An at-

tacker can prepend more than one AS number. For instance,

the attacker AS6 in Fig. 1 could prepend 5 9, in which case the

origin is valid but the attacker AS appears in the third position

from the origin. In this paper, we align with the state-of-art

taxonomy [56] and define a Type-X hijack as follows:

Definition: A Type-X hijack is a forged-origin hijack where

X ≥ 1 indicates the position of the attacker’s AS in the forged

AS path, with the first AS (the origin) being at position zero.

In the (most common) cases where each AS number appears

once in the AS path, X indicates the number of prepended

ASes. Prepending 5 9 thus results in a Type-2 hijack. Intu-

itively, the higher is the number of prepended ASes, the lower

is the impact of the attack (since the hijacked route reaches

fewer ASes, as its AS path is longer).

4 The Case for DFOH

In this section, we highlight why DFOH is practically relevant

(§4.1), and identify its key challenges and requirements (§4.2).

4.1 Lack of Defenses

DFOH is practically relevant because there is currently no

effective mechanism to detect forged-origin hijacks.

Existing proactive defenses are not bulletproof. Because

RPKI-ROV does not prevent forged-origin hijacks, the main

proactive defense for network operators is to check whether

the announcements of their customers are correct, i.e., each

customer legitimately holds the AS numbers and IP address

space they announce. This is achieved using route filters. In

theory, these filters, recommended by MANRS [46], prevent

an AS to propagate incorrect routing information when they

are properly configured. Yet, in practice, they are often miss-

ing, inaccurate, or controllable by an attacker.

Missing filters: In April 2020, ROSTELECOM hijacked sev-

eral prefixes, which impacted at least Amazon and Akamai.

After investigation, it appears that at least two ASes, namely

Rascom amd Cogent Co, did not configure proper filters that

would have reduced the spread of the hijack [47]. Although an

increasing—but still rather low—number of operators agree

to follow routing security norms [26], we still observe many

hijacks that widely propagate through the Internet, which

indicates that these filters are often missing [48].

Inaccurate filters: Network operators often rely on peering in-

formation from the IRRs [39] to infer their customer cone, i.e.,

the set of ASes that can be reached only using customer links—

a necessary information to build accurate filters. However,

IRRs are known to contain inaccurate information [24,25,53],

which inevitably results in inaccurate filters.

Controllable filters: Because the data from the IRRs is

not verified [49], an attacker can intentionally pollute it to

take control over which filters are added or removed in its

provider’s routers. More precisely, an attacker could pollute

its as-set object, which is the IRR object that specifies a set

of ASNs through which traffic can be routed, and is the object

often used to automatically generate route filters [12]. This

is supposedly what happened no later than in August 2022:

An attacker (AS209243) added an Amazon’s AS number into

its as-set object before it started to announce an Amazon’s

prefix with an Amazon’s AS number purposely prepended at

the origin of the AS path [5].

Existing reactive defenses are narrowly focused. ARTEMIS

is a system that detects forged-origin hijacks [56]. However,

it is narrowly focused since it only detects hijacks that pertain

to the AS deploying it. The key mechanism that ARTEMIS

relies on to detect forged-origin hijacks consists in classifying

new AS links as legitimate when observed in both directions,

whereas it reports all the others as possible fake links. The

problem is that ARTEMIS’ approach cannot be directly ex-

tended to monitor all prefixes. Link bidirectionality can rule

out a significant fraction of AS paths with new links when they

pertain to prefixes originated by the AS running ARTEMIS. In

fact, ARTEMIS likely observes both directions of the neigh-

boring links as it combines BGP views from public collectors

with local BGP views. However, when targeting attacks to-

ward any prefix on the Internet, and using only public router

collectors as vantage points, we find that bidirectionality is

observable for only a small fraction of new links (see §6.2.4).

Therefore, in the practical scenario that DFOH targets, solely

relying on link bidirectionality results in a poor accuracy, as

we show in §E.1.



4.2 Requirements

We now highlight four key challenges and requirements that

DFOH must address to be effective and practical.

Requirement 1: A forged-origin hijack detection system

must be fast and accept real-time and historical queries.

A fast detection (within a few minutes) enables mitigating the

hijacks swiftly to limit their impact. Additionally, detecting

past events is useful to e.g., lay hands on serial hijackers [64].

Requirement 2: A forged-origin hijack detection system

must be accurate, both for pinpointing actual hijacks and

avoiding triggering false alarms.

Accuracy matters because every detected hijack is likely to be

manually investigated by the victim AS to confirm the attack

and apply the appropriate mitigation scheme. A high number

of false alarms would thus overwhelm network operators and

limit the practicality of the system. Besides, the detection

system should not miss actual hijacks.

Requirement 3: A forged-origin hijack detection system

must be robust against missing, inaccurate and polluted data.

A forged-origin hijacks detection system must rely on a prob-

abilistic inference as cryptographic-based AS paths verifica-

tion is still missing today (BGPsec is not deployed at all [44]).

The inferences are made using the data collected in various

datasets including public peering information (PeeringDB

and the IRR [39, 52]), which are known to often be inaccu-

rate and incomplete [25, 53]. Worse, these datasets can be

polluted by attackers, as they depend on voluntary and un-

verified contributions [49]. Consequently, care must be taken

when designing the system to ensure robustness against any

possible adversarial inputs or missing data.

Requirement 4: A forged-origin hijack detection system

must be accurate in all attack and peering scenarios.

