dRR: A Decentralized, Scalable,

and Auditable Architecture for
RPKI Repository

NDSS ’'24
Yingying Su+¥, Dan Li+T, Li Chen', Qi Li*T, and Sitong Ling*
«Tsinghua University, T7Zhongguancun Laboratory, ¥BNRist

mhkang 2024-05-01

Resource Public Key Infrastructure (RPKI)

 RPKI is an infrastructure for securing Internet number resources (e.g., IP
prefixes or AS numbers) and improving security of BGP routing

* [wo key objects in RPKI

* Resource Certificate (RC): enables resource holders to assert their legitimate ownership of
Internet number resources

* Route Origin Authorization (ROA): provides a binding of IP prefixes to their legitimate origin
ASes

2 /73

Resource Public Key Infrastructure (RPKI)

 RPKI is an infrastructure for securing Internet number resources (e.g., |IP
prefixes or AS numbers) and improving security of BGP routing

 Two key objects in RPKI

* Resource Certificate (RC): enables resource holders to assert their legitimate ownership
of Internet number resources

* Route Origin Authorization (ROA): provides a binding of IP prefixes to their legitimate
origin ASes

3 /73

Certificates

The hierarchy of RPKI () moms [Resours

~ 7 RPIE
“ArrING [iacnic Hapnic T ARIN

[NIR] National Internet Registries (NIRs)

T 0 00)0)0 10] tocatmormet Resstis s

[J [J Internet Service Providers (ISPs)

 RPKI is structured hierarchically
 five RIRs are root CAs and NIRs/LIRs/ISPs are sub-CAs

4 /73

The hierarchy of RPKI () moms [Resours

Certificates

~ 7 RPIE
“ArRING [acnic Hoapnic T ARIN

[NIR J National Internet Registries (NIRs)

T 0 00)0)0 10] tocatmormet Resstis s

[J [} Internet Service Providers (ISPs)

 RPKI is structured hierarchically
 five RIRs are root CAs and NIRs/LIRs/ISPs are sub-CAs

5 /73

The hierarchy of RPKI () moms [Resours

Certificates

o ®
< =
OIS
QRS

o, N\
"n
0 e A A1\ 0 oo
o % % BTN SN ot % S et
& L ALY o & g v . * * e 4 LIRS
LR 4 . e AANC IR S R 4 ‘0.0 ‘¢’0 * . e
. o g . SA) .
3 3 0 . - o 3 L3
. ¢ Y * . N 0 . . ¢

00"“
e
o
SO
o -
.
0 .
o -

-
’OO.
*

oSundy,
evms
* 4 u
L
A

=

n

.

4 ‘0 o
& *
o 0 . LN

m National Internet Registries (NIRs)
[] [] [] [] [] [] [] Local Internet Registries (LIRs)

[J [J Internet Service Providers (ISPs)

)

 RPKI is structured hierarchically
 five RIRs are root CAs and NIRs/LIRs/ISPs are sub-CAs

6 /73

Certificates

The hierarchy of RPKI () moms [Resours

= . -
. * »
2 . £0 . *
. 0
g

7 % “’P
A\
n e’y .
o . 85328 A1\ A
< ES et RO % e usel,
ot *% FECRC o* e *% o a as e’
LR 4 L RES R R ‘0.0 ‘¢’0 AAN T S R 4
g * SA) . g *
* * . * * - .
. . ¢ o % . * « Y

S c’
*e s
o Y L]
OO .a
* . * x *
* . * D *
. o NAN *e o A ‘e
« 3 .

) LJOJL I L

Internet Service Providers (ISPs)

B EN BN BN BN BN BN BN BN BN BN BN I I I I N N N = = = m .

)
—
)
—
v IEH EH = =B =E = = =

 RPKI is structured hierarchically
 five RIRs are root CAs and NIRs/LIRs/ISPs are sub-CAs

7 /73

The hierarchy of RPKI () moms [Resours

Certificates

<~ ” RPIE
AFRINIC LACNIC APNIC ARIN

[NIR] National Internet Registries (NIRs)

Local Internet Registries (LIRs)

Internet Service Providers (ISPs)
l’I " - .\
: !

 RPKI is structured hierarchically
* five RIRs are root CAs and NIRs/LIRs/ISPs are sub-CAs — generate ROAs

8 /73

Example of RPKI hierarchical structure

Publication Point
of Indonesia
() APNICRIRE)) | (anifest)
ASN: 0 - (232-1)

IPv4: 0.0.0.0/0, IPv6: 0:0:/0
B i o 9[CRL]

(mm |ndonesia (NIR) >< @D >
27.111.32.0119 &=
.) - © |

e

-
43.224.168.0/225 (PT-|"et2-7G1|<1>1bg:|2 :)fl‘flgo (ISP)’
@ AS 45101 g @ 432941680122 .. S .
¥
4 Y
27.111.39.0/19-24
& _Re }J <AS 24532>

9 /73

Example of RPKI hierarchical structure

Publication Point
of Indonesia
() APNICRIRE)) | (anifest)
ASN: 0 - (232-1)

IPv4: 0.0.0.0/0, IPv6: 0:0:/0
B i o -—%{ CRL]

(mm |ndonesia (NIR) >< @D >
27.111.32.0119 =
L szuene:. 7 | @

e

-
43.224.168.0/225 (PT-|"et2-7G1|<1>1bg; :)f;f'go (ISP)’
@ AS 45101 g @ 43.224.168.0/22 .. S .
:
4 Y
27.111.39.0/19-24
& _Re }J <AS 24532>

10 /73

Example of RPKI hierarchical structure

Publication Point . Each CA runs
: of Indonesia . | a Publication Point (PP)
" (:) APNIC (RIR.}) ! 4[Manifost] . | to store RCs and ROAs
ASN: 0 - (232-1) : issues for Internet
. IPv4: 0.0.0.0Ii), IPv6: 0:0:/0) 9{ CRL] : Number Resource
R T (NIR) Y >< ®> holders (INR holders)
27.111.32.0119 == |
_ 43.224.168.0/22 ... Py 9{ @] :
e e T TTTTTTEYTS :
43.224.168.0/22@ PT. '"etz ?:?:Dg; :)7?90 (|Sé)\
@ AS 45101 @ 43.224. 168 0/22 ..
4 R
27.111.39.0/19-24
\ _RC]) AS 24532

11 /73

RPKI Repository

* All PPs collectively form the RPKI

. Repository
| RIR UPload »[PP for RIR : » each CA’s PP exclusively stores
Isign RP } the RPKI objects issued by the
) up oad .
| NIR | >[PP for NIR | respective CA
lS|gn -
[ISP]upload {PP tor ISP : verlflef ROAs
sign ' * Relying Parties (RPs) periodically
‘RPK' ot asndbicth) [Router J traverse all PPs, download and

