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Abstract

A severe vulnerability in the DNS resolver’s cache is ex-
posed here, introducing a new type of attack, termed DNS
CacheFlush. This attack poses a significant threat as it can
easily disrupt a resolver’s ability to provide service to its
clients.

DNS resolver software incorporates various mechanisms
to safeguard its cache. However, we have identified a tricky
path to bypass these safeguards, allowing a high-rate flood of
malicious but seemingly existent domain name resolutions to
thrash the benign DNS cache. The resulting attack has a high
amplification factor, where with a low rate attack it produces
a continuous high rate resource records insertions into the
resolver cache. This prevents benign request resolutions from
surviving in the DNS LRU cache long enough for subsequent
requests to be resolved directly from the cache. Thus leading
to repeated cache misses for most benign domains, resulting
in a substantial delay in the DNS service. The attack rate
amplification factor is high enough to even flush out popular
benign domains that are requested at a high frequency (∼
100/1sec). Moreover, the attack packets introduce additional
processing overhead and all together the attack easily denies
service from the resolver’s legitimate clients.

In our experiments we observed 95.7% cache miss rate for
a domain queried once per second under 8,000 qps attack on
a resolver with 100MB cache. Even on a resolver with 2GB
cache size we observed a drop of 88.3% in the resolver benign
traffic throughput.

A result of this study is a recommendation to deny and drop
any authoritative replies that contain many server names, e.g.,
a long referral response, or a long CNAME chain, before the
resolver starts any processing of such a response.

∗Supported by a grant from the Blavatnik Interdisciplinary Cyber Re-
search Center (ICRC), Tel Aviv University.

†Member of the Checkpoint Institute of Information Security.
‡Member of the Checkpoint Institute of Information Security.

1 Introduction

Several DDoS attacks on the DNS system have been dis-
covered by attackers and researchers in the past decade
[10, 11, 14, 42]. These attacks have targeted the communica-
tion or/and computation load of either resolver or authoritative
DNS servers, by generating high packets or CPU load am-
plification factors, or simply using a large botnet. None of
these attacks have succeeded in effectively thrashing the DNS
resolvers’ benign cache (as oppose to the negative cache,
NCache), making the resolver ineffective.

In this paper we present a low rate, e.g., ∼ 8Kqps (queries
per sec.), carefully crafted attack requests that generate a high
rate (cors. ∼ 12M per sec.) of record insertions into the be-
nign cache of the resolver, that is, a high amplification factor
attack on the benign cache, which we call cache amplification
factor (CAF). Such a continuous high rate stream of records
insertion into the benign cache (12Mrecords ps) evicts from
a cache of size 10MB any domain name that is not queried
at least 800 times per second, thus effectively leaving the
resolver without a cache. This requires the resolver to re-
query the authoritative servers on each client query, except
perhaps the absolutely most popular one, thus deteriorating
the resolver operation until it denies service to its clients.

Mounting such an attack on the benign cache of a resolver
is not trivial. Simply using a huge botnet to request hundreds
of thousands of different domain names at a rate of millions
or even thousands per second is expensive and hard. It would
choke the communication lines before reaching the resolver
itself, in addition to being easily detected and blocked by
behavioral analysis systems, such as IPS’s and/or firewalls.
Furthermore, using randomly generated fake domain names,
as in the water torture attack [42], would go into the NCache
(Negative Cache, or NX - NonExistent) limited size portion
of the cache, thus leaving the benign cache unaffected.

Here we discovered a vulnerability by which an attacker
can cause the insertion of a large number of records into the
benign cache with just one query to the resolver, that is over
a million records per second by an attack of 1K malicious
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queries per second to the resolver. More precisely, in a maxi-
mum size TCP message (∼ 65KB) response by a malicious
NS, about 2000 NS names that can fit (the exact number de-
pends on the number of characters in each NS name) which
results in the insertion of 2000 resource records into the cache.
As each benign query to a resolver adds at least one resource
record into the resolver’s cache, the cache amplification factor
is 2000. In bytes each malicious request may result in the
insertion of at least 100KB into the cache since a minimum
resource record of a NS name in the cache is about 50B. The
query our attacker employs generates a response from an au-
thoritative server hosting an attacker zone file, that instructs
the resolver to delegate and recursively resolve a large num-
ber (up to 2000) name server (NS) names. Such a technique
was used by [10, 11] to create a large communication and
computation amplification factor attacks. As a result of these
attacks the vendors have issued a number of CVE’s limiting
the number of recursive resolutions (to 5 and 20) each client
query may result in [36, 37]. However, these mitigations do
not limit the number of NS names stored in the cache while
resolving the limited number of NS names. Thus leaving the
door open to the current DNS CacheFlush attack.

In this paper we point out two types of such large responses
by authoritative servers that require recursive resolution of
many additional names; the CNAME and the referral types.

In addition to the high cache miss rate, these large referral
responses from the authoritative server come with another
complexity price tag due to the extra processing each such
referral response (and as we show in this paper also long
CNAME chains) requires. These processing include, opening
a TCP session (the response does not fit in a UDP packet),
checking the consistency and whether an IP address is already
available for each name in the response, inserting the list into
a memory buffer (in addition to inserting them into the benign
cache), and issuing the corresponding extra (20 rather than
1800) resolution requests to resolve the IP address of each of
the first 20 names in the list. This overhead together with the
extra cache misses easily takes the resolver down and denies
service to legitimate clients.

In this paper we conclude and suggest that the DNS system
should be changed to eliminate large referral responses (> 13
NS names) and long (> 8 NS names) long CNAME chains.
Resolvers should discard such responses before performing
any processing on them, and authoritative servers should
prohibit zone files that generate such responses. A few more
modest mitigation suggestions are provided here, such as,
trimming the long responses upon their reception.