Internet routing involves various sort of players (e.g., ASes,

CDNs, IXPs, as summarized in Fig. 1). Thus, there are many

possible attack scenarios. Each induces a different fingerprint

on the collected data and may require a different detection

scheme. Typically, a densely-connected Tier1 AS that an-

nounces many prefixes (among which some on behalf of its

customers) and hijacks a prefix owned by a stub AS might be

harder to detect than a single-homed stub AS hijacking the

prefix owned by another stub AS. Similarly, there are many

legitimate peering scenarios (e.g., a remote peering session

between two ASes located in different regions of the world)

and none should exhibit a high level of false alarms.

5 Overview

We describe DFOH’s workflow (§5.1) as well as the functions

that it provides (§5.2) and how users can leverage them (§5.3).

5.1 Workflow

DFOH’s workflow comprises the following three main com-

ponents that are executed on a daily basis.

Zooming on the new AS link (§6.1). DFOH processes the

publicly available BGP routes and pinpoints AS links that

appear for the first time in their AS paths. DFOH zooms on

those links because a forged-origin hijack is likely to trigger

the appearance of a new AS link—typically the forged AS link

that connects the attacker and the victim in case of a Type-1

hijack (we discuss the corner cases in §6.1). While a new AS

link is an indicator to detect forged-origin hijacks, triggering

an alert whenever a new link appears would result in a high

number of inopportune alarms. In fact, legitimate factors such

as new peering agreements or backup path activation can

result in new AS links being visible too.

Unfortunately, we demonstrate in §7.4 that link prediction

algorithms such as SEAL [68] do not translate well to dis-

criminating the malicious new AS links from the real ones.

These algorithms fail because they are generic whereas reveal-

ing malicious AS links is a problem with specific properties.

Thus, DFOH includes the following components that aim to

discriminate the fake new AS links from the legitimate ones.

Computing features (§6.2). DFOH uses a set of features that

we carefully selected based on the key requirements identified

in §4.2 and that are computed with security in mind: They

remain correct even with adversarial input. We divide these

features into the following four categories:

Topological features allow to quantify the change induced

by a new link on the AS topology (following the reasoning

in [63]) and pinpoint the suspicious ones (e.g., that do not

follow the typical hierarchical structure of the AS topology).

Peering features are peering characteristics such as points

of presence within a logical or geographical region that are

computed on a per-AS basis. Intuitively, two ASes that exhibit

similar peering characteristics have a higher chance to peer.

AS-Path-pattern features indicate whether the AS paths ob-

served from vantage points and that include a new link are

relevant based on the supposedly configured routing policies.

Bidirectionality features indicate whether an AS link is ob-

served in both directions, which is a sign of legitimacy.

DFOH uses these features for the following two reasons.

First, they enable to consistently (i.e., in all attack scenarios)

discriminate whether a new AS link is a legitimate intercon-

nection or caused by a forged-origin hijack (see §7.1). Second,

to ensure that DFOH works even when some data is missing

and some feature values cannot be precisely computed. We

evaluate the relevance of the different categories of features in

§7.4, and confirm that when one category is not relevant for a

particular attack scenario or missing, the others compensate.

Inferring forged-origin hijacks (§6.3). Finally, DFOH builds

an inference model that takes as input an AS link and its com-

puted features and infers whether this AS link is the result of a



forged-origin hijack. DFOH builds the model using the typical

training pipeline used for link prediction in a graph [45, 68].

A set of existing (legitimate cases) and nonexistent (mali-

cious cases) links are sampled from the AS topology and used

as ground truth to train the inference model. Unfortunately,

naively using the training pipeline of existing link prediction

frameworks falls short for detecting forged-origin hijacks in

all attack scenarios (we confirm this in §7.4). The problem is

that they sample the AS links without taking into considera-

tion the biases observed in the AS topology caused by its hier-

archical structure. In fact, they sample the links uniformly at

random, which returns samples in which stub-to-stub links are

overrepresented and links connecting the highly-connected

ASes are underrepresented. This skewed effect is particularly

critical when generating the negative sample, i.e., a set of

nonexistent links labeled as malicious and used in the train-

ing pipeline. Following the recommendation in [66], DFOH

builds a balanced negative sample, representative of all possi-

ble malicious AS links, to ensure that all the attack scenarios

are covered.

5.2 Software functionalities

Ease of deployment and usage. DFOH is open source and

can run on a commodity server or a VM. Once installed,

DFOH first downloads the different datasets and saves the

parsed data in a database, which we make publicly available at

https://dfoh.uclouvain.be/. It then processes the data

and builds inference models on a daily basis.

Real-time and historical detection. DFOH uses the precom-

puted inference models to detect past and real-time forged-

origin hijacks. Upon detection of a new AS link, DFOH only

needs to compute a few features before running the infer-

ence, which is swift because it relies on a simple model (a

random forest). The most time-consuming operation is boot-

strapping DFOH, because it needs to build the database and

the inference models for many days (for historical detection).

Wide and public detection at no cost for users. DFOH

detects and reports forged-origin hijacks for all possible at-

tackers and victims on the Internet, and for any time period.

Users can examine the list of suspicious cases and apply filters

on them (e.g., to focus on one AS number) at no cost as we

publicly disclose them at https://dfoh.uclouvain.be/.

We describe a few interesting cases in §A.

5.3 Planned usages

Leveraging DFOH locally. Network operators can use

DFOH to detect forged-origin hijacks targeting their prefixes.

