
Call Me By My Name: Simple, Practical Private Information
Retrieval for Keyword Queries

Sofía Celi

Brave Software

Lisbon, Portugal

cherenkov@riseup.net

Alex Davidson

Universidade NOVA de Lisboa & NOVA LINCS

Lisbon, Portugal

a.davidson@fct.unl.pt

ABSTRACT
We introduce ChalametPIR: a single-server Private Information

Retrieval (PIR) scheme supporting fast, low-bandwidth keyword
queries, with a conceptually very simple design. In particular, we

develop a generic framework for converting PIR schemes for index

queries over flat arrays (based on Learning With Errors) into key-

word PIR. This involves representing a key-value map using any

probabilistic filter that permits reconstruction of elements from

inclusion queries (e.g. Cuckoo filters). In particular, we make use of

recently developed Binary Fuse filters to construct ChalametPIR,
with minimal efficiency blow-up compared with state-of-the-art

index-based schemes (all costs bounded by a factor of ≤ 1.08).

Furthermore, we show that ChalametPIR achieves runtimes and

financial costs that are factors of between 6×-11× and 3.75×-11.4×
more efficient, respectively, than state-of-the-art keyword PIR ap-

proaches, for varying database configurations. Bandwidth costs are

reduced or remain competitive, depending on the configuration.

Finally, we believe that our application of Binary Fuse filters can

have independent value towards developing efficient variants of

related cryptographic primitives (e.g. private set intersection), that

already benefit from using less efficient filter constructions.

CCS CONCEPTS
• Security and privacy→ Cryptography; Privacy-preserving
protocols.

KEYWORDS
Private Information Retrieval, Binary Fuse Filters

ACM Reference Format:
Sofía Celi and Alex Davidson. 2024. Call Me By My Name: Simple, Practical

Private Information Retrieval for Keyword Queries. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3658644.3670271

1 INTRODUCTION
Private Information Retrieval (PIR) schemes provide the ability

to make private queries on public databases that are hosted by

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3670271

an untrusted (semi-honest) server(s). In the more plausible single-

server setting (where there are no trust assumptions over multiple

non-colluding servers [32]), the majority of approaches with tol-

erable costs (e.g. [15, 18, 28, 34, 36, 39, 53]) are limited to querying

indices over flat arrays. However, this abstraction differs greatly

from real-world instantiations of both structured and unstructured

databases, which are often indexed by keys.
For a key-value map KV, Chor, Gilboa, and Naor observed that,

via a generic transformation, index-based PIR could be used to

obtain PIR-by-keywords (henceforth KWPIR) [11]. In KWPIR, the

client privately queries for a keyword k, and learns x = KV[k].
While this abstraction remains much simpler than what is expected

of today’s database systems, it still requires a logarithmic number of

index-based PIR protocols to be run in the size of the database. As a

result, significant running costs would be incurred, evenwhen using

the most practical PIR schemes, which typically require hundreds

of kB of traffic and close to a second of server runtime. In response

to these limitations, the last few years have seen the design of

promising single-round constructions from heavily optimised fully-

homomorphic encryption [4, 33, 35, 43], as well as approaches that

use local client storage to map keyword queries to indices [30]. Even

so, considering the most efficient keyword-based SparsePIR scheme

of Patel, Seo, and Yeo [43], there is an order of magnitude in the

performance deprecation between index- and keyword-based PIR

schemes. In particular, where recent work demonstrates very simple
constructions of PIR guaranteeing state-of-the-art performance,

based directly on Learningwith Errors (LWE) [18, 28, 34, 53], similar

constructions do not exist in the KWPIR setting.

Our work. We construct KWPIR via a generic transformation

that merges LWE-based PIR schemes and key-value filters into
highly efficient keyword PIR schemes. Key-value filters can be built

from well-known Cuckoo filters [22], for example, which map a

set into a data structure that allows querying keys and reconstruct-

ing corresponding values, with configurable false-positive rates 𝜖

(see Section 3 for our full abstraction). However, while such tech-

niques have been used in FHE-based PIR design [4, 33] previously,

their efficiency appeared to be outperformed by alternative tech-

niques [43]. In contrast, we show that coupling LWE-based PIR

schemes with recent innovations in filter design, namely Binary

Fuse filters [26], produces a keyword PIR scheme with record per-

formance across almost all performance metrics and a variety of

database settings. Our concrete scheme ChalametPIR is built explic-

itly using this framework, using schemes such as SimplePIR [28]

and FrodoPIR [18], while also compatible with more recent LWE-

based PIR schemes [34].

4107

https://orcid.org/0000-0002-3333-7764
https://orcid.org/0000-0002-3333-7764
https://doi.org/10.1145/3658644.3670271
https://doi.org/10.1145/3658644.3670271
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3670271&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

{

"k1": "v1",

"k2": "v2",

"k3": "v3",

...,

"kn": "vn",

}

𝑟1
4

𝑟1
3

𝑟1
2

𝑟1
1

𝑟1
5

𝑟1
6

𝑟1
7

𝑟2
4

𝑟2
3

𝑟2
2

𝑟2
1

𝑟2
5

𝑟2
6

𝑟2
7

· · · 𝑟𝑛
4

𝑟𝑛
3

𝑟𝑛
2

𝑟𝑛
1

𝑟𝑛
5

𝑟𝑛
6

𝑟𝑛
7

Key-Value Filters

ℎ3 (ki)

ℎ1 (ki)

ℎ2 (ki)

𝑟1∥𝑟2∥ . . . ∥𝑟𝑛
= 𝐻 (ki) ∥ vi

+ ∈ Z𝑝

𝑟1
4

𝑟1
3

𝑟1
2

𝑟1
1

𝑟1
5

𝑟1
6

𝑟1
7

· · · 𝑟𝑛
4

𝑟𝑛
3

𝑟𝑛
2

𝑟𝑛
1

𝑟𝑛
5

𝑟𝑛
6

𝑟𝑛
7

Matrix repr.

0100110

Encrypted vector (query)

.

.

.

𝑟𝑛

𝑟1

𝑟2

=

𝐻 (ki) ∥ vi

decrypt

(1) Raw KV map (2) Filter representation (3) KWPIR protocol

Figure 1: Overview of the generic framework used in ChalametPIR to construct KWPIR protocols over raw key-value maps.
The framework uses key-value filters (Section 3.1) and a generic abstraction of LWE-based PIR schemes (Appendix A).