In this paper we built a test bed and measured the effect of
DNS CacheFlush on the latest versions of BIND9 [24] and
UNBOUND [26] with default cache sizes ranging from 10MB
to 100MB, as well as with a 2GB cache size that simulates
our university environment, using two methods: CNAME
chains containing 17 domains and a referral response with
1,500 NS names. To determine whether a benign domain is

likely to experience a high rate of cache misses, we developed
a model that predicts whether the cache entry of a domain is
going to be flushed between two queries of the same benign
domain, and the likelihood of a high cache miss rate as a
function of the attacker and benign rates, and the cache size.
It is also possible to apply the model to the distribution of
benign domains, which means that, given a resolver’s benign
domain distribution and cache size, we can determine for
each attack rate the benign domain rate starting from which
all benign domains with a lower rate are highly likely to have a
cache miss. Furthermore, we carried experiments to estimate
the effect of some mitigation suggestions, to separate the
contribution of the cache amplification factor from that of the
long response processing cost, to the attack strength.

A review of the benign and negative cache importance, as
well as cache management techniques is presented in Section
2 followed by a discussion of the threat model in Section 3.
The CacheFlush Attack versions and the attack model are dis-
cussed in Section 4. The experimental set-up and comparison
between our model prediction and the experimental results
are presented in 5. Alternative mechanisms to mitigate the
CacheFlush attack are suggested in Section 6. Additional
vulnerabilities we found during our research are shortly men-
tioned in Section 7 and related work is shared in Section 8.
We review the responsible disclosure procedure in Section 9,
and draw conclusions in Section 10.

2 Preliminaries

2.1 DNS Resolution Process

DNS Resolver Server (sometimes called recursive resolver
server, or just recursive server). To obtain the IP address
of hello.world.com a client (e.g., a browser) queries a DNS
resolver with the name hello.world.com. If the answer is not
in the resolver cache, the resolver then issues several queries
to the authoritative hierarchy to obtain the desired IP address,
which it then stores in its cache and returns to the querying
client.
Authoritative Name Servers. An authoritative name server
maintains and provides official up-to-date DNS records (con-
taining the IP addresses) for domain names.
Resource Records. Data from DNS is organized and stored in
resource records (RRs). Each RR consists of an owner name,
which is the fully qualified domain name of the tree node
where the RR is located, a type, a time-to-live field (TTL),
and a value. Value fields are structured differently according
to the type of record. It is noteworthy that multiple records
with the same owner name and type can coexist, provided
they contain distinct data, together forming an RRset. The
various record types, including TXT, SOA, NS, A, CNAME,
serving different purposes.
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2.2 Delegation Response

In response to a resolver query an authoritative server may del-
egate (refer) the resolver to obtain the answer from a different
authoritative server (the delegation can also be to a different
name in the same authoritative server). For example, ".com"
can delegate the resolution of hello.world.com to world.com.

In a referral response with a list of NS names, the resolver
is delegated to obtain its answer from any one of the name
servers in the list. The number of NS names may be large,
and their IP addresses (known as glue record) may not al-
ways be included. The referral-list response does not include
glue records because authoritative servers cannot provide
IP addresses for domains whose origins reside outside their
zone. This policy protects the servers from DNS poison-
ing attacks by identifying them as Out-of-Bailiwick name
servers [23]. For example, in Figure 1, attack.com dele-
gates the resolution of e1.attack.com to the name servers (NS)
cacheflush1.delegation.attack in a referral response. Hence,
the resolver would send a new query to resolve the NS name
cacheflush1.delegation.attack.

2.3 CNAME Record

A Canonical Name (CNAME) record in the Domain Name
System (DNS) is a pivotal element that enables aliasing or
redirection of one domain to another. Essentially, a CNAME
record serves as a pointer, allowing a domain to function as
an alias or nickname for another domain’s canonical or pri-
mary name. This redirection is not limited to a single level;
it can create a CNAME chain, where one CNAME points
to another, forming a sequential chain of aliases. When a
DNS query encounters a CNAME record, it redirects to the
domain specified in the record, inheriting its associated DNS
information. This functionality is commonly employed for
various purposes, such as creating subdomains, facilitating
domain migration, CDNs, providing alternate names for ex-
isting domains etc. For example, in Figure 2 the CNAME
record e1.attack.com points to e2.attack.com

2.4 DNS Resolver Cache: Benign vs. Negative
Cache

DNS resolver cache plays a critical role in making the Do-
main Name System (DNS) resolution process more efficient.
The cache serves as a temporary storage repository within
the resolver, storing previously resolved DNS queries. It
retains a variety of DNS resource records (RRs) types, includ-
ing domain names and their IP addresses, NS records, and
CNAME records, which alias one domain to another. The
resource records may be classified into two classes: benign
cache records, which store successful resolutions, and nega-
tive cache [21] , which store information about non-existent
domains or names for which a NXDOMAIN or NODATA is

received in the resolution attempt.
Resolvers provide a special limited size section of the cache

for the negative replies, called Ncache. It is crucial in prevent-
ing unnecessary repetition of failed queries, which could be
an attack such as Water torture [42]. While negative caching
was previously optional, it is now part of the DNS specifica-
tion [21]. A large proportion of DNS traffic on the Internet is
eliminated by the negative cache [21]. Chen et al. [16] analyze
real-life DNS traces and show that the Non-Existent Domain
(NXDomain) traffic constitutes almost 40% of the traffic from
the authoritative structure to the recursive resolvers.

There is a dynamic distribution of memory allocation be-
tween the positive and negative caches in the resolvers we
examined, with the positive cache having a priority advan-
tage [27]. When the cache reaches its size limit and a posi-
tive record arrives, a record from the negative cache will be
evicted from the cache, in the event that the cache is full and
a non-existent record arrives, a record will be evicted from
the negative cache, or from the positive cache if its TTL value
is zero.

2.5 BIND Queue Management
BIND resolvers systematically push DNS queries into their
management queue based on their arrival. By default, the
queue size is determined based on the resources allocated to
the resolver, but this configuration can also be customized as
necessary on specific requirements. The queue is governed by
a recursive client deletion mechanism, which imposes both
a soft limit and a hard limit on its size. Upon reaching the
soft limit, the resolver selectively drops pending requests,
allowing it to manage and prioritize ongoing queries. How-
ever, when the hard limit is reached, the resolver takes a more
stringent approach by dropping all requests [13].

3 Threat Model

To mount a DNS CacheFlush attack an attacker has to:

1. Control one or more clients from which it issues the
malicious queries.

2. Control an authoritative name server configured to re-
spond with a CNAME chain or with referral responses
with the crafted list of NS names.