Our evaluation (§7.3) shows that in the median case, a given

AS is only involved in zero or one suspicious case in a month,

given network operators to ability to manually check each

reported case and take the proper countermeasures if neces-

sary. This usage is similar to how users use ARTEMIS [56].

However, unlike ARTEMIS which relies on a list of neigh-

boring ASes provided by the user as well as feeds from local

routers, DFOH does not require users to install any software

and configure it.

Leveraging DFOH globally. DFOH enables a global detec-

tion of forged-origin hijacks, which is useful for the scientific

and operational community. For instance, DFOH can help

researchers to characterize forged-origin hijacks (e.g., their

frequency, scope, or to profile serial hijackers [64]). Addi-

tionnally, DFOH helps to globally monitor Internet routing

and is complementary to global BGP monitoring systems that

detect misorigin (Type-0) hijacks (e.g., [35]), traffic delays,

and disconnections (e.g., [37, 38]). Finally, we envision the

output of DFOH to be used in the BGP decision process as

an alternative to BGPSec and ASPA [9, 44], which may take

years to be deployed. Network operators could deprioritize

(or drop) suspicious routes over legitimate ones to prevent

them from propagating to other networks.

6 Design

In this section, we motivate and explain the design of the

DFOH’s internal components and algorithms.

Terminology. Throughout this section, we consider the undi-

rected graph Gd,k = (Vd,k,Ed,k) as the AS topology inferred

at a given day d from the AS paths collected during the k days

prior day d. Vd,k is the set of ASes, and Ed,k ⊆Vd,k ∗Vd,k are

the links between the ASes. We also consider that a new link

(v1,v2) appears at day d, and is visible in a set A of AS paths.

Datasets. We collect BGP routes using BGPKIT [11] from

287 RIS [55] and RouteViews [51] vantage points that we

carefully select using MVP [6]. We collect the AS paths that

CAIDA uses to build its AS relationship dataset [3]. For now,

we collect the data from one IRR (RADb) as it is the only one

that makes available archives of its database. We collect daily

snapshots of PeeringDB from the CAIDA website [17]. We

explain how we clean and combine these datasets in §B.

6.1 Zoom on new AS links

We start by explaining how DFOH detects new AS links.

6.1.1 Under ideal conditions

Consider that an attacker controlling AS a launches a Type-1

hijack on a prefix owned by the victim AS v, with a,v ∈Vd,k.

Rapidly after, the BGP vantage points start to observe the

hijacked routes and record their AS path. They likely observe

different AS paths because they are scattered everywhere on

the Internet. Yet, they all observe an AS path that ends with the

attacker-to-victim link, here (a− v), which is a new AS link,

i.e., (a− v) /∈ Ed,k. This is the case in Fig. 1, where the BGP



routes induced by the forged-origin hijack launched by AS6

all have an AS path that ends with AS6-AS9. DFOH follows

ARTEMIS’ approach to detect new AS links: It considers the

AS topology Gd,k, with k = 300, i.e., sufficiently high to avoid

missing existing links, and classifies an observed link (x,y) as

new if (x,y) /∈ Ed,k. We detail how DFOH builds Gd,k in §B.

6.1.2 In the real world

DFOH has to deal with real world factors, e.g., attackers could

advertise carefully manipulated BGP updates to thwart DFOH.

We now list the scenarios in which a forged-origin hijack does

not create a new AS link, and show that either DFOH includes

mechanisms to avoid them or that they occur only when the

impact of the attack is greatly limited.

Scenario 1: The attacker hijacks the prefix owned by an AS

with which it legitimately peers.

This attack scenario is akin to a route leak. For instance, an

attacker announcing a route learned from one provider to

another provider is defined as Type-1 route leak according to

RFC 7908 [60]. Route leaks are outside the scope of DFOH

because there already exists tools that aim to detect them in

the wild [10,23,61]. Besides, thwarting DFOH by legitimately

peering with its victim makes the attack harder to perform as

it requires (i) additional resources for the attacker (e.g., being

present in a peering facility where its victim is present too)

and (ii) to convince the victim to peer with it (unless if the

victim peers with the route server of an IXP [54]).

Scenario 2: The attacker pollutes DFOH’s database by ad-

vertising legitimate routes but with fake AS paths.

Past AS path manipulations carried in legitimate routes could

pollute the graph Gd,k by adding fake AS links, preventing

DFOH to classify them as new AS links any longer. DFOH

thwarts this scenario by filtering out links that it inferred as

fake from past inferences, i.e., these links are not in Gd,k. Ob-

serve that a link incorrectly inferred as supicious can be recur-

rently inferred as supicious over time, polluting DFOH’s out-

put. To prevent incorrect inferences from piling up over time,

DFOH only considers past inferences for up to one month,

after which fake links are added in Gd,k and not considered

as new link anymore. This one-month delay gives enough

time for operators to examine the suspicious cases and protect

their network against a potential future attack. Additionally,

DFOH’s website provides filters for users to omit these recur-

rent cases so as to prevent them from polluting the output.

Scenario 3: The attacker announces a fake path that com-

prises an existing path between the victim and the attacker.