---------------- validate all RPKI objects

12 /73

RPKI Repository

* All PPs collectively form the RPKI

. Repository
| RIR UPload »[PP for RIR : » each CA’s PP exclusively stores
Isign RP } the RPKI objects issued by the
) up oad .
| NIR | »[PP for NIR | respective CA
lS|gn -
[ISP]upload {PP tor ISP : verlflef ROAs
sign ' * Relying Parties (RPs) periodically
'RPK' o vk 10 [Router J traverse all PPs, download and

---------------- validate all RPKI objects

13 /73

Three Key Problems of RPKI Repository

P1. Unilateral Reliance on RPKI Authority

 CAs can unilaterally undermine any RPKI objects without INR holders’ consent

P2. Single Point of Failure

 Any PPs’ failure will hinder RPs from obtaining complete RPKI object views

* |ntroduce inter-dependency between the accessibility of a PP and the reachability of the PP’s AS

P3. Poor Scalability

 RP local cache refresh involves traversing all PPs to fetch updated data

 The number of PPs is expected to increase dramatically with the further deployment of RPKI

14 /73

Three Key Problems of RPKI Repository

P1. Unilateral Reliance on RPKI Authority

 CAs can unilaterally undermine any RPKI objects without INR holders’ consent

P2. Single Point of Failure

 Any PPs’ failure will hinder RPs from obtaining complete RPKI object views

* |ntroduce inter-dependency between the accessibility of a PP and the reachability of the PP’s AS

P3. Poor Scalability

 RP local cache refresh involves traversing all PPs to fetch updated data

 The number of PPs is expected to increase dramatically with the further deployment of RPKI

15 /73

Three Key Problems of RPKI Repository

P1. Unilateral Reliance on RPKI Authority

 CAs can unilaterally undermine any RPKI objects without INR holders’ consent

P2. Single Point of Failure

 Any PPs’ failure will hinder RPs from obtaining complete RPKI object views

* Introduce inter-dependency between the accessibility of a PP and the reachability of the PP’s AS

P3. Poor Scalability

 RP local cache refresh involves traversing all PPs to fetch updated data

 The number of PPs is expected to increase dramatically with the further deployment of RPKI

16 /73

Three Key Problems of RPKI Repository

P1. Unilateral Reliance on RPKI Authority

 CAs can unilaterally undermine any RPKI objects without INR holders’ consent

P2. Single Point of Failure

 Any PPs’ failure will hinder RPs from obtaining complete RPKI object views

* |ntroduce inter-dependency between the accessibility of a PP and the reachability of the PP’s AS

P3. Poor Scalability

 RP local cache refresh involves traversing all PPs to fetch updated data

 The number of PPs is expected to increase dramatically with the further deployment of RPKI

17 /73

Data-driven Security Analysis
P1. “Unilateral Reliance on RPKI Authority”

7, 11.5%

e Real-world concerns

¥ No * 44% of AS operators expressed
31, 45.6% S concerns about malicious authorities
® Yes
31, 44.1% * two operators consider the threat from
Not sure authorities to be the most serious
problem

Fig. 21: For P1. Are you worried that RPKI authorities « one operator had lost all their ROAs
maliciously compromise your certificates, which could due to administrative’human reasons
affect the legitimacy of your BGP updates? (w/ROA).

responses from administrators of 68 ASes that have deployed ROA and 35 ASes that have not deployed ROA 18 /73

Data-driven Security Analysis
P2. “Wulnerable to Single Point of Failure"

« only 8 out of 61 PPs are hosted in CDNs* " RPKI Repository Delta Protocol (RRDF)
- used by Relying Parties to retrieve the

 hosted in Cloudflare AS13335 or Amazon AS16509 RPKI objects from the RPKI repository,
- designed to leverage CDN infrastructure
for resilient service

58 out of 61 PPs are hosted in a single AS
* The accessibility of these PPs is highly dependent on the reachability of a single AS

* 14 PPs carry the ROAs of the ASes where PPs are located

* The accessibility of these PPs will form a circular dependency on the reachability of the
ASes

19 /73

Data-driven Security Analysis
P3. “Poor Scalability"

* Analysis
- 28 * the number of PPs has grown more
. than 12 times
O 30 -
: ig * many AS operators are considering

running PPs
2032 9030 H0VT 90V 5013 9020 502 4027 4023 J

Years o '
Fig. 4: The number of independent PPs over nine years. when RPKI s fuIIy_de_pon_ed, th.e
number of PPs will inevitably increase

3,9.1%
2, 6.1%, 7\

\ ® No
8, 24.2% .
e Potential Problems
. = Will not deploy ROA
oI . threaten the scalability of RPKI
ot sure

Fig. 22: For P3. If you deploy ROA in the future, would ° INcréase the cost ot RP refreshing

you consider adopting delegated RPKI and running your

own PP? (wo/ROA). 20 /73

Design Goal of dRR (decentraiized RPKI Repository)

 Defend against
RPKI authorities’
malicious behavior

* Allow RPs verify
certificate status

 Allow resource holders
verify the integrity of
RPKI views

e RPKI historical data
can be audited

 Defend against
single point of
failure

* Truly distributed data
storage

* PP accessibility is
independent of AS
accessibility

* Prevent unlimited
growth in the
number of PPs

* Improve the reliability
of RPKI Repository
system

Be compatible with RPKI architecture and support incremental deployment

21 /73

Key Idea of dRR

« Separating RPKI object distribution from signing

* decouple PP and RPKI Authority and design a third-party repository for RPKI

g CA A Ecert
= |
bcert(, .
e o« CAs' PPs [RP]
4 A N |
INR
_ holder | :—manifest/'CRL

(a) the current RPKI Repository.