It is easy and affordable to acquire authoritative name servers
by first buying and registering new domain names. In our
experiment, we bought 2 domain names for just under 1 USD
each in less than five minutes and dynamically connected
them to our authoritative server in our cloud setup.

The attacker associates 1500 NS names with each malicious
domain name in the authoritative zone file, leading to a large
zone file. Each record of NS name looks for example like
this: "e1 8600 IN NS cacheflush1.delegation.attack", that is,
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Figure 1: NS records type of CacheFlush Attack; An attacker requests e1.attack.com following by e2.attack.com and gets referral
responses with 1500 names from the authoritative name server. The resolver queries the first 20 names in each list and evicts
from the benign cache the RR corresponding to the referral list and the 20 responses. This evicts usenix.org from the cache.

contains 42 bytes. Therefore, a referral list of length 1500,
has 42 ∗ 1500 = 63KB in the zone file. Clearly, the larger
the cache of the target resolver the more malicious domains
the attacker needs to maintain in the zone file. For a 100MB
target cache the required zone file is 1,000∗63KB = 63MB
since each line of the zone file results in flushing 1KB in the
cache.

The cost of operating the malicious authoritative DNS
server is relatively low. There are two options (1) self-
managing either in the cloud or on-premises or, (2) out-
sourcing to a managed DNS service provided by compa-
nies such as Cloudns, Cloudflare, GoDaddy and Namecheap
[18, 19, 22, 35]. The main expense of self-managed author-
itative DNS in the cloud is the cost of outgoing traffic. It
typically amounts to around $0.6 per minute for an attack
that flushes a 2GB resolver cache so benign domains that are
requested once per second or less have to be re-fetched on
each query. See Appendix A for more details.

The four managed DNS services, Cloudns, Cloudflare, Go-
Daddy and Namecheap, allow the configuration of long refer-
ral lists (with 1000 NS or more) or long CNAME chains for
each domain. Each service was tested by configuring a long
referral list or long CNAME chain for one domain, and mak-
ing sure it returned a large response that contained the entire
referral list or CNAME chain, all while adhering to ethical
guidelines. However, there is a limit on the free-of-charge
authoritative services, including the total number of supported
domains and resource records (RR) in the Zone. Performing
an attack as in our experiments requires a zone file size larger

than the free version allowances. For example, to flush a
1GB cache, 10,000 domains each containing 1,500 RRsets
are required. Nevertheless, the cost to upgrade and support an
unlimited number of requests in Cloudns [19], is $14.95 per
month. For the others, customized plans are available, with
costs varying according to usage.

An alternative common practice for example, is for at-
tackers to compromise DNS operators’ credentials and ma-
nipulate zone files, sometimes even getting access to their
registrar records, as demonstrated by recent DNS hijacking
attacks [30,32]. Thus getting all the required services for free.

Adaptive attacker: An adaptive attacker can measure the
target cache size and determine the required zone file size.
To measure it the attacker requests a seemingly benign test
domain name at rate r at which it wants to flush the target
cache. So that any domain name that is queried at a rate
lower than r would then be evicted. The attacker authoritative
is the authoritative for the test domain. During the attack,
the attacker expects to receive queries for the test domain in
its authoritative at rate r, or otherwise, if it receives fewer
queries, the cache is not flushed fast enough. In which case
the attacker should increase the number of distinct malicious
domains in the zone file and increase the attack rate.

Multi-threading: All our tests and measurements use
BIND and Unbound multi-threading packages. Clearly if
we used a single thread version, then the attack would be
more harmful.

The default cache size of most resolvers is between 8MB
to 200MB [3–7, 9], in practice, medium size resolvers (e.g.,
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Figure 2: CacheFlush Attack using CNAME records example; An attacker requests the e1.attack.com domain and fills the benign
cache with 17 RR sets from his authoritative name server

University resolver) use a 2GB to 4GB cache. We therefore
use in our experiments, a cache size of 10MB, 100MB, and
2GB.

4 CacheFlushAttack

Two variations of the CacheFlush attack are presented here:
the Name-servers based, NSCacheFlush, where the attackers’
authoritative response includes a large referral response of
NS delegations, and the CNAME based, CNAMECacheFlush,
where the response includes a long chain of CNAMEs.

Notice that in either attack variant the malicious RR records
(NS or CNAME) are inserted into the benign cache (and not
to the ncache) regardless of whether the DNS resolution of
the original query from the attacker results in an IP address,
failure, or NS response.

4.1 NSCacheFlush Attack

Upon receiving a response with a referral response with many
NS names from the authoritative name server, the resolver
caches the entire list, even though it is not going to resolve
the names in the list except the first 5.

Figure 1 illustrates the attack: the attacker sends mali-
cious requests from the client to the targeted resolver, such
as e1.attack.com, e2.attack.com, etc. For each query, the re-
solver queries the relevant authoritative (controlled by the
attacker) and receives a referral response containing 1,500
names (step 3). As a result, all 1,500 names are stored in the
resolver’s benign cache.

Subsequently, in order to resolve the original query, the
resolver queries the first k NS and caches them as well in
the benign cache (steps 4-45). In BIND and UNBOUND
implementations, the resolver queries the first k=5 names [11].
These NS names can be domains of DNS servers, or domains
that correspond to DNS non-responsive servers, which are
not controlled by the attacker.

Finally, the resolver queries the NS (e.g., e1.attack.com) to
resolve the original query. If the resolution succeeds, it stores
it in the benign cache; otherwise, it stores it in the Ncache (if
it received SERVFAIL, as in step 92 our example).

In the attack, the attacker controlled authoritative server
repeatedly responds with a referral response with n new NS
names from the zone file, until all the names in the zone file
have been used at which point it starts all over. For each
such referral response, 1520 RR are evicted from the benign
cache, for a total of n×1520 RRs, regardless of whether the
resolution was successful or failed. The attacker can use the
adaptive attack zone file (see Section 3 to adjust the zone file
size until flushing the entire cache).

In our example, the benign domain usenix.org is queried
less frequently than the cache flushing rate, causing it to be
evicted from the cache by the LRU algorithm before it is
queried again.