The attacker could prepend a path (ideally the shortest one)

from the victim AS to its own AS that exists in the AS topol-

ogy inferred from the routes collected by the BGP vantage

points. For instance, in Fig. 1, the attacker could prepend AS7

AS5 AS9 to avoid triggering a new link. However, prepending

more ASes increases the length of the AS path, inducing a

trade-off between visibility and impact of the attack (which

we highlight in §C) and compelling the attacker to signifi-

cantly reduce the impact of its attack. In fact, Type-1 hijacks

are impactful (31.3% of the ASes are polluted in the median

case) but also visible by DFOH (100% induce a new link in the

median case) whereas Type-2 are slightly less visible (98.8%

induce a new link in the median case) but also less impactful

(1.3% of the ASes are polluted in the median case).

Scenario 4: The attacker ensures that its fake announce-

ments bypass the public BGP route collectors.

Previous works show that this is possible (unless DFOH relies

on some private collectors) [50]. However, the attacker must

prepend additional AS numbers in the AS paths. As shown

in previous works [50, 56] (and confirmed in §C), this signifi-

cantly reduces the impact of the attack by diverting less traffic

to the attacker. For instance, the impact of hijack types larger

than Type-1 is very limited or negligible (e.g., less than 10%

of the ASes see the hijacked route for Type-2 hijacks [56]).

6.2 Features computation

Upon detection of a new link or an explicit user query, DFOH

computes feature values. DFOH uses as input the new link and

a set of AS paths that include this new link. These AS paths

are inferred from the public BGP routes or directly provided

by the user. We now explain how DFOH computes the feature

values for the four types of features.

6.2.1 Topological features

The topological features aim to quantify how the new link

changes the AS topology [63]. Table 2 (Appendix) lists the

topological features that DFOH uses to capture different di-

mensions of the topological changes. The topological features

are either relative to a node (node-based) or a pair of nodes

(pair-based). DFOH uses seven node-based features that we

classify into three categories. The first one quantifies how

central and connected a node is in the graph; the second quan-

tifies how connected are the neighboring nodes; and the third

quantifies the topological patterns (e.g., triangles) that include

the node. We classify the four pair-based features into two

categories. The first one measures how close are two nodes

based on their neighboring nodes whereas the second mea-

sures how close they are using their shortest distance. We

omit other topological features as they are either redundant

with the selected ones or too slow to compute.

Computing the feature values. DFOH computes the differ-

ence induced by the new link on the feature scores. More

formally, assume a set Fn of node-based features and a set

Fp of pair-based features. The feature values computation



differs depending on the feature type. Note that for each type

of feature, DFOH uses k = 300 to build the AS topology Gd,k.

Node-based features: Consider feature fi ∈ Fn and fi(x,Gd,k)
its score for node x on Gd,k, with i the feature index in Table 2.

The feature value v( fi,d,v1) is the difference induced by the

new link (v1,v2) on the score of feature fi for node v1 on day

d, and DFOH computes it using the following equation.

v( fi,d,v1) = fi(v1,Gd,k)− fi(v1,G
′
d,k)

G′
d,k = (E ′

d,k,V
′
d,k) is the graph Gd,k that includes link (v1,v2),

that is E ′
d,k = Ed,k ∪ (v1,v2). DFOH computes the feature val-

ues for both nodes v1 and v2. Given that there are seven node-

based features, the resulting 14-dimensional feature vector

Tnode_based(d,v1,v2) is the following:

Tnode_based(d,v1,v2) = [v( f0,d,v1),v( f0,d,v2),

. . . ,v( f6,d,v1),v( f6,d,v2)]

Pair-based features: Consider feature fi ∈ Fp where

fi(x,y,Gd,k) is its score for the pair of nodes x,y, with i the

feature index in Table 2. The feature value v( fi,d,v1,v2)
is the difference induced by the new link (v1,v2) on the

feature score fi for the pair of node v1,v2 at day d, and DFOH

computes it using the following equation.

v( fi,d,v1,v2) = fi(v1,v2,Gd,k)− fi(v1,v2,G
′
d,k)

Given that there are four pair-based features, the resulting

4-dimensional feature vector Tpair_based(d,v1,v2) is:

Tpair_based(d,v1,v2) = [v( f7,d,v1,v2), . . . ,v( f10,d,v1,v2)]

6.2.2 Peering features

The peering features evaluate the likelihood that two ASes

peer based on peering information collected from Peer-

ingDB [52] and BGPView [13]. DFOH considers the five

peering information listed in Table 1. The first three features

stem from the fact that two ASes registered in the same coun-

try, connected to the same IXP, or present in the same facility

are more likely to peer. The last two features stem from the

fact that ASes that are not present in the same facilities but

that have point of presence that are geographically close (e.g.,

same city) are more likely to peer. Of course, these intuitions

are not always true and an obvious counterexample is remote

peering. Fortunately, the different categories of features com-

pensate between each other so that DFOH remains accurate

even when one is less relevant (see §7).

Dealing with adversarial inputs and polluted data. The

peeringDB data is sometimes missing because participation is

voluntary. Besides, the integrity of the data is unverified and an

attacker could populate deceitful peering information. DFOH

addresses those two problems with the following strategy.

Instead of computing the feature scores for a hypothetical

Index Description

1 The countries where ASX’s neighbors are registered

2 The IXPs to which ASX’s neighbors are connected to

3 The facilities to which ASX’s neighbors are present

4 The cities of the facilities to which ASX’s neighbors are present

5 The countries of the facilities to which ASX’s neighbors are present

Table 1: List of peering features used by DFOH along with

their description. We consider features computation for ASX.

attacker ASX, it computes the scores for the neighboring ASes,

for which ASX has no control over the peering information.