Regarding concrete performance, for maps containing 1 mil-

lion keys with associated 256 B values (1 GB in total), Chalamet-
PIR based on FrodoPIR achieves online server runtimes of around

100ms (on a 2021 Macbook) and response sizes of 4 kB. This rep-

resents a minimal performance blow-up (1.08×) compared to the

original index-based FrodoPIR scheme, and is an order of magni-

tude more efficient than SparsePIR. By comparing financial costs

for standard AWS EC2 infrastructure [5] for various DB settings,

we show that the costs of ChalametPIR are between 3.75 − 11.4×
cheaper than SparsePIR.
Formal contributions. In this work, we achieve the following.

• A formalisation of probabilistic key-value filters for the PIR
setting (Section 3). We further provide a concrete definition

and parameterisation for using Binary Fuse filters [26] in

generic cryptographic applications, to store large key-value

maps with a configurable false-positive rate (Section 4).

• A generic transformation taking abstract LWEPIR schemes

(Appendix A) and key-value filters, and producing conceptu-

ally very simple keyword PIR schemes (Section 5).

• An efficient parametrisation and open-source Rust imple-

mentation of the ChalametPIR scheme, based on FrodoPIR
(but compatible with general LWEPIR schemes) and Binary

Fuse filters.
1
Our experimental analysis shows that Cha-

lametPIR achieves state-of-the-art performance costs (Sec-

tion 6).

1.1 Technical Overview
Our approach is very simple, and forms of it have been used pre-

viously in PIR schemes (for example, see [4, 33, 43]). A high-level

visualisation of the methodology is given in Figure 1. In principle,

we make use of a key-value map KV of size𝑚, that is indexed by

keys k ∈ K with corresponding values x ∈ X. We convert this

map into a filter structure that permits reconstructing elements

over X using a set of hash functions H = {h𝑖 }𝑖∈[𝑘] , with a config-

urable false-positive probability, 𝜖 . In other words, the filter F has

1
https://anonymous.4open.science/r/chalamet-3A2E

a function of the form fpt𝜖 (x) ← F.check(k), for some fingerprint

function fpt𝜖 that allows deriving x. To avoid storing huge data ele-
ments in each entry of the filter, we break the filter into 𝑑 “columns”,

each holding log(𝑝) bits of a given row of data, and indexed by the

same set of hash functions. We interpret these filter columns as

a matrix containing 𝑁 rows, where 𝑁 = ç𝑚 and ç is the natural

blow-up introduced by the filter. We can then query for an element

simply using linearly homomorphic encryption (Section 2.2). In

principle, this query consists of sending an encrypted vector of all

zeroes, except for entries corresponding to h𝑖 (k) which are set to 1.

Previous work combined this general approach with FHE and

Cuckoo hashing [40]. The results, however, have not been shown

to be so efficient (notably performing worse than non-filter-based

approaches [43]), or leveraged the use of multiple rounds in order to

lower communication times via primitives as oblivious transfer [33].

The novelty in our work relies on the merging of non-FHE-based

PIR (i.e. LWEPIR), and coupling it with concrete and very practical

instantiations of filters, such as the novel Binary Fuse filters [26].

Binary Fuse filters set 1.08 ≤ ç ≤ 1.13, dependent on the choice

of 𝑘 ∈ {3, 4}, which appears to be notably smaller than any other

filter design. To the best of our knowledge, our work is the first

to explore the usage of Binary Fuse filters in cryptography, as a

practical basis for other cryptographic primitives that rely upon

filter-based approaches.

Handling false-positives. PIR seems like a natural candidate

for using filter-based approaches in general, as the database is

assumed to be public, and the adversary is assumed to be semi-
honest. This means that the occurrence of false-positives does not

necessarily lead to security flaws, but they may indeed have real-

world impacts. To mitigate false-positives, we use the fact that

the false-positive rate (𝜖) of Binary Fuse filters is defined by the

length of the key fingerprint in the output. In our case, we therefore

explicitly structure outputs as 𝐻 (k)∥x, where 𝐻 : k ↦→ {0, 1}𝜇 ,
where 𝜇 ≥ 2𝜖 is a universal hash function. This means that a query

for k′ can identify a false-positive by simply checking that the

4108

https://anonymous.4open.science/r/chalamet-3A2E
hgpark
텍스트 강조

hgpark
텍스트 강조

hgpark
텍스트 강조

hgpark
밑줄

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

first 𝜇 bits are equal to 𝐻 (k′), and otherwise aborting. This allows

complete configuration of 𝜖 = 𝜇/2, depending on the hash length.

Security and performance. The security of our approach follows

naturally from the LWE assumption, as parameterised by the un-

derlying PIR scheme. Performance magnification compared with

the corresponding index-based scheme is determined by the factor

ç, and thus can be as small as 1.08. Furthermore, using LWEPIR
schemes that use square-root matrix encodings (such as SimplePIR,
see Section 5.1) reduces this magnification further still. In com-

parison with existing keyword PIR schemes, ChalametPIR (based

on either FrodoPIR or SimplePIR) is significantly more efficient

across all performance metrics, for almost all database settings (see

Section 6). We provide an open-source Rust implementation of

ChalametPIR, based on the FrodoPIR scheme.

1.2 Related Work
Here, we focus on related work on Keyword PIR and filters. Due

to space constraints, we leave an overview of prior work on Index-

based PIR to the full version [10].

Keyword PIR. For decades, PIR schemes that could allow querying

keywords (and thus maintaining much more realistic functionality,

with respect to modern data structures) reduced the problem to run-

ning many rounds of index-based PIR. In particular, Chor et al. [11]

showed keyword PIR could be achieved by running logarithmically

number of rounds of index-based PIR over binary tree structures.

Similar constructions based on oblivious PRFs have been given [23],

with the advantage of achieving notions of privacy for the database.

More recent lines of work allows for single-round keyword-

query functionality via FHE-based PIR. In particular, the work of [2]

introduces a solution that leverages a form of cuckoo hashing to

probabilistically map keywords into a small table — similar to our

proposed approach. Alternatively, one can build keyword-based

PIR via equality operators [4]. In this approach, the client’s query is

encoded into a domain, encrypted and sent to a server. The server

computes each bit of the vector using an equality operator — repre-

sented as an indicator function that is set to 1 when it returns true,

and 0 otherwise — between the client’s encrypted query and each

database identifier (which can be an index or keyword). Then, the

server derives the inner product between the database and the vec-

tor, and sends the result to be decrypted by the client. Via a folklore

equality operator, they construct a PIR scheme that has the smallest

upload cost amongst all non-trivial approaches, but has high com-

putational times due to the high multiplicative depth of equality

circuits, as database elements grow. The work of [35] instead uses

equality operators for constant-weight codewords, that have mul-

tiplicative depth that depend only on the Hamming weight of the

code, and not on the bit-length of the element. This construction

is 10× faster than “regular” equality operators and still facilitates

keyword queries. However, computational and communicational

times remain very high, when compared with state-of-the-art index-

based PIR schemes. The “Checklist” scheme of [30] developed a

keyword-based PIR approach based on multi index-based PIR, by

having the client locally store a probabilistic mapping between

keyword queries and their respective indices using hash prefixes.