4.2 CNAMECacheFlush Attack
This attack version relies on the fact that a resolver resolves
a CNAME chain sent from an authoritative name server un-
til it reaches the limit of p CNAMES set by its vendor and
store only the p first CNAMEs in its benign cache. BIND9
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sets a resolution limit for a CNAME chain up to 17 times
(UNBOUND allows 9, Google 15, and Cloudflare 20) [15],
aiming to prevent infinite loops.
Figure 2 illustrates the attack on BIND implementation by an
attacker who sends a malicious query to the attacked resolver,
the authoritative name server controlled by the attacker re-
sponds with a chain of 17 CNAME records (the maximum
number of records that will be stored also in the benign cache).
The resolver saves the first CNAME record in its benign cache
and queries the same authoritative name server for the next
name in the chain even though it received the entire chain
in the first answer [28], so it continues until BIND’s limit is
reached, saving a total of 17 records in its benign cache (steps
4-35). This version differs from NSCacheFlush in that only
the limit 17 names are stored in the cache, regardless of the
length of the CNAME chain. Therefore, this attack is not as
effective at filling the cache as NSCacheFlush. In 7.1, we
describe the effect of a CNAME chain with a length of 1,500
on the resolver. This version works the same when an IP
address is returned at the end of the chain or not, and in either
case the chain is not inserted into the negative cache but into
the benign cache, as depicted in the figure, the negative cache
does not change during an attack.

4.3 Effective Flush Rate
What rate of attack causes a high cache miss rate (> 80%)
for a benign domain d that is queried at a rate rd? A cache
of size s is flushed at a rate of attack_rate∗CAF

s , where CAF is
the attack cache amplification factor, the amount of cache
memory evicted by each attacker request. For simplicity, we
assume the benign and the attacker querying rates are at a
constant uniform rate. Thus a cache miss would occur iff, the
benign rate is lower than the flushing rate:

Attacker Request Rate×CAF
Cache Size

> Benign Rate (1)

CAF is a function of the number of RRs sent in a response
to the resolver, times the size of each corresponding RR. In
the conducted NSCacheFlush experiments, every response
results in the insertion of 1,520 RRs, of size (∼ 67 bytes),
i.e., CAF = 100KB.

4.4 Resolver Cache Miss
Next we calculate the average cache miss on a resolver.
The distribution of domain queries can be characterized by
a power law distribution [44] (see details in Section 5.3):
y = ax−b + c, where y is the domain rate in qps, x is the do-
main rank (1 is the most frequent domain), b is the exponent
and it determines the slope of the power-law line on a log-log
scale plot (the steeper the slope, the greater the variation in
the rate between the top ranked domains). a and c are both

related to the popularity of the resolver, the number of clients
and the frequency with which it is used. a scales the function
vertically and c is a constant that shift the function vertically.

Similar to Equation (1) above, we find the border rate of
an attack, which is the rate such that all benign domains with
lower rate than this border rate with high probability experi-
ence a cache miss under this attack rate, using the response
size (rsize) and cache size (csize):

Border ratecsize, rsize(attacker rate) =
Attacker rate× rsize

csize
(2)

We will then place the border rate as y in the power-law
function y = ax−b + c and find the domain rank x. We denote
it as m and name it the border rank.

The sum of the rates (y) over the domains with rate up to
the border rate (n denotes the total number of domains the
resolver was queried), represents the number of cache misses
predicted by the model:

n

∑
x=m

ax−b + c

Thus the average cache miss percentage for the resolver,
is:

∑
n
x=m(ax−b + c)

∑
n
x=1(ax−b + c)

(3)

1 In the next section 5.4, we present experiments that show
the accuracy of our simple modeling.

5 Experimental Results

5.1 Experiment Setup
Our experiment setup resides in Azure cloud and included
DNS recursive resolvers, Authoritative name servers, an at-
tacker, and two benign machines that issue requests in parallel
to demonstrate multiple users simultaneously. This allowed
us to evaluate the impact of the attack on benign users. The
following machines, each Intel(R) Xeon(R) CPU E5-2673
v4 @ 2.30GHz x64 with 2 vCPUs 8 GiB RAM and Linux
(Ubuntu 20.04) operating system, were used:

1. Resolver machine with most recent versions, BIND9
(9.18.21) or UNBOUND (1.19.0) resolvers

1 It is possible to approximate the function using generalized harmonic
numbers H(r)

n :

∑
n
x=m(ax−b + c)

∑
n
x=1(ax−b + c)

= 1− ∑
m
x=1(ax−b + c)

∑
n
x=1(ax−b + c)

= 1− aH(b)
m + cm

aH(b)
n + cn

(4)

which can be expressed alternatively with Riemann [8] and Hurwitz [2] zeta
functions:

1− aH(b)
m + cm

aH(b)
n + cn

= 1− a(−ζ(b,m+1))+aζ(b)+ cm
a(−ζ(b,n+1))+aζ(b)+ cn

(5)
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2. Client machines, benign clients and an attacker client,
each equipped with a Resperf tool.

3. Authoritative server that is used to craft the malicious
CNAME and referral response.

4. Authoritative server that owns the domain referred to by
the NS names in the referral response.

5. Authoritative server to which benign users are referred.

We placed the client, resolver, and authoritative servers in the
same Azure region so our measurements would not be im-
pacted by any significant Internet delays. In order to simulate
as closely as possible to real world situation, the machines
communicated through their internet interfaces rather than
through a local area network.

Figure 3: Test environment

5.2 Isolated Lab Setup
In addition to the cloud environment, we have created an
isolated lab environment for conducting research and repro-
ducing experiments. This setup includes a BIND resolver with
the latest version (9.18.21), and four authoritative servers: a
local root authoritative server and three others to simulate
the “attack.com” and “delegation.attack” authoritative servers
depicted in Figures 1 and 3. The authoritative name servers
are implemented with Name Server Daemon (NSD) version
4.3.3. To ensure the setup poses no external risk, it operates
locally within a closed Docker container environment. The
clients are deployed on the same machine, configured to send
DNS queries directly to the local recursive resolver. The setup
configuration and environment are available on GitHub [43].