In fact, an operator can only update the peering information

relative to its own organization. Besides, as ASes often have

several neighbors (the average node degree of the AS topology

is 12 and the median is 2), focusing on the neighboring ASes

helps find relevant peering information even if a few of them

do not add peering information into peeringDB.

Computing the feature values. Consider the vector fv,i,d that

contains information about feature i for node v at day d. For

each feature i, DFOH builds two vectors fv1,i,d and fv2,i,d based

on peering information collected at day d. On September 19,

2022, for features 1 and 5, the vectors have 271 dimensions

and each dimension corresponds to one of the 271 countries

found in peeringDB. Similarly, for feature 2, the vectors have

944 (number of IXPs) dimensions, whereas for feature 3 they

have 3558 (number of facilities) dimensions, and for feature

4 they have 1482 (number of cities) dimensions. The value of

fv,i,d at index j is the number of v’s neighbors that are in the

country/IXP/facility/city that corresponds to index j.

DFOH then normalizes the two vectors fv1,i,d and fv2,i,d

such that they become comparable even if v1 and v2 have a

different number of neighbors (normalization operation ∇),

and removes indexes for which the values in both vectors

are zero (feature reduction operation ⊖). Finally, DFOH com-

putes the feature value for the link (v1,v2) and a feature i

by computing the cosine distance between the two vectors,

which quantifies how similar the two vectors are (operation

α). We use the cosine distance because we are interested in

the direction of these vectors, not in their actual values, which

depend on the number of neighbors, an irrelevant informa-

tion for DFOH. For a given link (v1,v2) and a day d, DFOH

computes the following 5-dimensional feature vector.

P(d,v1,v2) = [α(⊖(∇( fv1,1,d),∇( fv2,1,d))),

. . . ,α(⊖(∇( fv1,5,d),∇( fv2,5,d)))]

6.2.3 AS-path-pattern feature

DFOH uses the AS paths of the hypothetically observed hi-

jacked routes to compute the AS-path-pattern features. More

precisely, DFOH checks whether the sequence of AS degree



and customer cone size in an observed AS path p ∈ A is rel-

evant given the following two assumptions. First, as the AS

topology exhibits a hierarchical pattern with Tier1 ASes at

the top, we expect that ASes higher in the hierarchy exhibit a

higher AS degree and customer cone size. Second, because

the majority of the inter-domain routing policies follow the

Gao-Rexford model [33], we expect the AS paths to have a

valley-free pattern. When these two assumptions are valid, the

sequence of AS degree and customer cone size in an AS path

follows a strong and identifiable up-and-down pattern. For in-

stance, between two stub ASes, we expect the AS degree and

customer cone size to increase until the path reaches the Tier1

ASes, and then to decrease until it reaches the destination AS.

Inferring the suspicious AS paths. Unsurprisingly, these

two assumptions do not always hold. For instance, a CDN

may have a higher node degree than some of its providers.

DFOH thus trains an inference model that computes the prob-

ability that a sequence of AS degree or customer cone size

is legitimate or caused by a forged-origin hijack, based on

historical (for the legitimate cases) and artificial (for the hi-

jack cases) data used as ground truth. More precisely, we

select a set of existing and nonexistent AS links. The existing

links are selected randomly whereas the nonexistent links are

selected following the sampling scheme described in §6.3,

which ensures that the distribution of the nonexistent links

follows the distribution of the existing links. Then, for each

existing link, we randomly pick an AS path that includes this

AS link and where one end of the link is at the origin. For the

nonexistent links, we randomly define the attacker and the

victim and pick an existing AS path for which the origin is

the hijacker AS and add the victim as a new origin.

Computing the feature values. DFOH trains a random forest

on sequences of AS degree and customer cone size inferred

from the created AS paths. DFOH finds the best parameters of

the random forest using a cross-validated grid search over a

parameter grid. The degree of an AS is computed from the AS

topology that DFOH builds on a daily basis, and the customer

cone size is obtained from ASRank [18]. DFOH computes the

following 3-dimensional feature vector.

J(d,v1,v2, p) = [ρ(d,v1,v2, p),σ(d,v1,v2, p),τ(d,v1,v2, p)]

where ρ is the result of the fake AS path inference considering

the AS degree for link (v1,v2), AS path p∈ A and day d. Simi-

larly, σ is the result of the inference for the customer cone size,

and τ is the result of the inference when AS degree and cus-

tomer cone size are combined. We find that combining both

AS degree and customer cone size improves the inference

on some scenarios where, e.g., CDNs are involved. Note that

each feature value is computed using its own independently-

trained inference model that DFOH updates every day.

6.2.4 The bidirectionality feature

Identifying an AS link in both directions is a strong sign that it

is legitimate [56]. However, checking for link bidirectionality

is more challenging for DFOH compared to local detection

systems such as ARTEMIS [56]. This is because the routes

collected by the public BGP vantage points only allow to

observe a small fraction of the new AS links as bidirectional.

DFOH improves state-of-the-art techniques by combining the

information from the public BGP data and the IRR to observe

more AS links in both directions. We explain our method-

ology and demonstrate its safety against adversarial inputs

and benefits in §D.2 due to space constraints. Computing the

bidirectionality feature results in the following 1-dimensional

feature vector.

B(d,v1,v2) = [bidir(d,v1,v2)]

Where bidir(d,v1,v2) = 1 if the link (v1,v2) is bidirectional

at day d, else it is equal to zero.

6.3 Inference

We now explain how DFOH runs (§6.3.1) and trains (§6.3.2)

its inference model using balanced samples (§6.3.3).