Unfortunately, their approach requires the client to store 2𝜖 |KV|
bits of data to achieve false-positives rates 𝜖 .

Finally, the work of [43] present a different direction by pro-

viding a framework that transforms the database as an encoding

of linear combinations, directly utilising the capabilities of an un-

derlying FHE-based PIR scheme. In particular, their approach can

be applied to existing schemes such as [36, 39]. This approach re-

sults in performance that is an order of magnitude more efficient

than [35], and is compatible with recursion [32] and batching [4]

techniques.

Filters in cryptography. Bloom [7] and Cuckoo [40] filters have

a long history of applications in cryptography. Such filter descrip-

tions allow efficiently representing and querying sets via 𝑘 hash

function evaluations, with a configurable false-positive probability

𝜖 . Their application has resulted in various significant advances in

achieving efficient designs of protocols for performing private set

intersection [17, 21, 45, 46], PIR [2, 4, 33], encrypted search [42],

and many others.

Filters in general have seen many advances since the pioneering

work of Bloom. Since then, various forms of Bloom filters have been

developed that optimise for space and query times [8, 9, 19, 37, 48].

While Bloom filters requires that 𝑘 = 1/𝜖 in the optimal setting,

Cuckoo filters [22] set 𝑘 = 2 while still maintaining configurable

𝜖 . This approach stores larger number of bits (dependent on 𝜖) per

entry, which further permits entire reconstruction of elements (or

fingerprints) from queries, on top of indicating whether elements

belong to their set. Further optimisations in filter designs have been

introduced since, including XOR filters [25], Ribbon filters [20], and

Binary Fuse filters [26]. Binary Fuse filters in particular, provide

a constant number of hash functions (𝑘 ∈ {3, 4}), and represent

the state-of-the-art in terms of filter size. We describe Binary Fuse

filters in Section 4.

2 PRELIMINARIES
2.1 Notation
We denote by [𝑛] the set {1, . . . , 𝑛}. For all intents and purposes, we
consider sets to be ordered (i.e. as arrays, indexed from 1 onwards)

unless stated otherwise. We use Q = ∅ to denote the initialisation of
an empty array. Let 𝑙 = |Q|, we use a function Q .push(𝑥) to denote
the appending of 𝑥 to the array Q, we use a function 𝑥 ← Q .pop()
to denote returning 𝑥 = Q[1], setting Q[𝑖 − 1] = Q[𝑖] for 𝑖 ∈ [𝑙],
and eliminating Q[𝑙], so that |Q| = 𝑙 − 1. Finally, we use a function
Q .rem(𝑥) to denote finding the element 𝑥 inQ, removing it if found,

and then left-shifting all array elements to the right of this element,

in the same manner as the pop() function.
We denote vectors 𝒗 = (𝑣1, . . . , 𝑣𝑚) ∈ R𝑚 using bold-face, and

similarly (but capitalised) for matrices𝑴 = (𝒗1 |𝒗2 | . . . |𝒗𝑛) ∈ R𝑚×𝑛 ,
where (𝒗1 |𝒗2 | . . . |𝒗𝑛) denotes the concatenation of 𝑛 column vec-

tors into a single matrix. Similarly, we write 𝒗 = [𝒗1∥ . . . ∥𝒗𝑛] to
denote concatenation of 𝑛 vectors 𝒗𝑖 ∈ R𝑚𝑖

into a single vector

𝒗 ∈ R
∑

𝑖 𝑚𝑖
.

For 𝑝 ∈ N, we let +𝑝 denote the addition operator of elements

in Z𝑝 , replacing with + when the modular reduction is obvious.

For 𝑥 ∈ Z𝑞 and 𝑞 > 𝑧 > 0, let ⌊𝑥⌉𝑞,𝑧 denote the computation of

the rounding function ⌊(𝑧/𝑞) · 𝑥⌉ mod 𝑧. For a distribution 𝜒 , we

write 𝒙 ←$ 𝜒𝑚 to denote sampling the vector 𝒙 , where each entry

𝑥𝑖 is sampled independently from 𝜒 . We let 𝜆 denote the concrete

security parameter throughout.

4109

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

2.2 Homomorphic Encryption for Public
Inner-Products

A symmetric-key homomorphic encryption scheme for public inner-

products (HEIP) allows encrypting vectors 𝒗 ∈ Z𝑚𝑝 for some 𝑝 > 0

into ciphertext vectors 𝒄 ∈ Z𝑚𝑞 for𝑞 > 𝑝 .With knowledge of 𝒄 alone,
the homomorphic capability of the scheme allows computation of

an encryption, 𝑐′, of the inner product ⟨𝒗,𝒘⟩ ∈ Z𝑝 , for any public

vector𝒘 ∈ Z𝑚𝑝 . We formally define such an encryption scheme, Σ,
in the following way.

• (pp, sk) ← Σ.kgen(1𝜆): Outputs a key sk and public param-

eters pp.
• 𝑐 ← Σ.enc(pp, sk, 𝑣 ∈ Z𝑝): Outputs an encryption 𝑐 of a

value 𝑣 ∈ Z𝑝 corresponding to the secret key sk.
• 𝑐′ ← Σ.eval(pp, 𝒄 ∈ Z𝑚𝑞 ,𝒘 ∈ Z𝑚𝑝): Let 𝒄 = (𝑐1, . . . , 𝑐𝑚) be a
vector of ciphertexts corresponding to sk, and𝒘 a plaintext

vector. Outputs a ciphertext 𝑐′.
• 𝑣 ← Σ.dec(pp, sk, 𝑐): Outputs a value 𝑣 ∈ Z𝑝 .

In the following, we may also abuse notation and write 𝒄 ←
Σ.enc(pp, sk, 𝒗 ∈ Z𝑚𝑝) to denote producing a vector of 𝑚 cipher-

texts, where the 𝑖th ciphertext 𝑐𝑖 encrypts the 𝑖th value 𝑣𝑖 of 𝒗.
Subsequently, Σ must satisfy the following correctness guarantee,

and the standard IND-CPA security guarantee for public-key en-

cryption schemes.