[ea 6 Jcert l
. I .
PICP S RP |
E c e? fe&?eratlon) L__T
— BcP :=|CUL
L holder I_’[Monitor]_I

(b) dRR

22 /73

Key Idea of dRR

« Separating RPKI object distribution from signing
* decouple PP and RPKI Authority and design a third-party repository for RPKI

i | cert r w
CA 6] CA b Jcert
Ecert(| T |
bcert(, . . .
00, o ' CS [
.. A s [RAP] eSICPr @federation g RP]
| | bl:cep k | y =
" INR —me) 2P =]cuL
holder :—manifest/'CRL __holder | I_’[Monitor]—I
(a) the current RPKI Repository. (b) dRR

Key new entities for dRR: Certificate Server (CS) Federation and

23 /73

Key Idea of dRR

« Separating RPKI object distribution from signing
* decouple PP and RPKI Authority and design a third-party repository for RPKI

 cA Fjcert r w Tcert

| |

Fcert(— . \
00, o ' CS [
.. A s [RAP] eSICPr @federation L RP]
| | blécep & | y =
" INR —me) 2P =]cuL
holder :—manifest/CRL __holder _ I—'[Monitor]—I
(a) the current RPKI Repository. (b) dRR

Key new entities for dRR: Certificate Server (CS) Federation and
Key new objects for dRR: Certificate Policy (CP) and

24 /73

Key Idea of dRR

« Separating RPKI object distribution from signing
* decouple PP and RPKI Authority and design a third-party repository for RPKI

 cA Fjcert r w Tcert

| |

bJlcerf(— . b [.
= > o % ¢ CAs' PPs |: | RP | PIcP @f dCSt_ RP |
o : ederation $
| e ; blécep k , y 7
4 |NR ~ INR ™ ECP . — CUL
holder :—manifest/CRL _ holder I_’[Monitor]_I
(a) the current RPKI Repository. (b) dRR

Key new entities for dRR: Certificate Server (CS) Federation and
Key new objects for dRR: Certificate Policy (CP) and

25 /73

Key Idea of dRR

« Separating RPKI object distribution from signing
* decouple PP and RPKI Authority and design a third-party repository for RPKI

 cA Fjcert SR Tcert
FJcert(— l] l
* o%s « CAS' PPs RP PIcP . f dCSt RP)
, - n lcer - federation J;
TINR SETTER B5cP :=|CUL
holder :—manifest/CRL _ holder | I—’[Monitor]—l
(a) the current RPKI Repository. (b) dRR

Key new entities for dRR: Certificate Server (CS) Federation and
Key new objects for dRR: Certificate Policy (CP) and

26 /73

Key Idea of dRR

« Separating RPKI object distribution from signing

* decouple PP and RPKI Authority and design a third-party repository for RPKI

CA Ecert
INR

* ' l RP I
holder

:—manifest/'CRL
(a) the current RPKI Repository.

T | |
o 0
; : federatlon L

: E ;'_'_'1' o
r INR \ %CP |:=|CUL

holder | I—'I Monitor };J""'

CA 6 Jcert

(b) dRR

Key new entities for dRR: Certificate Server (CS) Federation and
Key new objects for dRR: Certificate Policy (CP) and

27 /73

S e e,

Certificate Server (CS) Federation =-{&..) @

¥ ﬁEgcp =|cuL
[h:)Tcll:{er J I—’[Monitor }—I
 Hosting resource certificates and ROAs for resource holders (b) dRR

* Two main improvements of the CS, compared to the traditional publication
point (PP)

* Independent of CAs, all certificate servers are equal and together form the CS federation

* resource holders can freely choose any CSs they trust to provide certificate hosting
services for them

* not only host the certificates, but also publicize certificate policies

28 /73

Certificate Policy (CP)

* Any certificate issuance and revocation will be publicized in
the CS federation in the form of Certificate Policies

* Two types of CPs
* certificate issuance policy (CIP)

* certificate revocation policy (CRP)

cert

(=) H

@ o
federatlon

| &

29 /73

Certificate Issuance Policy (CIP)

 CAs provide ClPs to resource holders to prove the authenticity of the

Issuance of certificates

Field Name Content
VERSION The version of the current CIP.
ISSUER INR_holder_ ID of the certificate 1ssuer (i.e., CA).
SUBJECT INR _holder ID of the certificate owner.
CERT The hash of the protected certificate.

CERT_T The type of the protected certificate, RC or ROA.
ISSUER_RC The hash of the protected certificate’s parent RC.
VALIDITY The validity period of this certificate. It 1s a tuple: (notBefore,

notAfter), and must be the same as the validity period in the
certificate.

CS_SET IDs of the CSs hosting this certificate. It 1s represented as a

sequence: [CS,1_ID,CS,_ID, ..., CS,_ID].
CIP HASH The hash of this CIP.
CIP_SIG The 1ssuer’s signature on this CIP.

30 /73

Certificate Revocation Policy (CRP)

 Resource holders provide CRPs to confirm that the revocation has obtained
the consent of all affected parties

* Five RIRs can jointly sign CRPs for mandatory certificate revocation

Field Name Content

VERSION The version of the current CRP.
R_M Method of revoking the certificate: self or rir.
CRP_ISSUER | The 1ssuer of this CRP.
CERT_SET The hash list of the revoked certificates. It 1s represented as

a sequence: [CERT,, CERT,, .. CERT,].
CRP_ HASH The hash of this CRP.
CRP_SIG The CRP_ISSUER’s signature on this CRP.

31 /73

The Global Ledger Maintained by the CS Federation

Genesis block Block 1 Block 2 Block N
previous hash — previous hash — previous hash — previous hash
b CS1_reg ' CIP . CIP
tacreg LI sepy < teel | J ok
e . CIP : CS2_reg INRh_reg
igﬁ—:zg | CRP : " CIP " CIP";

— '+ CIP . ' CRP . ' CIP .
five RIR _reg e R R
CS signature CS signature CS signature CS signature

Fig. 6: The global ledger maintained by the CS federation.
Genesis block contains the RIR registration messages, and
subsequent blocks contain CS and INR holder registration
messages (CS_reg and INRh_reg), CIPs, and CRPs.

32 /73

The Global Ledger Maintained by the CS Federation

Genesis block Block 1 Block 2 Block N
previous hash — previous hash — previous hash — previous hash
 LACey 1 | Llcstreg cIP cIP
0 B g TR LGP
0 R|pE_reg i CIP .- .C.S.Z..-..r.eg. _of ~ -IN@’Zﬁ’:eg. —of
: ARIN—:ZS : CRP CIP CIP
: — ' CIP CRP CIP
five RIR reg -

CS signature CS signature CS signature CS signature

Fig. 6: The global ledger maintained by the CS federation.
Genesis block contains the RIR registration messages, and
subsequent blocks contain CS and INR holder registration
messages (CS_reg and INRh_reg), CIPs, and CRPs.