6.3.1 Detecting forged-origin hijacks

After computing the feature values for a new link (v1,v2)
and the observed AS path p ∈ A that includes the new link,

DFOH concatenates the resulting feature vectors and obtains

the following 27-dimensional feature vector.

F(d,v1,v2, p) = Tnode_based(d,v1,v2)⊕Tpair_based(d,v1,v2)

⊕P(d,v1,v2)⊕ J(d,v1,v2, p)⊕B(d,v1,v2)

Where ⊕ is the concatenation operation. DFOH uses this

feature vector as input to its inference model, which is a

supervised binary classifier. The classifier relies on a random

forest as this algorithm returns a slightly better performance

compared to others (e.g., neural networks, decision tree or

SVM), is easier to understand, and is fast to train and query.

DFOH refines its inference using many vantage points. A

new AS link is often visible from different BGP vantage

points, and the AS paths that include this new link may be

different. DFOH computes the AS-path-pattern features for

all these AS paths, runs inferences for this new link and for

every observed AS path using the computed AS-path-pattern

features, and triggers an alarm if half or more of the inferences

detect a forged-origin hijack. Observe that DFOH performs

well even if only one AS path is used (|A|= 1), which is what

we use to evaluate DFOH in §7.1.

6.3.2 Training the classifier

DFOH trains its classifier following a supervised training ap-

proach used in state-of-the-art link prediction frameworks [36,











our balanced sampling scheme is a key ingredient to obtain

high accuracy in every attack scenario.

DFOH outperforms state-of-the-art link prediction algo-

rithms. We compared DFOH to SEAL, a state-of-the-art

link prediction framework that could be an alternative to infer

whether a new AS link is legitimate or fake [68]. We run SEAL

on the AS topology inferred on August 1, 2022, and configure

it to use 20000 existing and nonexistent links for the training.

We then evaluate it on 10000 other existing and nonexistent

links that are selected using our balanced sampling scheme.

SEAL returns a TPR of 19.3%, and an FPR of 5.5%, a better

accuracy than a random classifier that would return ≈50% of

TPR and FPR, but a significantly lower accuracy than DFOH.

The accuracy of SEAL turns out to be very skewed (as we

show in §E.2) because it uses a random sampling scheme

for the training. In fact, the attack scenarios for which SEAL

poorly performs are the ones involving the highly-connected

ASes, i.e., the ones that are underrepresented in a random

sample. We thus implemented b-SEAL, a modified version of

SEAL that uses our balanced sampling scheme for the training

instead. With a TPR of 80.6% and a FPR of 30.8%, b-SEAL is

still significantly less accurate that DFOH. Yet, we find that its

accuracy is more consistent across all attack scenarios. Thus,

we conclude that (i) the balanced sampling is necessary for a

consistent accuracy, regardless of the inference model used,

and (ii) our selection of features based on domain-specific

properties is relevant. We give more details in §E.2.

8 Related work

Misorigin (Type-0) hijacks detection. Prior works that an-

alyze control-plane information to detect MOAS hijacks

[19, 35, 42, 58, 65] can detect accidental hijacks but not the

malicious ones induced by forged-origin hijacks. Prior works

that detect hijacks from data-plane information [16,70,71] of-

ten can only be deployed per AS, precluding global analysis.

Forged-origin hijacks detection. ARTEMIS detects forged-

origin hijacks involving the AS deploying the tool, but can-

not be extended for global detection (see §4.1). Cho et al.

introduce algorithms based on the AS hegemony [27] to clas-

sify reported hijacks as forged-origin hijacks [20]. The pro-

posed global hegemony feature is similar in essence to our

AS-path-pattern feature. Yet, without our key ingredients, this

technique alone results in a low and skewed accuracy when

used for globally detecting forged-origin hijacks (see §7.4).

This is confirmed by the authors themselves, who acknowl-

edge that their algorithm fails to classify hijacks that involve

highly-connected ASes such as in the KlaySwap incident [59].

Kruegel et al. propose to detect anomalous BGP updates by

combining geographical and topological information about

the ASes in the path [40]. However, little is known about how

this technique would work to detect forged-origin hijacks.

Link prediction applied to the AS topology. SEAL is a

framework for link prediction in a graph but it does not apply

well to detect fake AS links (see §7.4) [68]. Giakatos et al.

compare link prediction algorithms based on graph-based pre-

diction models on Internet routing data [29]. More precisely,

they compute a set of features for every AS and feed them

either into a GNN model or a graph embedding model such

as bgp2vec [57]. The authors acknowledge that the AS topol-

ogy and its hierarchical structure is challenging for a GNN

or a graph embedding model, and their inference models do

not translate well to detecting fake AS links. Finally, Shapira

et al. proposed a deep-learning approach with a recurrent

neural network based on node embedding computed using

bgp2vec [57]. Yet, the performance of the proposed solution

is evaluated on the small and biased dataset used in [20].

New protocols and architectures. BGPSec is an extension to

BGP where routers cryptographically verify the validity of the

AS path [44]. However, it is not deployed at all, as it requires

expensive cryptographical operations in the routers. ASPA is

a proposal to extend RPKI and use it for AS path validation

but it is not extensively deployed [9]. Finally, new secure

inter-domain protocols and architectures such as SCION [69]

are challenging to widely deploy.