Definition 2.1 (Correctness of evaluation). Let 𝒗,𝒘 ∈ Z𝑚𝑝 , let

(pp, sk) ← Σ.kgen(1𝜆), and let 𝑐𝒗 ← Σ.enc(pp, sk, 𝒗). Then Σ
is correct if the following guarantees hold.

(1) Pr[𝒗 ← Σ.dec(pp, sk, 𝑐𝒗)] > 1 − negl(𝜆)
(2) Pr[⟨𝒗,𝒘⟩ ← Σ.dec(pp, sk, Σ.eval(pp, 𝑐𝒗 ,𝒘))] > 1 − negl(𝜆)

Encryption scheme from LWE. As described in [18, 28], it is

possible to build homomorphic encryption for general linear func-

tions from LWE-based Regev encryption [47]. Let 𝑞, 𝑝 , and 𝑛 be

poly(𝜆), and let 𝜒𝜎 be a specific error distribution with parameter

𝜎 = poly(𝜆). For simplicity, we are going to assume throughout

that 𝑞 > 𝑝 and 𝑝 |𝑞, and we let Δ𝑞,𝑝 = 𝑞/𝑝 . A description of the

Regev-based scheme, Σlwe, that permits evaluation of public inner-

products is as follows.

• (pp, sk) ← Σlwe .kgen(1𝜆, 𝑞, 𝑝, 𝑛, 𝜎): Samples 𝒔 ←$ 𝜒𝑛𝜎 , and

returns (pp, sk) = ((𝑞, 𝑛, 𝑝, 𝜒𝜎), 𝒔).
• 𝑐 ← Σlwe .enc(pp, sk, 𝑣 ∈ Z𝑝): Samples 𝒂 ←$ Z𝑛𝑞 and 𝑒 ←$

𝜒𝜎 , and computes 𝑐 = sk · 𝒂 + 𝑒 + Δ𝑞,𝑝 · 𝑣 . Returns 𝑐 = (𝒂, 𝑐).
• 𝑐′ ← Σlwe .eval(pp, 𝒄 ∈ Z𝑚𝑞 ,𝒘 ∈ Z𝑚𝑝): Parses 𝒄 as (𝑨, 𝒄),
where 𝑨 = (𝒂1 | . . . |𝒂𝑚) ∈ Z𝑛×𝑚𝑞 and 𝒄 = (𝑐1, . . . , 𝑐𝑚) ∈ Z𝑚𝑞 ,

and returns 𝑐′ = (𝒂′, 𝑐′) = (𝑨 ·𝒘, 𝒄 ·𝒘).
• 𝑣 ← Σlwe .dec(pp, sk, 𝑐): It returns 𝑣 = ⌊𝑐 − (sk · 𝒂)⌉𝑞/𝑝 .

Security. It is known from [47] that such an encryption scheme

can be proven secure based on the worst-case hardness of known

problems over lattices when 𝜒𝜎 is a discrete Gaussian distribution

centred at zero, with standard deviation 𝜎 . In [18], an alternative

hardness guarantee is given based on the Ternary LWE problem, in

the case that 𝜒 = 𝜒𝜎 is chosen to be the uniform ternary distribution

that samples elements from {0,±1}.
Correctness. Regev’s encryption is widely known to be additively

homomorphic: given two ciphertexts 𝑐1 = (𝑎1, 𝑐1) and 𝑐2 = (𝑎2, 𝑐2),

their sum 𝑐+ = (𝑎1+𝑎2, 𝑐1+𝑐2) decrypts to the sum of the plaintexts,

as long as the noise does not grow too large. We now highlight

parameter settings that have been shown to satisfy correctness

with respect to public inner products with vectors in Z𝑚𝑝 , when

considering Gaussian and uniform ternary error distributions, using

the following lemma.

Lemma 2.2 (Correctness [18, 28]). Σlwe produces correct decryp-
tions with probability 1 − 𝛿 (for 𝛿 > 0) for public inner products with
vectors𝒘 ∈ Z𝑚𝑝 , if at least one of the following conditions holds.

• 𝜒 = 𝜒𝜎 is a Gaussian error distribution with standard deviation
parameter 𝜎 = 𝑠2/2𝜋 for 𝑠 > 0, and 𝑞 ≥

√︁
2 ln(2/𝛿) · 𝑠𝑖𝑔𝑚𝑎 ·

𝑝2 ·𝑚1/2.
• 𝜒 is a uniform distribution over {0,±1}, and 𝑞 ≥ 8 · 𝑝2 ·

√
𝑚.

In the second case, 𝛿 = negl(𝜆) via naive application of the Central
Limit Theorem [18].

Clearly, the correctness property can be extended beyond the

statistical error distributions considered in this work.

Preprocessing inner-products. In both [18, 28], it is shown that

encryptions in Σlwe can be preprocessed for a global matrix𝑨. Note
that 𝑨←$ PRG(𝛽) given a uniformly sampled pseudorandom gen-

erator seed 𝛽 ←$ {0, 1}𝜆 , and 𝑨 is used globally for encrypting

vectors of size 𝑚.
2
Regev’s encryption remains secure with this

pseudo-random “global” matrix 𝑨 when used to encrypt polyno-

mially many messages provided that each ciphertext uses both an

independent secret vector 𝑠 and an error vector 𝑒 [44]. To denote us-

ing such an encryption mechanism, we will write Σlwe .enc𝑨(sk, 𝒗)
for some vector 𝒗 ∈ Z𝑚𝑝 . This modification allows pre-processing

inner-products by computing 𝒅 = 𝑨 · 𝒙 ∈ Z𝑛𝑞 , for some 𝒙 . Then,
when performing evaluations and decryptions, it is enough to only

operate on the right-hand side of the ciphertext. Finally, decryption

is performed in the normal way, using the secret key sk = 𝒔 that is
used in the original encryption.

2.3 Private Information Retrieval
Let DB ∈ X𝑚 represent a database containing𝑚 elements sampled

from some element space X. A (single-server) Private Informa-

tion Retrieval (PIR) scheme [12], denoted by PIR, consists of the
following algorithms.

3

• ppDB ← PIR.setup(1𝜆,DB): An algorithm that outputs a set

of public parameters.

• (q, st) ← PIR.query(ppDB, 𝑖): An algorithm that takes some

public parameters, and an index 𝑖 ∈ [𝑚] as input and out-

puts a query q ∈ {0, 1}∗ and some corresponding state

st ∈ {0, 1}∗.
• r ← PIR.respond(ppDB,DB, q): An algorithm that takes

some public parameters, the database, and a query as in-

put. The algorithm outputs a response r ∈ {0, 1}∗.
• x← PIR.process(ppDB, st, r): An algorithm that takes public

parameters, the state, and a response as input. The algorithm

outputs an element x ∈ X.