33 /73

Monitor e Prrtion| ()

[-] fJcert
|

ce

() = T J1
* The Monitor in dRR provides proofs of (b) dRR

the status of a specific certificate and the trustworthiness of the monitor

proof of presence, proof of absence, proof of consistency

e M-Tree

a Merkle Hash Tree (MHT) with leaf nodes containing CPs
generate a commitment (root hash of the tree) after inserting a block’s CIPs and CRPs

the newly added CIPs in one block will be appended into the M-Tree according to the
lexicographical order of their certificate hashes

the revocation of the certificates in the newly added CRP is recorded by modifying the CIP
entries of the respective certificates

34 /73

Monitor e Prnsarion] (7]

[-] fJcert
|

ce

() = T J1
* The Monitor in dRR provides proofs of (b) dRR

the status of a specific certificate and the trustworthiness of the monitor

proof of presence, proof of absence, proof of consistency

e M-Tree

a Merkle Hash Tree (MHT) with leaf nodes containing CPs
generate a commitment (root hash of the tree) after inserting a block’s CIPs and CRPs

the newly added CIPs in one block will be appended into the M-Tree according to the
lexicographical order of their certificate hashes

the revocation of the certificates in the newly added CRP is recorded by modifying the CIP
entries of the respective certificates

35 /73

Monitor e Prnsarion] (7]

[-] fJcert
|

ce

(o) = C o 1
* The Monitor in dRR provides proofs of (b) dRR

the status of a specific certificate and the trustworthiness of the monitor

proof of presence, proof of absence, proof of consistency

e M-Tree

a Merkle Hash Tree (MHT) with leaf nodes containing CPs

generate a commitment (root hash of the tree) after inserting a block’s CIPs and CRPs

the newly added CIPs in one block will be appended into the M-Tree according to the
lexicographical order of their certificate hashes

the revocation of the certificates in the newly added CRP is recorded by modifying the CIP
entries of the respective certificates

36 /73

Monitor e Prnsarion] (7]

[-] fJcert
|

ce

() = T J1
* The Monitor in dRR provides proofs of (b) dRR

the status of a specific certificate and the trustworthiness of the monitor

proof of presence, proof of absence, proof of consistency

e M-Tree

a Merkle Hash Tree (MHT) with leaf nodes containing CPs
generate a commitment (root hash of the tree) after inserting a block’s CIPs and CRPs

the newly added CIPs in one block will be appended into the M-Tree according to the
lexicographical order of their certificate hashes

the revocation of the certificates in the newly added CRP is recorded by modifying the CIP
entries of the respective certificates

37 /73

[-] fJcert
|

Monitor e Prnsarion] (7]

ce

() = T J1
* The Monitor in dRR provides proofs of (b) dRR

the status of a specific certificate and the trustworthiness of the monitor

* proof of presence, proof of absence, proof of consistency

e M-Tree
* a Merkle Hash Tree (MHT) with leaf nodes containing CPs
* generate a commitment (root hash of the tree) after inserting a block’s CIPs and CRPs

* the newly added CIPs in one block will be appended into the M-Tree according to the
lexicographical order of their certificate hashes

* the revocation of the certificates in the newly added CRP is recorded by modifying
the CIP entries of the respective certificates

38 /73

Proof of Presence

* A pruned tree that contains the leaf entry of the requested certificate and the
iIntermediate nodes needed to reconstruct the commitment

» \erification process
* an INR holder asks whether a certificate exists
* the Monitor will return a proof of presence
* the INR holder reconstructs a commitment C’

* then the INR holder accesses the commitment update files provided by other Monitors to
check the authenticity of C’

39 /73

Proof of Presence

* A pruned tree that contains the leaf entry of the requested certificate and the
iIntermediate nodes needed to reconstruct the commitment

* Verification process
 an INR holder asks whether a certificate exists
* the Monitor will return a proof of presence
* the INR holder reconstructs a commitment C’

* then the INR holder accesses the commitment update files provided by other Monitors to
check the authenticity of C’

40 /73

Proof of Presence

* A pruned tree that contains the leaf entry of the requested certificate and the
iIntermediate nodes needed to reconstruct the commitment

* Verification process
* an INR holder asks whether a certificate exists
 the Monitor will return a proof of presence
* the INR holder reconstructs a commitment C’

* then the INR holder accesses the commitment update files provided by other Monitors to
check the authenticity of C’

41 /73

Proof of Presence

* A pruned tree that contains the leaf entry of the requested certificate and the
iIntermediate nodes needed to reconstruct the commitment

* Verification process
* an INR holder asks whether a certificate exists
* the Monitor will return a proof of presence
* the INR holder reconstructs a commitment C’

* then the INR holder accesses the commitment update files provided by other Monitors to
check the authenticity of C’

42 /73

Proof of Presence

* A pruned tree that contains the leaf entry of the requested certificate and the
iIntermediate nodes needed to reconstruct the commitment

* Verification process
* an INR holder asks whether a certificate exists
* the Monitor will return a proof of presence
* the INR holder reconstructs a commitment C’

 then the INR holder accesses the commitment update files provided by other
Monitors to check the authenticity of C’

43 /73

Proof of Presence: example

 INR holder asks whether the certificate in hzo=(B_ NUM = 3,CERT = acab...)

exists

/llo\ [/11<
h11 h12 h21 { l122]
B NUM: 1 h),, o4 ghyu...
CERT: jkop... B NUM: 4
ISSUER RC: huly... CERT: hjsu...

VALIDITY: [2019.5.6-2020.5.6]
CS SET: [CS, CS,..]
CIP HASH: kkul...

B NUM:3
CERT: aaab...

CRP_HASH: oplk...

B NUM: 3 : B NUM: 4
CERT: acab...: CERT: abcd...
' ISSUER_RC: efgh...
----------- VALIDITY: [2022.4.2-2023.5.6]
CS SET: [CS,, CS,..]

CIP HASH: hjki...

Il I I = I O O = g

>

44 /73

Proof of Presence: example

* The Monitor will return a pruned tree that contains the entry of hs2 and the
hash of hs1, intermediate nodes l14 and log to the INR holder

g

/—_
/\ [114]
h31 h32

D/

proof of presence

45 /73

Proof of Presence: example

* The INR holder can easily reconstruct the commitment C4’

46 /73

Proof of Presence: example

* The INR holder can easily reconstruct the commitment C4’

ot e
h31 h32

47 /73

Proof of Presence: example

* The INR holder can easily reconstruct the commitment C4’

48 /73

Proof of Presence: example

* The INR holder can easily reconstruct the commitment C4’

49 /73

Proof of Presence: example

 Then the INR holder accesses the commitment update files provided by other

Monitors to check the authenticity of C4’

Commitment Update File

Ly

<comm1its,

B NUM = 11
<B NUM
<B NUM
<B NUM

</commits>

xmlns

11,
10,

1,

Ba

compare
Ps: /. .. monitor’,
commit = "abcd. ...">
commit = "bkdk...">
commit = "klod. . .">