5.3 Domain Rate Distribution
To test the effectiveness of our attack in a realistic environ-
ment, we collected statistics on the DNS environment of our
university over a period of 39 days and used it to model typ-
ical clients’ behavior. We also examine two data sets that

Figure 4: Domain Rate Distribution for three datasets, our
university, AHREFS, DATAFORSEO (on 50 highest-ranked
domains).

Figure 5: Cache miss percentage measured on different be-
nign domain request rates with different NSCacheFlush at-
tacker request rates on BIND resolver with 10MB cache size.

indicate how frequently the most common domains are vis-
ited [12,20]. The distribution of domains from all the data sets
was characterized by a power law distribution [44]: ax−b + c
where b = 0.79 for our university data, b = 0.93 for [12] and
b = 0.7 for [20] (a and c relate to the number of clients which
is reflected in the variety of Attacker rates in our experiments).
Figure 4 illustrates the similarity between our university and
the other data set we checked. Due to its similarity to real-
world distributions, our university’s distribution was used to
test the domain distribution model. We use these distributions
on our own domains in order not to overload public domains
on the internet. The attack file was constructed in which each
domain is evenly distributed in the file according to its distri-
bution (e.g., a common domain that accounts for 20% of all
domains appears 20% times at equal intervals in the attack
file). By running the attack file at a higher rate in different
experiments, we were able to control the rate at which each
domain was queried.
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(a) Results for 10MB cache size; According to our model, there is
a high probability of cache misses when the attacker request rate

benign rate > 100,
similar to the results obtained in the experiments.

(b) Results for 100MB cache size; According to our model, there is a
high probability of cache misses when the attacker request rate

benign rate > 1,000,
similar to the results obtained in the experiments.

Figure 6: The results of the experiments on BIND9 and UNBOUND implementations compared to our model predictions on
NSCacheFlush attack; The percentage of cache miss as a function of attacker request rate divided by benign rate for a different
cache sizes.

5.4 Attack model vs Experimental results

Here we show the experiments that were conducted to test
the model’s results. First, we measured (Figure 5) the cache
miss percentages for one benign domain under various benign
rates between 1 to 1000 qps and attacker request rates of 1000,
5000 and 10,000 qps using a BIND9 resolver with a cache
size of 10 MB. According to our model, a cache miss is
expected with high probability for benign domain with a rate
less than 10qps and attack rate of 1000qps. An attack rate of
5000qps should result in a cache miss for any domain with a
rate below 50qps and an attack rate of 10,000 should result
in a cache miss for any domain with a rate below 100qps.
Figure 5 shows that the model predicts well the cache misses
under different attack rates.

The second experiment (Figure 6) expands upon the first
experiment and validated the predictions made by the model
for BIND and UNBOUND implementations using two cache
sizes of 10mb and 100mb for different attacker request rates
between 100 and 10,000 qps and benign domain queries be-
tween 1 and 1000 qps. The analysis of Figure 6 shows that
the model correctly predicts the cache miss rates for all the
different experiments; For example, according to equation (1),
for cache size of 10MB (10,000 KB): attacker request ratex100

benign rate >

10,000 so attacker request rate
benign rate > 100; and as shown in Figure 6a,

100 is indeed the value after which all cache misses occur.
As can be seen in both experiments, the cache miss rate is

high or very low based on our model, but mostly it was not
0% or 100%, this is because the resolver manages a multi-
threaded queue that holds queries since they arrive at the
resolver until the client receives a response. When the queue
reaches its quota (hard limit) , see Section 2.5 for details, it is
reset and all malicious queries waiting for an answer in the
queue are deleted. At this point, if the cache has not yet filled

up and a benign domain is queried, a cache hit occurs.
The third experiment (Figure 7) included testing the valid-

ity of equation (2) on our university domains’ distribution,
when different domains were queried at different rates in an
attempt to illustrate a real-world scenario. Each attacker re-
quest rate in the model is matched with a border rate, which
all benign domains with a lower rate have a high probability
of missing the cache. In Figure 7, we present the results of
our comparison between the graph model and the experiment
results on BIND9 implementation with a cache size of 10MB.

Figure 7a shows the distribution of domains in our univer-
sity; for example, we observe that the most popular domain,
google.com, is requested an average of 85 qps. For each do-
main rate in Figure 7a, we draw a parallel line to Figure 7b,
where the green graph within it represents the prediction of
the distribution model (2) we described earlier. In Figure 7b,
for each benign domain rate (y) the x-axis indicates the attack
rate, from which the domain will most likely be deleted from
the cache. For example, for Instagram.com from Figure 7a
which has a rate of 20 qps, a line is drawn to Figure 7b, and
where it meets the model graph point [2000,20], so the rate
of attack most likely needed to remove Instagram.com and
all domains with lower rates from the cache is 2000. The
purple triangles indicate the results of the experiment so that
it is easy to see that our model’s prediction (the green graph)
matches the experiment’s results.

Furthermore, the predictions of Equation (3) was also tested
(Table 1) at five different attack rates, using the university
distribution presented in Section 4. As an example, in the
case of Instagram.com again, which is the 5th most frequently
queried domain (rank 5), with a query rate of 20 qps, an
attack of 2000 qps is required to remove this domain, and all
domains with lower query rates, from the cache (according to
Equation (2)). Using Equation (3), we predicted an average
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(a) The distribution of the domains measured on the resolver of
our university, sorted by the rate at which they were requested.

(b) The green line estimates for an attacker request rate what
is the border rate from which all domains with a lower rate
will be evicted with a high probability from the cache. The
purple triangle points represent the results of our experiments on
this distribution of domains, i.e, in what attack rate the specific
domain was evicted from the cache.

Figure 7: The attacker request rate necessary to remove each benign domain with a high probability from the cache along with
all benign domains with a lower rate; As an example, for the benign domain Instagram.com, which received 20 requests per
second, a rate of 2000 attacker requests per second removed in high probability the domain and all domains with a lower rate
(the area created under the graph) from the cache.

cache miss rate of 46.2%, and observed a cache miss rate of
48.6% during our experiment.