2
Security of the scheme then follows from LWE with polynomial security loss (i.e.

Matrix LWE [18]), from a standard hybrid argument.

3
We only consider single-server (computationally-secure) PIR schemes in this work.

Section 1.2 discusses multi-server approaches.

4110

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Construction 2.1: Generic PIR scheme

A PIR protocol between a server holding DB ⊆ X𝑚 , and a
client that wishes to learn DB[𝑖].

(1) The server runs ppDB ← PIR.setup(1𝜆), and makes

ppDB publicly available.

(2) The client runs (q, st) ← PIR.query(ppDB, 𝑖), sends
q to the server, and stores (q, st).

(3) The server runs r← PIR.respond(ppDB,DB, q), and
returns r to the client.

(4) The client runs x ← PIR.process(ppDB, st, r), and
outputs x.

A generic PIR protocol (using the algorithms defined above) is

described in Construction 2.1. All such protocols must satisfy three

properties: correctness, security, and efficiency. Broadly speaking,

correctness guarantees that a query returns the intended result in

the database, security guarantees that the client query hides the

index being retrieved, and efficiency guarantees that the solution

is more efficient than the trivial solution of downloading the entire

database. We provide formal realisations of each property below.

Definition 2.3 (Correctness). Let 𝑃x be the probability that the

protocol in Construction 2.1 outputs x, where DB[𝑖] = x. We say

that PIR is correct if and only if 𝑃x > 1 − negl(𝜆).

For completeness, we may alternatively allow the query func-

tionality to take an indicator vector as input corresponding to

the index 𝑖 that should be queried. In other words, we may write,

PIR.query(ppDB,𝒇), where 𝒇 ∈ {0, 1}𝑚 . Typically, for correctness

to hold, we require that 𝑓𝑖 = 1, if and only if 𝑖 is the index that

should be queried, and 0 elsewhere.

Definition 2.4 (Security). For a PPT algorithm A, let 𝑃A
𝑏,𝑏′

be the

probability that A outputs 𝑏′ = 𝑏 in ℓ-QINDAPIR (Figure 2). We

say that PIR is secure (and satisfies ℓ-query indistinguishability) if
|𝑃A
𝑏
− 1/2| < negl(𝜆) for all such algorithms A.

Definition 2.5 (Efficiency). For a single client launching 𝑂 (1)
queries, PIR is efficient if the total communication overhead is

smaller than the total bit-length of DB.

PIR for keyword queries. Keyword PIR schemes were first in-

troduced in [11], and consider key-value map databases DB, where
elements x ∈ X contained in DB are associated with keys k ∈ K ,
for a key space K . To allow keyword queries to be made against a

PIR database, it is necessary to modify the PIR.query functionality,

as seen below.

• (q, st) ← PIR.query(ppDB, k): An algorithm that takes pub-

lic parameters and a key k ∈ K as input, and returns the

query q and the state st.
The generic construction in 2.1 can then be modified to have

a client that wishes to learn the value associated with k in DB.
Correctness, then, is defined as follows.

Definition 2.6 (Correctness for keyword queries). Let 𝑃k,x be the
probability that the scheme in Construction 2.1 outputs x, where

Experiment ℓ-QINDAPIR (ℓ-kwQIND
A
PIR)

1 : 𝑏 ←$ {0, 1}

2 : ppDB ← PIR.setup(1𝜆)
3 : (𝑖1, . . . , 𝑖ℓ), (𝑗1, . . . , 𝑗ℓ) ← A(ppDB,DB)

(k1, . . . , kℓ), (k′
1
, . . . , k′ℓ) ← A(ppDB,DB)

4 : T = [(𝑖𝜄 + 𝑏 · (𝑗𝜄 − 𝑖𝜄)) for 𝜄 ∈ [ℓ]]

T = [(k𝜄 + 𝑏 · (k′𝜄 − k𝜄)) for 𝜄 ∈ [ℓ]]

5 : Q = ∅
6 : for 𝑡 ∈ T :
7 : (q, st) ← PIR.query(ppDB, 𝑡)
8 : Q.push(q)
9 : 𝑏′ ← A(ppDB,DB, Q)

Figure 2: ℓ-query indistinguishability for (keyword) PIR.

DB.read(k) = x. We say that PIR is correct if and only if 𝑃k,x >

1 − negl(𝜆).

Security is defined in the same way as in Definition 2.4, but using

the ℓ-kwQINDAPIR security game defined in Figure 2 (i.e. considering

the highlighted lines).

2.4 Key-Value Maps
A key-value (KV) map consists of two algorithms, set and read. The
set(k, x) operation writes the value x ∈ X to the key k ∈ K . The
read(k) operation, returns x if (k, x) has been written previously,

and ⊥ otherwise.

Real-or-random key-value (RoRKV) maps are similar except that

read(k) returns some random value 𝑟 ∈ X when (k, x) has not
been previously written. It is possible to construct standard KV

maps from any RoRKV map, at the cost of increasing the storage of

each element by the map key length. The construction is defined

as follows.

• KV.set(k, x) : run RoRKV.set(k, k∥x).
• KV.read(k) : run 𝑦 ← RoRKV.set(k), parse k′∥x′ ← 𝑦,

output x′ if k′ = k, and ⊥ otherwise.

To reduce the impact of the length of the key on storage, we can

instead store values as hash(𝑘)∥x, where hash is a random oracle

hash function.

3 PROBABILISTIC KEY-VALUE FILTERS
We now formalise the concept of probabilistic key-value filters,

that allow efficiently storing and querying key-value maps with

some false-positive probability 𝜖 > 0. Such structures will form the

basis of our eventual PIR scheme in Section 5. In the full version

of this work [10], for additional context, we provide additional

formalisations for filter designs that focus only on encoding sets,

rather than maps.

4111

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

3.1 Key-Value Filters
Key-Value filters are a form of storage that allows encoding key-

value maps M of pairs (k, x) ∈ K × X, for key and value do-

mains K,X ⊆ {0, 1}∗, respectively. Key-value filters consist of

four algorithms setupFilter, write, check, and reconstruct, and are

parametrised by a fingerprint function, fpt𝜖 : K × X ↦→ {0, 1}𝜇 .
The function fpt𝜖 is, in turn, parametrised by the false-positive

probability via the polynomial 𝜇 = 𝜇 (𝜖). In essence, for every check

on a value x to the filter, a fingerprint 𝑦 is returned, and we say that

x is in KV if 𝑦 = fpt𝜖 (k, x). The algorithmic structure of key-value

filter is provided below.