50 /73

Proof of Absence

* A pruned tree

 contains two consecutive leaf nodes where the hash of the queried certificate is
between the hashes of them

e and the intermediate nodes needed to reconstruct the commitment

* \erification process is the same as that of the proof of presence

proof of absence

2 4

" N - 7 "
Pr -7../. -ﬁ\..\.- /14\
; " hy, h;, :
<B_NUM=3, CERT=abab> * . e

CERT: aaab... CERT: acab... ,

51 /73

Proof of Absence

* A pruned tree

 contains two consecutive leaf nodes where the hash of the queried certificate is
between the hashes of them

e and the intermediate nodes needed to reconstruct the commitment

* \erification process is the same as that of the proof of presence
<B_NUM=3, CERT=abab> should located

Wtween ‘aaab...’ and ‘acab...’

i3 BV i3 ars

k. ahits.~ ILLLLLLLEREF S EERRS T Tot CITEELLTEES e

h;, h;, h33 ' _hy | + hg, h;, . hs3 _hy |
BNUM:3 B NUM:3 B NUM:3 ° ; ' B_NUM: 3 B NUM:3 °
CERT: aaab... CERT:abab... CERT:acab... : ' CERT: aaab.. CERT: acab... ,
CER)ébab
(a) If exist (b) If not exist

52 /73

Proof of Absence

* A pruned tree

 contains two consecutive leaf nodes where the hash of the queried certificate is
between the hashes of them

e and the intermediate nodes needed to reconstruct the commitment

* \erification process is the same as that of the proof of presence

--
L

S

I, ," l,, \‘

/113\ } lk /113\ } IK :
h;, h;, h33 | hy, | h;, h;, hs3 | hy, |

B NUM: 3 B NUM: 3 B NUM: 3 . ' B NUM:3 B NUM: 3 :

CERT: aaab... CERT: abab... CERT: acab... ' CERT: aaab.. CERT: acab... :

NO such certificate exists

— proof of absence (b) It not exist 53 /73

(a) If exist

Proof of Consistency

* A pruned tree

* contains a Certificate Update List (CUL, a list of newly inserted or updated entries) and a
proof (hashes needed to reconstruct a commitment)

* prove that the commitment of the current M-tree is indeed evolved from the previous
commitment

54 /73

Proof of Consistency

» \erification process

* A Relying Party (RP) submits <B_num=3, c=C3>, the RP has completed the
synchronization of the first three blocks

 The Monitor will return a proof of consistency whose commitment is C4
* The RP verify that the reconstructed commitment C’s is trusted

* The RP verify that the reconstructed commitment C’s is evolved from Cs

55 /73

Proof of Consistency

» \erification process

* A Relying Party (RP) submits <B_num=3, c=C3>, the RP has completed the
synchronization of the first three blocks

 The Monitor will return a proof of consistency whose commitment is Cs4
* The RP verify that the reconstructed commitment C’s is trusted

* The RP verify that the reconstructed commitment C’s4 is evolved from Cs

56 /73

Proof of Consistency

» \erification process

* A Relying Party (RP) submits <B_num=3, c=C3>, the RP has completed the
synchronization of the first three blocks

* The Monitor will return a proof of consistency whose commitment is C4
 The RP verify that the reconstructed commitment C’; is trusted

* The RP verify that the reconstructed commitment C’s4 is evolved from Cs

57 /73

Proof of Consistency

» \erification process

* A Relying Party (RP) submits <B_num=3, c=C3>, the RP has completed the
synchronization of the first three blocks

* The Monitor will return a proof of consistency whose commitment is C4
* The RP verify the authenticity of the reconstructed commitment C’4

 The RP verify whether the reconstructed commitment C”; is evolved from Cs

58 /73

Proof of Consistency

» \erification process

* A Relying Party (RP) submits <B_num=3, c=C3>, the RP has completed the
synchronization of the first three blocks

* The Monitor will return a proof of consistency whose commitment is C4
* The RP verify the authenticity of the reconstructed commitment C’4

 The RP verify whether the reconstructed commitment C”; is evolved from Cs

deletes inserted entries and reverts the updated entries from the pruned tree
re-calculates the commitments C’3
checks whether it is equal to C3

59 /73

dRR Workflow

’_-----------------------s

! CS Federation *

{ CA]—@Upload CRP—{ CS J [CS J :
t : :
(DRequest INR : /—\ :
(2CRP | GPublicize |
@RC/ROA&CIP ! W :
(URevoke RC/ROA |

4 : |

| INR holder |-®Upload RCROA&CIP - CS |@HostRC/ROA

/

——————————————————————————

(M Check RC/ROA status ®Push CIP/CRP ©)Fetch RC/ROA
|

|

{(Mor:itor JJ‘Request CULSA{ RP J

60 /73

dRR Workflow

’-----------------------—~

’ CS Federation "
([cA_Joums | &

CIP/CRP

C
S

o
Q

Q.
O
X
U
P
n

) :
A !
D .
LD
C
@ !
0 .
i
-«—x’:

@
Y
Q
O
>
Qo
O
T

QRevoke RC/ROA
v
[INR holder Upload RC/ROA & CIP CS J@Host RC/ROA
(MCheck RC/ROA status ®Push CIP/CRP ©Fetch RC/ROA
|

|

{ Monitor :}-@RequestcuLs—{RP)

61 /73

dRR Workflow

’------------------------5

! CS Federation \

I |

{ CA]—@Upload CRP— CS J { CS } :

; ' :

(DRequest INR E /—\ :

@CRP | ®Publicize |

@RC/ROA&CIP ! CIP/CRP :

(DRevoke RC/ROA ! |

4 R S R " I

| INR holder |+®Upload RCUROA&CIP £+ CS |@HostRC/ROA
(MCheck RC/ROA status ®Push CIP/CRP ©Fetch RC/ROA

|

; |

{(Monitor JJ‘Request CULSA{ RP]

62 /73

dRR Workflow

’-----------------------—~

! CS Federation \

I |

{ CA 3Upload CRP—{ CS J { CS } :
; ' :
(DRequest INR E dfseraannmanes :
2CRP | " ®Publicize |
@RC/ROA&CIP ! . A_ CIP/ICRP /" :
(DRevoke RC/ROA ! TN e |

* I " ~\l

|

{ INR holder]—@Uploaq RC/ROA&CIP CS }@Host RC/ROAE:

|
/’l

——————————————————————————

(M Check RC/ROA status ®Push CIP/CRP ©)Fetch RC/ROA
|

|

{ Monitor :}-@RequestcuLs—{RP)