Attack
Rate

Domain
Rank with
100%
cache miss

Overall
experiment
cache miss

Overall predicted
cache miss (by
Equation (3))

8000 1-n 100.0% 96.4%
2000 5-n 48.6% 46.2%
1500 10-n 41.4% 40.1%

800 20-n 22.2% 21.7%
600 30-n 12.5% 11.3%

Table 1: The overall average cache miss predicted by equation
(3) compared to five experiments overall average cache miss
results, with five different attack rates, on a BIND9 resolver
with a 10MB cache size, using the domain distribution of our
university.

5.5 Resolver Cache Miss and Throughput un-
der CacheFlush attack

This section examines the impact of both CacheFlushAttack
versions (CNAME and NS) on benign domains in a resolver
under attack. Using different attack rates and cache sizes, we
tested the latest version of BIND9 (9.18.21) and UNBOUND
(1.19.0). We utilized two Resperf [40] tools in our cloud set-
up environment: the first modeled the attacker and generated
malicious domains at a fixed rate for each experiment, and

the second ramped up the university benign domain requests
rate until failure was encountered. For each combination of
attacker request rate and cache size, we tested the impact of
the following attacks:

1. NSCacheFlush

2. CNAMECacheFlush

3. Water-torture [42] - floods the resolver with pseudo-
randomly generated nonexistent sub-domains.

4. NRDelegationAttack - floods with 50 different packets
with the same 1500 names length referral response. (This
is a complexity attack, to which the two resolver versions
are patched, it generates a high CPU load but does not
overload the cache. In total 50×1520 = 76,000 records
are inserted into the cache in this attack.)

5. Existing domains - floods the resolver with queries for
existing domains that return A records as an answer,
similar to Water-torture [42] (point 3 above) except that
the domains are stored in the benign cache.

Both Bind and Unbound suffer from a significant degrada-
tion in the benign domain request throughput measurements
and increase in the average cache miss rate under CacheFlush,
as shown in Figures (8,9).

NRDelegation has little impact on the throughput and on
the cache miss rate on these patched versions of the resolver,
because in the patch (that CacheFlush circumvents) it inserts
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Figure 8: Cache miss and throughput for BIND9 resolver using two CacheFlush attack variants with a variety of attacker request
rates and cache sizes, in comparison to NRDelegation on the fixed version of the resolver and water-torture attacks.

only a limited number of records into the benign cache. Water
torture negatively impacts resolver throughput at high attack
rates and has a low impact on the benign domain cache miss
rate since the records are inserted into the negative cache. The
Existing domains attack did not affect the resolvers because
it cached only a single A record for each "malicious" query.
Thus taking approximately 30 Bytes in the cache, whereas
in the CacheFlushNS attack, each query consumes 100KB
(3,333 times more), which means that in order to achieve
the same cache depletion as in our attack, the attacker would
have to issue 33.3M (3,333∗10,000) queries, which is well
beyond the capacity of the resolver. As a result, using the
Exisiting Domains attack in the rate of our cacheFlush attack,
there are no cache misses, and the throughput remained un-
changed since both benign queries and existing domains were
successfully resolved, hence we did not add this attack to our
figures.

The attack does not affect High Rate Domains (HRD) since
the attack does not fill up the cache before the HRD domain is
queried again. At the same time the attack has a little impact
on benign domains that are queried at a very low rate, even
without our attack, since these domains are removed from the
cache once it is full or their TTL has expired. Furthermore,
we investigated the latency variation between our attacks and
the average latency observed for all benign domains. On
average, the latency during an attack is 15.6 times higher
than the average latency of the benign domains without the
attack, which was increased from 8.53 milliseconds to 133.1
milliseconds.

Testing a 2GB Cache Size: Since, as noted in Section 3,
in practice medium size resolvers (e.g., University resolver)

use a 2GB to 4GB cache we experimented with a 2GB cache
as well. However, as predicted by equation (1), the larger the
cache, the larger the attack rate required in order to flush it
with in a given time interval. Therefore, the attack rate in this
test is increased and had to be performed from two clients
instead of one, as is done in the smaller cache sizes. Fur-
thermore, the maximum benign rate tested was reduced from
1000 qps to 1 qps for this test. In testing BIND with the higher
attack rate we encountered farther difficulties since as men-
tioned in Section 5.4, in high attack rates Bind’s queries-queue
purges many queries from the queue before being processed.
This caused many benign domain queries to be removed from
the queue and not queried by the resolver. In the 2GB experi-
ment on Bind, most of the benign queries are deleted from the
queue, and no response is received by the client, nor a query
to the authoritative is observed. Therefore, we are unable to
determine whether there is a cache miss or not. Hence, we
performed the 2GB experiment only on Unbound.

Figure 9 illustrates the effect of our attack on the throughput
and cache miss rate in Unbound with a cache size of 2GB
based on the distribution of our university domains.

Figure 10 presents a similar experiment to Figure 5, but
on 2GB cache and the attack rate is higher, while the benign
domain rate is lower.

Equation (1) correctly predicted the cache miss rate for
larger and smaller cache sizes once we filtered out malicious
domains for which we did not receive a response to the clients,
thus implying that these domains were not saved in the cache.
Additionally, Figure 11 shows a similar experiment to Fig-
ure 6, for 2GB cache size equation (1) correctly predicted the
results of cache misses for all attack and benign rates. By
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Figure 9: Cache miss and throughput for UNBOUND resolver using two CacheFlush attack variants with a variety of attacker
request rates and cache sizes, in comparison to NRDelegation on the fixed version of the resolver and water-torture attacks.

Figure 10: Cache miss percentage measured on different
benign domain request rates (0.1 indicates one query every 10
seconds) with different NSCacheFlush attacker request rates
on Unbound resolver with 2GB cache size.

equation (1), for 2GB cache size, when attacker request ratex100
benign rate >

2,000,000 ≥ attacker request rate
benign rate > 20,000 cache misses are al-

most surely to occur.

6 CacheFlush Mitigation

6.1 Bounding NS referral list
Although the resolver considers only the first p (e.g., 20) NS
names from the referral response, the entire list is cached. It
is noted in [10] that the top million domains have an average
of 2.52 NS names in their corresponding RRs, with 99.5%
fewer than 7. Since many root servers return 13 NS names in
the RR, p = 20 was selected [36, 37] as a safe number that

Figure 11: 2GB cache size UNBOUND resolver cache miss
percentage measured on different benign domain request rates
with different NSCacheFlush attacker request rates; Accord-
ing to our model, there is a high probability of cache misses
when the attacker request rate

benign rate > 20,000, similar to the results ob-
tained in the experiments. E.g., to flush the 2GB cache once
per second, 20,000 requests per second are required.

does not affect benign domain resolution.