• (F,H) ← KeyValue.setupFilter(1𝑚, 𝜖, ◦): A static initialisa-

tion function that generates a filter F of size𝑁 = 𝑂 (log(1/𝜖)𝑚),
and a set of hash functions H = {h𝑖 }𝑖∈[𝑘] for some 𝑘 ∈ N,
and where h𝑖 : {0, 1}∗ ↦→ [𝑁]. The input ◦ defines a mathe-

matical operation that is used for reconstructing data items.

• 𝑏 ← F.write(M,H, fpt𝜖): Writes a mapM to F using the set
of hash functions in H, and returns 𝑏 = 1 if successful, and

𝑏 = 0 otherwise. If 𝑏 = 0, it may be necessary to regenerate

the filter.

• F[H(k)] ← F.check(k,H): Simply evaluates H(k) for k, and
returns F[H(k)].
• fpt𝜖 (k, x) ← F.reconstruct(k,H, fpt𝜖): Runs F[H(k)] ←
F.check(k,H), and then returns ⃝𝑘

𝑖=1
F[h𝑖 (k)] = F[h1 (k)] ◦

. . . ◦ F[h𝑘 (k)].
Correctness guarantees. We can express the correctness of a Key-

Value filter with respect to the following two definitions, providing

absolute correctness for included elements (no false-negatives),

and correctness with probability (1 − 𝜖) for testing non-included
elements (false-positives with probability 𝜖).

Definition 3.1 (Correctness of inclusion). Consider that (F,H) ←
KeyValue.setupFilter(1𝑚, 𝜖), and letM be any mapM ⊆ K × X
such that (k, x) ∈ K × X is contained withinM. We say that F
correctly indicates inclusion if the following equality holds:

Pr

[
𝑦 = fpt𝜖 (k, x)

��� 1←F.write(M,H,fpt𝜖)
𝑦←F.reconstruct(k,H,fpt𝜖)

]
= 1.

Definition 3.2 (Correctness of non-inclusion). Consider that (F,H) ←
KeyValue.setupFilter(1𝑚, 𝜖), and let M be any set M ⊆ {0, 1}∗
such that x ∈ {0, 1}∗ is not contained withinM. We say that F
correctly indicates non-inclusion (with false-positive probability 𝜖),

if the following inequality holds:

Pr

[
𝑦 = fpt𝜖 (k, x)

��� F.write(M,H,fpt𝜖)
𝑦←F.reconstruct(k,H,fpt𝜖)

]
≤ 𝜖.

Constructions. Key-value filters can be built directly from any

fingerprint-based (FB) filters (see the full version for a formalisation

of FB filters [10]) that operate only over sets (e.g. Cuckoo, XOR, or

Binary Fuse filters). Let F be a FB filter, with fingerprint function

fpt𝜖 : X ↦→ {0, 1}𝜇 . In principle, all hash function queries are

modified to be performed over keys k ∈ K . Then, when running

the F.write and F.reconstruct algorithms, we use the fingerprint

function fpt𝜖 : K × X ↦→ {0, 1}𝜇 defined as fpt𝜖 (k, x) = fpt𝜖 (k)∥x
for x ∈ X, if (k, x) is encoded in the filter. This provides value

extraction with false-positive rate 𝜖 equal to that of fpt𝜖 . More

concretely, we can adapt fingerprint-based filters to support key-

value functionality by simply modifying the storage procedure to

perform F[H(k)] ← F.check(k,H), and then setting F[h1 (k)] =
fpt𝜖 (k, x) ◦ (−F[h2 (k)]) ◦ . . . ◦ (−F[h𝑘 (k)]).
Probabilistic Key-Value Maps. To build probabilistic key-value

maps (Section 2.4) from key-value filters, we instantiate theKV.read
function using the F.reconstruct function, as defined above. To

achieve some desired false-positive rate of 𝜖 = 2
−𝜇/2

, we can sim-

ply use the fingerprint function fpt𝜖 (k, x) = hash(k)∥x, where
hash : {0, 1}∗ ↦→ {0, 1}𝜇 is a random oracle hash function, and the

false-positive rate follows from simple application of the Birthday

paradox. Note that we work with filters that are selective by de-

sign — in other words, requiring that the entire set/map of elements

is written in one go — we must also impose the same restriction on

the key-value map.

Matrix representation and filter concatenation. For a key-

value filter, F, we write 𝑭 ← Matrix(F) ∈ X𝑁×1
to denote the

matrix representation of F. In other words, the 𝑖th entry of 𝑭 corre-

sponds to the 𝑖th concrete element in F. Clearly, 𝑭 is a vector, but

later we make use of the fact that the concatenation of 𝑑 filters

(each using the same set of hash functions, H) can be expressed

generically as a matrix 𝑭 ∈ X𝑁×𝑑
, where the (𝑖, 𝑗)th position 𝐹𝑖, 𝑗

corresponds to the 𝑖th entry of the 𝑗 th concatenated filter.

To express a concatenated filter, F, we abuse notation and write

F = (F1, . . . , F𝑑), where each F𝑖 is an individual filter. This repre-

sentation allows expressing 𝑑 · log 𝑝 bits of information per filter-

entry. We further abuse notation and write F.write(M,H, fpt𝜖) and
𝑦 ← F.reconstruct(k,H, fpt𝜖), which allows us to express running

F𝑖 .write(M,H, fpt𝜖) and 𝑦𝑖 ← F𝑖 .reconstruct(k,H, fpt𝜖) individu-
ally, for each 𝑖 ∈ [𝑑]. In the case of reconstruction, the response 𝑦

is equal to the bit-concatenation expressed by 𝑦1∥ . . . ∥𝑦𝑑 .

4 BINARY FUSE FILTERS FOR Z𝑝

Binary Fuse filters (BFFs) (as well as their predecessors, XOR fil-

ters [25]) were first introduced by Graf and Lemire [26] as an alter-

native filter-design, focused specifically on minimizing the space

and query overheads of key-value filters, while maintaining quick

access times. Compared with XOR filters, the constant space over-

head can be reduced to ç ∈ {≈ 1.08,≈ 1.13}, for the number of hash

functions 𝑘 ∈ {3, 4}, respectively. In principle, these savings are

achieved by breaking the filter into many, much smaller segments

F = (F1∥ . . . ∥F𝑃), where 𝑃 is chosen to be some value that ensures

that each segment F𝑖 contains 2𝑔 entries, for some 𝑔 ∈ N. Hash
function evaluations map uniformly to 𝑘 contiguous segments (i.e.

mapping uniformly to {0, 1}𝑔), and then reconstruction of fpt𝜖 (x)
is performed using the XOR operation in {0, 1}𝜇 .