9 Conclusion

We present DFOH, the first system that consistently detects

forged-origin hijacks on the Internet. DFOH only reports

≈17.5 cases every day, a small number that allows operators

to manually investigate each case and take the proper coun-

termeasures. We believe DFOH triggers interesting follow-up

works, such as measuring the frequency of these events, pro-

filing the forged-origin hijackers, or analyzing how often the

data traffic is diverted to the supposed attacker.
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Appendix

A A sample of the most suspicious cases

We now describe three suspicious cases that DFOH detected

in 2022. These cases illustrate that DFOH is exploitable, and

that reporting the suspicious cases and notifying the operators

is beneficial. Note that we did not manually inspect all the

reported cases in 2022. Thus, even more suspicious cases

might exist.

January 1, 2022:3 AS267548, a small Peruvian AS, appears

between Sprint (AS1239), a Tier1 AS, and AS199524, a large

content provider. However, AS267548 is not supposed to

3https://dfoh.uclouvain.be/cases/2022-01-01_1239_267548

https://www.manrs.org/about/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://www.manrs.org/2020/04/not-just-another-bgp-hijack/
https://www.manrs.org/2022/02/bgp-security-in-2021/
https://www.manrs.org/2022/02/bgp-security-in-2021/
https://ripe85.ripe.net/wp-content/uploads/presentations/71-10-RIPE85-IRRAnalysis.pdf
https://ripe85.ripe.net/wp-content/uploads/presentations/71-10-RIPE85-IRRAnalysis.pdf
https://ripe85.ripe.net/wp-content/uploads/presentations/71-10-RIPE85-IRRAnalysis.pdf
www.routeviews.org/
https://www.peeringdb.com/
https://www.peeringdb.com/
https://archive.nanog.org/meetings/nanog44/presentations/Tuesday/RAS_irrdata_N44.pdf
https://archive.nanog.org/meetings/nanog44/presentations/Tuesday/RAS_irrdata_N44.pdf
https://www.ripe.net/data-tools/stats/ris/
https://www.ripe.net/data-tools/stats/ris/
https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/
https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/
https://www.manrs.org/2022/02/klayswap-another-bgp-hijack-targeting-crypto-wallets/




Type Categorie Name Index Description

N
o
d

e-
b

a
se

d
Centrality Metrics

Degree centrality 0 Fraction of nodes connected to v

Closeness centrality 1 Average length of the shortest path between v and all other nodes

Harmonic centrality 2 Sum of the reciprocal of the shortest path distances from all nodes to v

Neighborhood Richness
Average neighbor degree 3 Average degree of all the neighbors of v

Eccentricity 4 Max distance from v to all other nodes

Topological Pattern
Number of Triangles 5 Number of triangles that include v

Clustering 6 Fraction of possible triangles including v that exist

P
a
ir

-b
a
se

d

Closeness Metrics

Jaccard 7 Similarity between the neighbors of v1 and v2

Adamic Adar 8 Closeness of v1 and v2 based on their shared neighbors

Preferential attachment 9 Likelihood of v1 and v2 to be connected based on their degree

Distance Shortest Path 10 Length of the shortest path between v1 and v2

Table 2: List of topological features used by DFOH along with their description. In the description, we consider for the

node-based features a node v in the AS topology whereas we consider two nodes v1 and v2 for the pair-based features.

are aggregated in the box plots. Clearly, there is no sweet spot

where an attack has high impact and low visibility. For Type-1

and 2, impact is high but visibility is high too, and vice versa

for Type-3, 4 and 5. An attacker launching a forged-origin

hijack thus often cannot prevent the AS path of the hijacked

route to include a new AS link—giving DFOH the ability to

detect it.

D Features computation (extension)

D.1 Topological features

Table 2 describes the ten topological features that DFOH uses

in its inference model. We explain how DFOH computes the

feature values in §6.2.

D.2 Bidirectionality feature

Observing an AS link in each direction is a strong sign that it

is legitimate. In fact, consider the forged-origin-hijacked route

with the AS path x1, . . . ,xn,v1,v2 where v1 is the attacker and

v2 the forged origin. v1 can only forge the upstream part

of the AS path (i.e., the part on the right side of v1), and

has no control over the downstream part. Note that v1 could

prepend v2,v1 on a route to another prefix that it owns to fake

a bidirectional link. However, the AS path would contain a

loop and would be either denied by BGP routers or easily

detectable by BGP monitoring systems. A challenge when

assessing the bidirectionality of the AS links is that the AS

topology derived from the AS paths in the BGP routes is

incomplete (e.g., backup links can be missing). Thus, only

a small fraction of the links (≈25000 , i.e., ≈4.8% of the

visible links) are visible in both directions.

Using the IRR data to supplement the BGP routes. DFOH

parses the IRR data to infer more peering links that are not

visible from the collected BGP routes. More precisely, DFOH

parses the aut-num objects of every AS in the routing reg-

istries. For now, DFOH only uses RADb as it is the only one

that makes available archive of its database. However, we

envision to use all the registries listed in [39] for real-time

detection. An aut-num object related to ASX may include

(partial) information about the export and import policies of

ASX. These policies generally indicate the AS number or an

as-set objects to/from which ASX is exporting/importing

routes. In the case of an as-set object, DFOH recursively

parses the object (an as-set object can include other as-set

objects) until it finds all the ASes in this as-set. With the IRR

data, DFOH infers peering information that when combined

with BGP data, allows identifying ≈10000 more bidirectional

links compared to with BGP data only.