As such, it is reasonable to limit the number of names
stored in the cache to 20, even though this will not entirely
eliminate the attack, it will result in a significant reduction in
the impact of the attack, as shown in Figures (14,15). For a
more complete mitigation/patch the processing complexity of
the referral list (even if only 20) should be resolved. Here we
only examine the impact of the limited mitigation of trimming
the referral list to store at most 20 NS names.
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6.2 Bounding the length of CNAME chains

One obvious solution is to bound the CNAME chain length,
in order to eliminate entering multiple records to the cache.
To determine what CNAME restriction is needed, we ran an
experiment on the 5,000 most common domains (based on
Cloudflare Radar [17]), using 8,000 resolvers in 230 countries
and territories. During the period of 2022-07-10 to 2022-
07-19, with 160 million queries were sent each day, using
BGProtect monitoring [1]. As shown in Figure 12, 75.26% of
the 5000 domains did not use CNAME at all. The maximum
CNAME chain length is six with only one domain (0.02%),
and only 3.64% of the domains had a CNAME chain longer
than one. A recent querying of the single domain with a chain
of length 6 discovered the chain is now five CNAME long.

Moreover, we also conducted a test using one machine in
our Azure cloud environment located in the west-us region,
on the million most popular domains in the world [17], and
we checked how long their CNAME chains were. Figure 13
shows 98.7% of the domains do not have CNAME records,
and only 0.0001% have a chain of length 7, while only 0.4%
have a chain that exceeds one.

Figure 12: Percentage of domains with varying CNAME
chain lengths among the 5,000 most popular domains, queried
from 8,000 different resolvers spread over the world.

In Figures (14,15) we show the impact of limiting to 8
the CNAME chain as well of the CNAMECahceFlush with
a length of 1,500 names to compare the effect of filling the
cache to the complexity effect of our attack that we describe
later in Section 7.1.

7 Additional Large DNS Messages Vulnerabil-
ities

During the investigation of our CacheFlush attacks on the
resolvers, we discovered additional implementation problems
in the cache which we reported to the vendors under a re-

Figure 13: Percentage of domains with varying CNAME
chain lengths among the million most popular domains,
queried from one location.

sponsible disclosure procedure. Some of these problems have
been patched while others require further work.

7.1 CPU quadratic complexity when parsing
large DNS messages

The CNAMECacheFlush Attack allows you to send a
CNAME chain with 1,500 names, similar to NSCacheFlush,
but unlike NSCacheFlush, only 17 records are saved in the
benign cache and the cache miss percentage remains similar.
Despite this, we detected differences in the throughput of
the resolver when we sent these large messages and identi-
fied a vulnerability (CVE-2023-4408 [39]) in the validation
check for large responses. In the event that a message ar-
rives at the resolver, it performs validation checks to ensure
that there are no conflicting information between the records
(for example, the same domain should not point to two dif-
ferent names in the CNAME chain). Each domain in the
response is checked to determine if it has already appeared
in the answer so as to unify all of its answers into one data
structure and eliminate duplicates. In this check, each domain
is compared to all previous domains that have appeared in the
CNAME chain before, causing a quadratic search for each
message sent by the attacker, which results in approximately
17×15002

2 = 19million tests for each message sent by the at-
tacker, which causes the machine to execute more than 1 bil-
lion clock instructions for each message sent by the attacker,
Figure 16 present a test from the CVE disclosure discussion.
As can be seen in Figures (14, 15) the resolver throughput
dropped by average of 22.1% when CNAME chains of length
17 were compared to chains of length 1500, while it increased
by average of 333.7% when chains of length 8, indicating that
cache misses are the primary determinant of throughput.
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Figure 14: Cache miss and throughput mitigations compared to the CacheFlush attacks on BIND resolver with 100MB cache
size; CNAMECacheFlush attacks with 8, 17 and 1500 chain length and NSCacheFlush using 1500, 20 and 40 RRs

Figure 15: Cache miss and throughput mitigations compared to the CacheFlush attacks on UNBOUND resolver with 10MB
cache size; CNAMECacheFlush attacks with 8, 17 and 1500 chain length and NSCacheFlush using 1500, 20 and 40 RRs

7.2 Overallocating cache memory until the re-
solver crashes

Another issue was discovered in the cache in that large DNS
messages were not taken into account when the replacement
of an old domain with a new one when the cache is full. While
there is a limit to the size of the cache, it is possible to replace
some small messages with larger ones in order to increase
the cache until it exceeds the amount of RAM the machine
has and the resolver crashes. This bug was fixed under a
responsible disclosure procedure, and a CVE-2023-2828 [38]
has been issued.

8 Related Work

In recent years, DNS amplification attacks have received a
lot of attention. Moura et al. introduced an attack called
TsuName [34], which created a loop of queries between two

malicious authoritative servers, based on NS records. An
adversary can register two or more domains, later reconfigure
them to create a cyclic dependency, and then inject client
traffic from a botnet.

Bushart et al. [15] demonstrated the amplification of pack-
ets by chaining CNAME records, causing a resolver to over-
load a target authoritative name server with valid requests.

Maury [31] presented another packet amplification attack
that exploits the delegations of name servers in a referral
response. In the attack named iDNS, the attacker’s name
server sends self-delegations back and forth to the attacker’s
name server, potentially reaching an infinite depth.

In contrast to all the above work, our research focuses on
flushing the benign cache using a small number of packets,
and none of the above works address benign cache flushing.

Luo, et al. [29] analyzed the prevalence and characteristics
of NXDomain and water torture attacks. Our attack is not
an NXDomain attack but involves flooding the benign cache
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Figure 16: Instructions executed on the resolver processor
per one malicious CNAMECacheFlush attack request (in mil-
lions), tested on BIND9 fixed NRDelegation attack version
(9.19.13) compared to NRDelegation attack instructions.

with seemingly existent domains. NXDomain attacks flood
the Ncache, and as we demonstrate, our attack results in a
higher cache miss at the resolver and a greater reduction in
throughput compared to water-torture [42].