Note that Cuckoo and XOR filters can be seen as sub-classes

of BFFs (we discuss in more detail the Cuckoo filter case towards

the end of this section), where 𝑘 = 2 and 𝑘 = 3, respectively, and

segments are chosen to be much larger. However, as well as the

reduction in space requirements, hash function evaluations for

BFFs can be chosen to map natively to 𝑔-bit domains, making such

function accesses cheaper. Concretely, it is shown in [26] that such

filters maintain higher performance than Cuckoo filters, even for

plausibly negligible 𝜖 (e.g. 2
−40

). Even so, while cuckoo filters have

4112

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Algorithm 1 BFFp setupFilter(1𝑚, 𝜖, +𝑝) Algorithm
Require: A parameter 𝑘 ∈ {3, 4}. A parameter 𝑚 ∈ N denoting the

number of keys in the maps written to BFFp.
1: Sample hash : {0, 1}∗ ↦→ {0, 1}𝜇 as a random oracle hash function for

𝜇 = 𝜇 (𝜖) .
2: Set 𝑠 ∈ {2⌊log3.33 (𝑚)+2.25⌋ , 2⌊log2.91 (𝑚)−0.5⌋ } for 𝑘 ∈ {3, 4}, respec-

tively.

3: Let 𝑁 = ç𝑚, where

ç =


max

(⌊(
0.875 + 0.25 · max(1, log(10

6)
log(𝑚))

)
·𝑚

⌋
, ⌊1.125𝑚⌋

)
max

(⌊(
0.77 + 0.305 · max(1, log(6·10

5)
log(𝑚))

)
·𝑚

⌋
, ⌊1.075𝑚⌋

)
for 𝑘 ∈ {3, 4}, respectively.

4: Sample universal hash functions h′ : {0, 1}∗ ↦→ [𝑁 /𝑠]. and h′′ :

{0, 1}∗ ↦→ [𝑠]
5: F = ∅
6: for 𝑖 ∈ [𝑁] do F[𝑖] ←$ Z𝑝 end for
7: H = ∅
8: for 𝑖 ∈ [𝑘] do
9: Let h𝑖 be the function that is evaluated as h𝑖 (·) = (𝑁 /𝑠 · (h′′ (·) −

1)) + h′ (· ∥𝑖)
10: H[𝑖] = h𝑖
11: end for
12: Let fpt𝜖 be the function that is evaluated as fpt𝜖 (k, x) = hash(k) ∥x
13: return (F,H, fpt𝜖)

been widely used in cryptographic schemes, BFFs are yet to see

any significant usage.

Formal description. First, let K = {0, 1}∗, let X = {0, 1}𝑙 for
some 𝑙 ∈ N, and let hash : {0, 1}∗ ↦→ {0, 1}𝜇 be a random oracle

hash function, where 𝜇 ≥ 2𝜖 (for some desired 𝜖). We consider

key-value maps of the formM ⊆ K × X. Then, we consider the
function fpt𝜖 : K × X ↦→ {0, 1}𝜇+𝑙 as defined in Section 3.1 (see

also Algorithm 1), for instantiating probabilistic key-value maps. In

other words, fpt𝜖 (k, x) = hash(k)∥x. To consider elements in Z𝑝 ,
we set 𝑝 = 2

𝜇+𝑙
and let ◦ be mod-𝑝 addition. All changes so far can

be made without altering any of the internal characteristics of the

filter itself. We write BFFp when referring to such BFFs from this

point forth. The formal description of each of the functions is given

below.

Formally speaking, BFFs for Z𝑝 instantiate the algorithms for

key-value filters (Section 3.1) in the following way.

• (F,H, fpt𝜖) ← KeyValue.setupFilter(1𝑚, 𝜖, ◦): Runs Algo-

rithm 1.

• 𝑏 ← F.write(M,H): Runs Algorithm 2.

• F[H(k)] ← F.check(k,H): Simply evaluates H(k) for k, and
returns F[H(k)].
• fpt𝜖 (k, x) ← F.reconstruct(k,H): First runs F[H(k)] ←
F.check(k,H), and returns ⃝𝑘

𝑖=1
F[h𝑖 (k)] = F[h1 (k)] ◦ . . . ◦

F[h𝑘 (k)].
Core algorithms. We define two algorithms that allow us to

instantiate the setupFilter (Algorithm 1) and write (Algorithm 2)

functionality for a Binary Fuse Filter BFFp. Intuitively speaking,

these definitions differ from their original specification in that they

allow us to encode key-value maps in the structure, whereas the

work of [26] only allows encoding a set.

Algorithm 2 BFFp F.write(M,H, fpt𝜖) Algorithm
Require: M is a map containing𝑚 distinct keys sampled from K , each

associated with a data element sampled from X.
1: Let 𝑆 be a vector containing the keys {k𝑖 }𝑖∈ [𝑚] fromM, ordered by

h1 (k) .
2: Let𝐶 = ∅
3: for 𝑗 ∈ [𝑁] do𝐶 [𝑗] = ∅ end for
4: for 𝑖 ∈ [𝑁] do
5: k𝑖 = 𝑆 [𝑖]
6: for 𝜄 ∈ [𝑘] do𝐶 [h𝜄 (k𝑖)] .push(k𝑖) end for
7: end for
8: 𝑄 = ∅
9: for 𝑗 ∈ [𝑁] do
10: if |𝐶 [𝑗] | = 1 then𝑄.push(𝑗) end if
11: end for
12: 𝑃 = ∅
13: while |𝑄 | > 0 do
14: 𝑗 ← 𝑄.pop()
15: if |𝐶 [𝑗] | = 1 then
16: k′ = 𝐶 [𝑗]
17: 𝑃.push((k′, 𝑗))
18: for 𝜄 ∈ [𝑘] do𝐶 [h𝜄 (k′)] .rem(k′) end for
19: end if
20: end while
21: if |𝑃 | ≠𝑚 then abort end if
22: while |𝑃 | > 0 do
23: (k′, 𝑗) ← 𝑃.pop()
24: F[𝑗] = 0 ∈ Z𝑝
25: for 𝑧 ∈ H(k′) do
26: if 𝑧 ≠ 𝑗 then F[𝑗] = F[𝑗] +𝑝 (−F[𝑧]) else F[𝑗] = F[𝑗] +𝑝

fpt𝜖 (k′,M[k′]) end if
27: end for
28: end while

First, the setupFilter algorithm returns the filter structure BFFp,
based on specific parameters, and initialises the hash functions for

querying. The parameter𝑚 defines the maximum number of key-

value pairs in the map KV that will be encoded in the filter, defining

its eventual size 𝑁 , in tandem with the false-positive probability

𝜖 . The operation +𝑝 corresponds to the operation (addition mod𝑝)

used in reconstruct, and thus each entry of BFFp is an element of

Z𝑝 .
Second, the write algorithm (Algorithm 2) defines a mechanism

for encoding each key-value pair of a given KV in BFFp. This algo-
rithm can fail and abort with non-negligible probability (see line

21), which necessitates running an entirely new setupFilter process
to generate a new set of hash functions.