63 /73

dRR Workflow

’------------------------5

! CS Federation \
I |
{ CA]—@Upload CRP—{ CS J { CS } :
f | l
(DRequest INR E /_\ :
2CRP ! ®Publicize !
@RC/ROA & CIP ! CIP/CRP :
(DRevoke RC/ROA ! |
v : |
[INR holder Upload RC/ROA & CIP CS J@Host RC/ROA '
......... J['-'..'.'..'.:.'"'"""""""?'
(@MCheck RC/ROA status @Push CIP/CRP l ©Fetch RC/ROA

’
................... I

{ Monitor JJ‘Request CULSA{ RP]

64 /73

dRR Workflow

’------------------------5

! CS Federation \

| |

{ CA]—@Upload CRP— CS J { CS } :

1 ' :

(DRequest INR E /_\ :

@CRP | ®Publicize |

@RC/ROA&CIP ! CIP/CRP :

(DRevoke RC/ROA ! :

4 : |

{ INR holder]—@Upload RC/ROA & CIP CS J@Host RC/ROA ,:

.: --------------------------- “ |------------------------f’
. (@Check RC/ROA status : ®Push CIP/CRP ©Fetch RC/ROA
|

X4

|

{(Mo;itor JJ‘Request CULSA{ RP]

65 /73

dRR Workflow

’-----------------------—~

! CS Federation \
I |
{ CA 3Upload CRP—{ CS J { CS } :

f ' l
(DRequest INR E /—\ :
@CRP | ®Publicize |

@RC/ROA&CIP ! CIP/CRP :

(DRevoke RC/ROA ! |

4 : l

[INR holder]—@Uploaq RC/ROA&CIP - CS J@Host RC/ROA }
i rmenonT sk ot WRRA “
(@Check RC/ROA status ®Push CIP/CRP ' ©Fetch RC/ROA :
| b ’

A A ot I-
{rMo;itor J':..:J*Request CULs;':—[RP]

66 /73

dRR Workflow

’-----------------------—~

," CS Federation N

------------------- \

{ CA Upload CRP—{! CS J [CS } :

__________________ |

4 !

(DRequest INR E /—\ :

'@CRP : . ®Publicize |

Rt (@RC/ROA&CIR., ! CIP/CRP :

[@Revoke RC/ROA : |

\~ ------ ¢ l l

{ INR holder |—®Upload_ RC/ROA & CIP CS J@Host RC/ROA :
(DCheck RC/ROA status ®Push CIP/CRP ©Fetch RC/ROA

|

|

{ Monitor :}-@RequestcuLs—{RP)

67 /73

Evaluation

e Global Testbed

e 100 server nodes across 15 countries

e 50 nodes for CS federation and 50 nodes for Monitors

e (Goal: evaluate the overhead of dRR

W R R S S W —————

dRR I ®RP requests certs R

: @) :

i CS . l

G erioed o roqraton | 7 O LMot v UL
®sign cert [Rp J

l B S ; ________________ ; _______________________________________ &

INR | s :

2upload cert » ¢ % ¢« CAs' PPs |« (@check updates — .

holder J o T /

A el 16 DEAEREDRSCRRERL . b oiibet indatrst it o D BOEE TS ' 68 /73

Evaluating CS Federation

 Metrics

* throughput of the CS federation

* the latency from a submission of a certificate policy to the confirmation
 Baseline:

* the frequency of the issuance and the revocation in the current RPKI

system _ _peak

W
o
1

* the peak reaches 60k/day
(issued 30K + revoked 30K)

N
o
!

Revoked - 10

O-Uj I“‘ - 30

I 1 | |
oY X X X oY~ O} \
Dates

Fig. 9: The number of added and revoked certificates per
day from Jan 1, 2015 to Apr 1, 2023.

certs

=
o
I

- 20

#(k) of updated

69 /73

Evaluating CS Federation

 Reslults
* throughput = 310/s (i.e., 26.78 M/day) which is 450 times faster than that of the baseline

 |atency <2s

w
-
-

Throughput(/sec)
= N)
o -
o o

—i — - [&- C
%J 3
- 1.5 —
. e
T | 1109

7 (O
—s— Throughput —

10 20 30 40 50
of CSs
Fig. 12: The maximum throughput and the corresponding
latency distribution of the system under different CS scales.
Candlesticks show the maximum and minimum latency
and the average latency (green triangle).

-
I
O
U

70 /73

Evaluating Monitors

 Latency

* from sending a block by a CS to a Monitor
completing the M-Tree update about the block

0. 75 -

* a (S server in Silicon Valley serves 50 Monitors "
distributed in 15 countries (regions) S 0.50 7
+ the CS continuously pushes 10,000 new blocks to 50 ~ 0-2°-
Monitors 0. 00 -

e Result

* the Monitor can complete the update of its M-Tree for
this block within 500ms

100

150

200 250
Latency (ms)

300

350

71 /73

Evaluating Monitors

 The size of proofs

* grows logarithmically with the number of total certificates

* at the current RPKI certificate scale, both presence and absence proof sizes are within 1

KB

D) 750“ :__) ___________
.-, ===- Presence proof

the current scale « &
W "z

,7~ — Absence proof

0 2 4 6 8 10

Certificate number (*1e5)

72 /73

Summary

* Conduct the first data-driven RPKI-threat analysis

* uncover three key problems of the current RPKI repository

 Propose dRR to tackle the problems of the RPKI repository

* design an RPKI-compatible architecture to enhance security, robustness, and scalability of
the RPKI Repository

* |Implement a prototype of dRR and evaluate it on a global testbed with 100
nodes

* show that the new security features of dRR introduce minimal overhead

73 /73

RPKI Objects

Non-certificate
Signed Objects

‘-_ ---------------

@anifeD

Il N gy

|

AN B B BN BN BN BN BN BN BN BN B W m -

CA certificate |—| EE certificate

EE certificate

\

CA certificate

77 /73

RPKI Objects

Non-certificate

Signed Objects
attest to the allocation T Ty .

by the certificate issuer

of IP addresses or | EE certificate —'@a"'feD
\ _ J

AS numbers to the subject

4) E
\ EE certificate -——E><ROA>
_ _J 1

N

AN B B BN BN BN BN BN BN BN BN B W m -

CA certificate

/8 /73

RPKI Objects

CA certificate

\— _/

Non-certificate
Signed Objects

‘-_ ---------------

CA certificate ——

EE certificate

Il N gy

|

EE certificate

Issued when sub-allocating the resource

@anifeD

AN B B BN BN BN BN BN BN BN BN B W m -

79 /73

RPKI Objects

Non-certificate
Signed Objects

‘-_-

CA certificate

-.