The bidirectionality feature is beneficial. Even after pars-

ing the IRR data, the number of bidirectional links remains

small compared to the total number of AS links. Yet, they are

worth the effort because they help DFOH to correctly classify

new links as legitimate in some particular peering scenar-

ios. In fact, as the location of BGP collectors is typically

skewed with many of them located in the core of the Inter-

net [14], many bidirectional links pertain to highly-connected

ASes. We observe the same effect on the bidirectional links

inferred from the IRR data, as network operators of the highly-

connected ASes tend to populate their IRR data more fre-

quently than others. The bidirectional feature thus improves

the accuracy of DFOH upon peering scenarios that involve the

highly-connected ASes—scenarios that are hard to accurately

classify with the other features (see §E.1).

The bidirectionality feature is safe. The IRR data has two

drawbacks: It can be inaccurate and it is unverified. This is

not an issue for DFOH for two reasons. First, the number of

possible attacker and victim pairs is C2
74000 ≈ 2.74 billions

(74000 is the number of ASes [22]) whereas the number of

inconsistencies in the IRR is by far lower [25]. Consequently,

the bidirectional links incorrectly inferred because of these in-



w/o AS-Path-based w/o Bidirectionality w/o Topological w/o PeeringDB All Features

TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

Stubs -
85.0 % 4.2 % 97.0 % 4.2 % 95.0 % 4.2 % 87.0 % 2.8 % 97.0 % 4.2 %

Stubs

Stubs -
74.0 % 3.1 % 82.0 % 4.1 % 83.0 % 3.1 % 76.0 % 6.2 % 83.0 % 3.1 %

Tier1

Transit/IXP/CDN-2 -
82.0 % 1.0 % 95.0 % 1.0 % 94.0 % 1.0 % 92.0 % 2.0 % 95.0 % 1.0 %

Transit/IXP/CDN-3

Transit/IXP/CDN-3 -
96.2 % 1.0 % 98.1 % 1.0 % 98.1 % 2.0 % 98.1 % 1.0 % 98.1 % 1.0 %

Highly Connected

Transit/IXP/CDN-4 -
58.0 % 15.6 % 83.0 % 6.2 % 83.0 % 12.5 % 82.0 % 12.5 % 84.0 % 6.2 %

Tier1

Large Customer Cone -
35.0 % 13.3 % 89.0 % 13.3 % 88.0 % 6.7 % 94.0 % 13.3 % 89.0 % 6.7 %

Tier1

All types of Links 74.0 % 2.1 % 90.9 % 2.0 % 90.6 % 2.3 % 86.2 % 2.9 % 90.9 % 1.9 %

Table 3: Accuracy of DFOH for a few selected attack scenarios when all the features but one

are used in the inference pipeline.

consistencies only have very little impact on the performance

of DFOH. Second, as an attacker can only change the IRR data

for its own organization, she can only fake one direction of

an AS link (attacker → victim)—the same direction as when

prepending the victim’s AS number in a BGP announcement.

Computing the feature values. Upon a historical request

for a day d, DFOH infers link bidirectionality from the AS

topology computed on day d (i.e., Gd,k) combined with the

BGP and IRR data collected during the days following d (up

to 30 days). Considering the following days allows DFOH to

find more bidirectional links that only appear e.g., once BGP

converges. Upon a real-time query on day d, DFOH considers

the graph Gd,k, and the IRR data collected on day d. Observe

that for the bidirectionality feature, Gd,k is a directed graph.

Computing the bidirectionality feature results in the following

1-dimensional feature vector.

B(d,v1,v2) = [bidir(d,v1,v2)]

Where bidir(d,v1,v2) = 1 if the link (v1,v2) is bidirectional

at day d, else it is equal to zero.

E Detection speed

DFOH automatically downloads all the data and trains the in-

ference model on a daily basis. Upon launching an inference,

DFOH uses the inference model trained the day before. Thus,

the detection speed depends on (i) the time to compute the

feature values for the link and AS paths given as input, and

(ii) the time to run the inference. The inference is fast (<1s)

because it relies on a simple random forest. However, the time

to compute the feature values depends on whether DFOH is

used for real-time detection or to detect past forged-origin

hijacks. We now differentiate the two cases.

DFOH detects past forged-origin hijacks in a few seconds.

We measured the time needed by DFOH to compute the fea-

ture values for all the 18000 synthetic cases used to evaluate

the overall performance of DFOH in 7.1. We use an Ubuntu

20.04 LTS version server with 16 cores and 64 GB of memory.

DFOH needs 7510 seconds to compute the feature values (i.e.,

≤ 1s for a single case). The topological features are the most

time consuming to compute (7155 seconds). Observe that

the AS-path-pattern features are fast to compute, thus DFOH

remains fast even when it must compute these features for

many different AS paths.

DFOH detects new forged-origin hijacks in a few minutes.

The only difference when running DFOH in real time per-

tains to the bidirectionality feature. In fact, a new peering

interconnection may be visible in both directions from the

BGP routes only when BGP has converged. As the BGP con-

vergence typically takes a few minutes [41], DFOH waits a

few minutes (five, identically to ARTEMIS [56]) to let BGP

converge before computing the bidirectionality feature.

E.1 Discriminate power

of classification features

In this section, we examine the discriminatory power of the

classification features used in DFOH. We show that our se-

lection is sound: Every feature is useful in at least one attack

scenario. Besides, none of the features alone is able to detect

forged-origin hijack consistently and for all attack scenarios.

Every feature category is useful. Table 3 shows the perfor-

mance of DFOH when one feature category is deactivated
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