NXNSAttack [10] is a packet amplification attack that ex-
posed a vulnerability, causing a flood of queries between the
recursive resolver and authoritative server, resulting in an
overload on both and producing an amplified DDoS effect.
However, the CacheFlush attack is not a packet amplification
attack. While the NXNSAttack uses NXDomains that may
be saved in the Ncache (and might flush it), our work floods
the benign cache with seemingly existent domains.

NRDelegation [11] is a DNS complexity attack that uses a
small number of different domains with a lengthy referral list
to overload the CPU of a resolver and reduce its performance.
The NRDelegation attack does not aim to attack the resolver’s
cache and only fills it with a few domains. In contrast, our
attack emphasizes flooding the cache with different domains
consistently to induce high cache miss rates and reduce the
resolver’s throughput. While a new complexity issue is also
present in our paper, as a side problem we found, it does
not play a significant role in harming the throughput as the
CacheFlush, however new CVEs were issued.

In the discussion of DNS defenses during a DDoS attack,
Moura et al. [33] demonstrate the impact of caching and long
TTL. Since our attack removes domains from the cache before
they reach the TTL by flooding the cache, the TTL does not
play a significant role in our attack.

Liu et al. [28] build a DNS environment and modify the
configurations of the resolver, authoritative, and zone files
to discover vulnerabilities. This paper also raises the issue
of the resolver continuing to query the authoritative for the
CNAME chain that was already received in its entirety in
the first message. However, they did not show that it can be

exploited to flush the benign cache.
Kakarla et al. [25] create a verifier named GRoot that per-

forms static analysis of DNS authoritative configuration files,
enabling proactive and exhaustive checking for common DNS
bugs. They develop a formal semantic model of DNS reso-
lution and apply it to the configuration files from a campus
network with over a hundred thousand records to reveal bugs.
Our CacheFlush attacks do not contradict the RFC, and this
paper cannot find it with their approach. The primary issue
CacheFlush exploits is that the DNS RFC leaves many bounds
open on the work after a DNS query, including the number of
entries that can be entered into the benign cache.

9 Responsible Disclosure Procedure

We initiated a responsible disclosure procedure with several
vendors after discovering the CacheFlush attack. In addition
to collaborating with several parties one-on-one via encrypted
email and GitLab channels, we also share our attack in a
Mattermost channel with DNS-related vendors and third par-
ties. Our cloud setup has been shared along with instructions
on how to test the CacheFlush attack using the setup. Two
CVEs [38, 39] have been already issued and additional ones
are pending publication. The following are two quotations
from one of the large parties involved in the disclosure: "It has
been discovered that the effectiveness of the cache-cleaning
algorithm used can be severely diminished by querying the
resolver for specific RRsets" and "The rationale for this issue
having a CVSS score of 7.5 (A:H) rather than 5.3 (A:L) is that
the attacker can literally cause all legitimate traffic to time
out when the attack is ongoing".

10 Conclusions

The vulnerability of DNS to DDoS attacks is well known
and disturbing, as it is a key component of the welfare of the
Internet. The Mirai attacks in 2016, which rendered services
like Netflix unavailable for hours, demonstrated how vulner-
able DNS can be and how much we rely on it. Since then,
the research literature has made a lot of effort to make DNS
more resilient and to identify and close vulnerabilities that
still exist.

This paper sheds light on a key component of DNS and its
resilience to attacks, which was overlooked until now: the
cache. A key vulnerability stems from the fact that there is
still no tight bound on the number of cache entries that can
be added due to one DNS query. We show that surprisingly
this can be up to 1520 records in NS and 20 in CNAME
cacheFlush attacks, and it seems that much tighter bounds can
be applied (8 and 20 respectively) as hinted in the mitigations
suggested here.

While analyzing the Cache amplification factor of current
DNS, we also discovered two additional complexity attacks.
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This clearly demonstrates, once again, how important it is
to systematically address the resource consumption in DNS
servers.
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A Appendix: The cost of attacking from the
Cloud

The main expense of self-managed authoritative DNS in
the cloud is the cost of outgoing traffic. As of June 2024,
OCI [41], charges $0.0085 for the transmission of 1 GB of
outbound data from the VM. To flush a 2GB cache once
per second, the largest cache tested in our experiments (right-
most column in Fig. 9), an attacker authoritative needs to
send 20,000 query responses per second, which equals 1.3GB
of data transfer (20,000x65KB = 1.3GB), which would cost
$0.01105 with OCI (= 1.3GBx$0.0085). Thus it costs $0.663
per minute for an attack that flushes a 2GB resolver cache
so domains that are requested once per second or less have
to be re-fetched on each query. In AWS, it costs $0.09 to
send 1GB to the Internet and $0.01 for transfer within the
same zone. Therefore, if the targeted resolver is maintained
in AWS, the attacker can determine the zone based on the IP
address and create the authoritative server in that zone area.
In Azure, the price for internet-bound traffic is $0.087, and
$0.02 for 1GB traffic within the same zone. In Google Cloud
Platform (GCP), there is no cost for sending data within the
same zone, $0.01 for inter-zone transfers, $0.085 for the first
10TB to the Internet, $0.065 for 10-150TB, and $0.045 for
over 150TB. Consequently, if the target resolver is located
in GCP, an attacker can exploit the attack without incurring
costs. The secondary cost involves operating the machines
for both the authoritative server and the client. For exam-
ple running each machine in OCI costs $0.00126 per minute.

In comparison, the cost per minute for running a machine
is $0.00166 on AWS, $0.0016 on Azure, and $0.00158 on
GCP. The most negligible cost is sending a DNS request from
the attacker client. Each DNS query is approximately 100
Bytes. Therefore, sending 10,000 packets equates to 1MB of
outgoing traffic. This cost is 1/1000th of the cost for the au-
thoritative server, amounting to $0.0000085. In total, the cost
per minute to flush a 2GB cache every second for the authori-
tative server is 0.663+0.00126 = $0.66426. The cost for the
client is 0.00126+0.0000085 = $0.0012685. Therefore, the
total cost is $0.6655285 per minute.
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