\

> EE certificate

J _ y,
4)
EE certificate |[—mm»

G J

iIssued when generating a sighed object

CA certificate

ManlfeD

-------‘

80 /73

RPKI Objects

Non-certificate
Signed Objects

‘-_ ---------------

--’

4) 4
CA certificate |—»| EE certificate —>manlfeh

L J\k a list of all signed objects
f -—»(ROAB

EE certificate

an authorization for an AS
- N to originate IP prefixes

CA certificate

81 /73

Example of RPKI hierarchical structure

CA Publication P_oint
of Indonesia

[(::) APNIC (RIR.3,) @“ —{ Manifest |

ASN: 0 - (232-1)
Pyd: 00000, IPve: 0:040) | | ¢
CRE

@ >
A

43.224 168.0/22-24 PT.Inet.Global Indo (ISP)
CD AS 45101 ® 27.111.32.0/19 8

== Indonesia (NIR)

27.111.32.0/19
43.224.168.0/22 ...

@

43.224.138.0/22 y
4 N

27.111.39.0/19-24
& _Re JJ <AS 24532>

82 /73

Example of RPKI hierarchical structure

Publication Point
of Indonesia

(e B

(:) APNIC (RIR.%.) o | | —(Manifest]

ASN: 0 - (292-1)
_Pv4: 000,00, IPvE: 0:00) || ¢
CRE

e Indon:sia (NIR) < ® O
> @]

Internet Number Resource (INR) holders

27.111.32.019 &
43.224.168.0/22 ...

43.224.168.0/22-5 PT.Inet.Global Indo (ISP)
27.111.32.0/19
@ AS 45101 @ 43.224. 168 0/22 .. @

Cron> (re] Cx;zizzzb

. J

Internet Number Resource (INR) holders
83 /73

Monitor: Insert a block

Monitor: CIPs — insert entries

Block 4
— previous hash
Lo { 1] I3 none

/\ A /\ il CIP
hy, hy, hy, [hy | h;, h;, c(:::a:
B NUM: 1 B NUM: 3 B NUM: 3
CERT: jkop... CERT: aaab... @ CERT: acab.
ISSUER_RC: huly... CS signature

VALIDITY: [2019.5.6-2020.5.6]
CS SET: [CS., CS;..]
CIP HASH: kkul...

85 /73

Monitor: CIPs — insert entries

Block 4
— previous hash
Lo L1y] JE none -
hy hy, h,, _hy, | h;, hs, I‘gl'!z%
B NUM: 1 B NUM: 3 B NUM: 3
CERT: jkop... CERT: aaab... @ CERT: acab.
ISSUER_RC: huly... CS signature

VALIDITY: [2019.5.6-2020.5.6]
CS SET: [CS., CS;..]
CIP HASH: kkul...

86 /73

Monitor: CIPs — insert entries

VALIDITY: [2019.5.6-2020.5.6]
CS SET: [CS., CS,..]
CIP HASH: kkul...

VALIDITY: [2022.4.2-2023.5.6]
CS SET: [CS,, CS,.]
CIP HASH: hjki...

Cs
Block 4
m m — previous hash
Iy are DL, : Lig :
/\ A /\ : / \ ; -« CIP
hy, hy, hyy [Lhy | h;, h;, L hy | Lhe | gg;
B NUM: 1 B_NUM: 3 B NUM:3 : B NUM: 4 :
CERT: jkop... CERT: aaab... CERT: acab...i CERT: abcd... .
ISSUER_RC: huly... + ISSUER_RC: efgh... : CS signature

87 /73

Monitor: CIPs — insert entries

Block 4
— previous hash

-« CIP
| CIP
CRP
B NUM: 1 B NUM: 3 B NUM: 3 B NUM: 4
CERT: jkop... CERT: aaab... CERT: acab... CERT: abcd...
ISSUER RC: huly... ISSUER RC: efgh... CS signature
VALIDITY: [2019.5.6-2020.5.6] . VALIDITY: [2022.4.2-2023.5.6]
CS _SET: [CS;, CS,..] CS_SET: [CS,, CS,..]
CAEMASHE KKULL el Gl s S T CIP_HASH: bki...

hqys = HASH(B_NUM || ISSUER_RC || CERT ||
VALIDITY || CS_SET || CIP_HASH)

.o v
...

- O OE E m g

Monitor: CRPs — update entries

B NUM: 1 ' hao = ghyu...
CERT: jkop... S===m=m=eeer CERT: aaab... @ CERT: acab...
ISSUER RC: huly...

VALIDITY: [2019.5.6-2020.5.6]

CS_SET: [CS,, CSq..]

CIP HASH: kkul...

B NUM: 3 B NUM: 3

B NUM: 4

CERT: abcd...

ISSUER RC: efgh...
VALIDITY: [2022.4.2-2023.5.6]
CS_SET: [CS,, CS,..]

CIP HASH: hjki...

Block 4

— previous hash

- CIP

CIP

.CRP,

CS signature

89 /73

Monitor: CRPs — update entries

Block 4
— previous hash

-« CIP

'] CIP

: : CRP
B NUM: 1 'hy, oq ghyu.. 'B_NUM: 3 B NUM:3 B NUM: 4
CERT: jkop... . B NUM: 4 'CERT: aaab... CERT: acab... CERT: abcd...
ISSUER _RC: huly... . CERT: hjsu... A ISSUER_RC: efgh... CS signature
VALIDITY: [2019.5.6-2020.5.6] : CRP _HASH: oplk.. VALIDITY: [2022.4.2-2023.5.6]
CS_SET: [CS;, CS,..] S K CS_SET: [CS,, CS,.]
CIP HASH: kkul... CIP HASH: hjku...

90 /73

Monitor: generate commitment

e mmEmmEmEmEs e, 00— L emmmmmmm=aa, Block 4
' 120 — (120 new : : — previous hash
110 l11 — [|11_new]': L { 1_14]

/N e 7&_,\ /\ / \ o CIP

hy, h;, hy; [hzznew h;, h;, _hy | _hy | c(::IIRIIDD

B NUM: 1 h,, o ghyu... B NUM: 3 B NUM: 3 B NUM: 4

CERT: jkop... B NUM: 4 CERT: aaab... @ CERT: acab... CERT: abcd...

ISSUER RC: huly... CERT: hjsu... ISSUER RC: efgh... CS signature

VALIDITY: [2019.5.6-2020.5.6] CRP_HASH: oplk... VALIDITY: [2022.4.2-2023.5.6]

CS_SET: [CS;, CSq..] CS_SET: [CS,, CS,..]

CIP_HASH: kkul... CIP_HASH: hjki...

91 /73

Monitor: generate commitment

Commitment Update File

ccommits, wmlns = YhiEpes /. L /monhitory
T ‘ B_NUM = 11 >
<B.NUM = 1. commilt = "abcd..." ">
----------- <B_NUM 10, commit idol dol d el

1 l11 — | |11 | s :

///)i\\\ J;%Ti\ e <B_NUM = 1, commit = "klod...">
h; hy, h;, [h22—"eW] h;, </commits>
B NUM: 1 h,, o4: ghyu... B NUM: 3 B NUM: 3 B NUM: 4
CERT: jkop... B NUM: 4 CERT: aaab... @ CERT: acab... CERT: abcd...
ISSUER _RC: huly... CERT: hjsu... ISSUER RC: efgh... CS signature
VALIDITY: [2019.5.6-2020.5.6] CRP_HASH: oplk... VALIDITY: [2022.4.2-2023.5.6]
CS_SET: [CS,, CSq..] CS_SET: [CS,, CS,..]
CIP_HASH: kkul... CIP_HASH: hjki...

92 /73

Monitor: proof of absence

Proof of Absence: example

 INR holder asks whether the certificate iIn(B_ NUM = 3,CERT = abab...) exists

h11 h12 h21 { h22] h31 h32 { h41] [h42]

B NUM: 1 hy, o4 ghyu... B NUM:3 B NUM: 3 B NUM: 4

CERT: jkop... B NUM: 4 CERT: aaab... CERT: acab... CERT: abcd...

ISSUER_RC: huly... CERT: hjsu... ISSUER RC: efgh...
VALIDITY: [2019.5.6-2020.5.6] CRP HASH: oplk... VALIDITY: [2022.4.2-2023.5.6]
CS SET: [CS;, CSq..] CS SET: [CS,, CS,..]

CIP HASH: kkul... CIP HASH: hjku...

94 /73

Proof of Absence: example

 INR holder asks whether the certificate iIn(B_ NUM = 3,CERT = abab...) exists

/110\ ars rllAs\ }14]
hy, hy, h;, _ hy, | :'h31 h;, [y | _ hy, |
B NUM: 1 hy, ow: ghyu... B NUM:3 B NUM:3 | B NUM: 4
CERT: jkop... B NUM: 4 . CERT: aaab... CERT: acab...; CERT: abcd...
ISSUER RC: huly... CERT: hjsu... : . ISSUER_RC: efgh...

-------- " VALIDITY: [2022.4.2-2023.5.6]
CS_SET: [CS,, CS,..]
CIP_HASH: hjki...

VALIDITY: [2019.5.6-2020.5.6] CRP_HASH: oplk...~ == - - - - - -
CS_SET: [CS;, CSq..]
CIP_HASH: kkul..

<B NUM=3, CERT=abab> should located here

since monitors insert CIPs of one block with lexicographic order 95 /73

Proof of Absence: example

* The Monitor will return a pruned tree that contains the entry of hs2 and the
hash of ha2, intermediate nodes l14 and log the INR holder

g

/—_
/\ [114]
h31 h32

D/

proof of absence

96 /73

Monitor: proof of consistency

Proof of Consistency: example

 The RP has completed the synchronization of the first three blocks and now
needs to synchronize the block 4 incrementally

* A Relying Party (RP) submits <B_num=3, c=C3> to the monitor

h11 h12 h21 [h22] h31 h32 [h41 J [l142]

B NUM: 1 h,, o4 ghyu... B NUM: 3 B NUM:3 B NUM: 4

CERT: jkop... B NUM: 4 CERT: aaab... @ CERT: acab... CERT: abcd...

ISSUER _RC: huly... CERT: hjsu... ISSUER RC: efgh...
VALIDITY: [2019.5.6-2020.5.6] CRP_HASH: oplk... VALIDITY: [2022.4.2-2023.5.6]
CS_SET: [CS,, CSq..] CS_SET: [CS,, CS,..]
CIP_HASH: kkul... CIP_HASH: hjki...

98 /73

Proof of Consistency: example

 The Monitor will return a proof of consistency

--

e ey T ..
| ////\\\\ | /////‘\\\\\\
h21 [h22] [h4l J [h42]

proof of consistency

99 /73

Proof of Consistency: example

 The RP reconstructs C4’ and verify it

Lo Y

100/ 73

Proof of Consistency: example

 The RP reconstructs C4’ and verify it

Ci

L

vy

Commitment Update File D P B e
<commits, xmlns = "httg@//.../monitor", [h/ir/\\TjE |
B NUM = 11 > . 42
<B . NUM = 11, ¢6 t:— "abcd ">
<B_ NUM = 10, commit = "bkdk...">
<B NUM = 1, commit: — "klod. . .">
</commits>

101 /73

Proof of Consistency: example

* The RP Verify that Cs can be deduced from C4’

Lo Y

102 /73

Proof of Consistency: example

* The RP Verify that Cs can be deduced from C4’

* by replacing h22 with h22 oid and delete hat1 and hao

L2 Y

| P [1§ | 3 none

103/ 73

Proof of Consistency: example

* The RP Verify that Cs can be deduced from C4’

* by replacing h22 with h22 oid and delete hat1 and hao

* reconstruct C3’ and check whether it is equal to Cs

Cs’

12 b1

Lo (g I3 none

104 /73

Evaluating dRR Parameter

— ‘ O 4 —&— (G _Num = 1

@3- @ —+— C_Num = 50

< —®%— Dbs-10 —e— Dbs-50 (>).3’ —e— C Num = 100

c 2 - —— bs-20 bs-100 c 5

9 e

9 1 68 8.72)5(152,0.74) é (362,0.77) (729,91) AER (292. 0. 90) (347,0.81) *(370,0.78

\) 1 1 1 1 — 1

300 400 500 600 700 800 280 300 320 340 360
Throughput(/sec) Throughput (/sec)

Fig. 10: The throughput and average latency under differ- Fig. 11: The throughput and average latency under differ-
ent batch sizes. Data in the circle represents the maximum ent numbers of revoked certificates in one CRP.
throughput and the corresponding average latency.

105/73

Evaluating Monitors

e The size of CULs

* the size of the CUL is positively correlated with the number of updated certificates

—— 10% CRP /./'/
-== 20% CRP .~
—-— 50% CRP ~ -

25 50 75 100 125 150 175 200
of updated certificates

106 /73