Correctness. Since we are building a key-value filter, we must

show that BFFp satisfies correctness, as dictated by Definition 3.1

and Definition 3.2. It is shown in [26] that the write algorithm

encodes a set with absolute correctness for reading included ele-

ments. The only change in Algorithm 2 is that the fpt𝜖 is computed

differently, and so correctness of inclusion follows immediately.

For correctness of non-inclusion, [26] shows, experimentally, that

the choice of the parameter ç defined in Algorithm 1 ensures cor-

rectness of non-inclusion with false-positive probability 𝜖 , where 2𝜖

bits are stored filter per-entry. However, our analysis differs, in that

a false-positive occurs based on the first 𝜇 bits of the output of fpt𝜖 .

4113

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

We show in Lemma 4.1 below that the probability of a false-positive

occurring is indeed bounded above by 2
−𝜇/2

for 𝜇 = 𝜇 (𝜖), based on
the random oracle hash function hash : {0, 1}∗ ↦→ {0, 1}𝜇 .

We show that the construction of BFFp from Section 4 is correct,

with regards to the above definitions.

Lemma 4.1 (Correctness of non-inclusion). BFFp satisfies
correctness of non-inclusion (Definition 3.2), with false-positive prob-
ability 2

−𝜇/2 ≤ 2
−𝜖 = negl(𝜖).

Proof. Consider a key k ∉ M, and a filter description which

is sampled as (F,H, fpt𝜖) ← KeyValue.setupFilter(1𝑚, 𝜖), and af-

ter writing F.write(M,H, fpt𝜖). A collision in the algorithm 𝑦 ←
F.reconstruct(k∗,M, fpt𝜖) occurs when 𝑦 = hash(k∗)∥x′, for any
value x′. To quantify the chance of this event occurring, we consider
two possible types of events.

The first type corresponds to when the result of H(k∗) = H(k)
for some k ∈ M. Then the result𝑦 = hash(k)∥M[k], in which case

a collision occurs if hash(k) = hash(k∗). By the choice of hash as

a random oracle hash function mapping to {0, 1}𝜇 , we know that

the chance of a collision occurring is 2
−𝜇/2

.

The second type corresponds to when the result ofH(k∗) ≠ H(k)
for any k ∈ M. In this case, the result of running F.check(k∗,H(k∗))
returns 𝑘 entries in F, which are independently distributed. There-

fore, when summing these entries in F.reconstruct, we retrieve a
sum of independently and uniformly distributed elements in Z𝑝 .
As a result, the chance of the first 𝜇 bits being equal to hash(k∗) is
also equal to 2

−𝜇/2
, by the fact that hashmaps uniformly to {0, 1}𝜇 .

By the choice of 𝜇 ≥ 𝜖 , the rest of the statement follows. □

Supporting Larger Values. Note that the modifications proposed

previously require that the entire value of a RoRKV fit within Z𝑝 ,
which is likely to incur large costs when it comes to implementing

modular arithmetic. Alternatively, as discussed in previously in Sec-

tion 3.1, filter representations that hold elements in Z𝑝 can be con-

catenated, into a vector F̂ = (F1, . . . , F𝑑), where each F𝑗 corresponds
to a filter that holds log(𝑝) bits of data in every element, for 𝑗 ∈ [𝑑],
leading to concatenated filter that holds 𝑑 log(𝑝) bits per-entry. The
same set of hash functions H is used to query each filter, meaning

that the same locations in each filter are returned when querying

a single key. Therefore, to query F̂, we can abuse notation and

write F̂.check(k,H) = F1 .check(k,H)∥ . . . ∥F𝑑 .check(k,H) ∈ Z𝑑𝑝 .

Likewise, we write 𝑭 = Matrix(F̂) ∈ Z𝑁×𝑑𝑝 as the matrix repre-

sentation of this filter. Note that this construction has an identical

false-positive rate to a single filter design, as long as we maintain

the same fpt𝜖 function used in BFFp.

Comparison with Cuckoo Filters. As discussed in [26], Cuckoo

hashing [40] and their filter-variants [22] represent an instantiation

of the paradigm introduced by Binary Fuse filters, where 𝑘 = 2 and

there are no segments. Cuckoo filters have seen many applications

in cryptographic literature, e.g. in private set intersection [45, 46],

encrypted search [42], PIR [51], and beyond. For comparing Cuckoo

filters with Binary Fuse filters, we focus on the size of ç, i.e. the

blow-up of the size of the filter compared with the original database,

since the number of hash function evaluations is unlikely to make

a difference. As is noted in [26], each entry of the cuckoo filter

requires an extra 3 bits of representation, and there is a factor of

ç = 1.047 to magnify the size by. While ç is concretely smaller in

the case of Cuckoo filters, the requirement for holding 3 extra bits

per filter entry complicates matters for our PIR scheme, resulting in

adding 3𝑑 bits to the width of the eventual filter matrix. As is shown

in [26], in the end Cuckoo filters concretely require more space

to represent datasets than Binary Fuse filters. As a result, Binary

Fuse filters would appear to represent a non-trivial improvement

that could find use-cases in other cryptographic primitives and

protocols.

5 KEYWORD PIR CONSTRUCTION
We now describe our Keyword PIR construction, KWPIR, for a
generic key-value filter for elements in Z𝑝 . We assume that the

server holds a key-value map, KV, containing𝑚 keys, that clients

would like to query. Furthermore, we consider the value space to

be X = {0, 1}𝑤 and set 𝑑 = (𝜇 +𝑤)/log 𝑝 , where hash : {0, 1}∗ ↦→
{0, 1}𝜇 is a random oracle hash function, for 𝜇 = 2𝜖 . Finally, we use

a concatenated filter design F = (F1, . . . , F𝑑), with a setupFilter()
algorithm that returns (F,H), that allows us to encode (𝜇 +𝑤)-bit
elements in total. To build KWPIR, we use a generic framework that

abstractly generalises LWE-based PIR scheme (denoted by LWEPIR,
and described in Appendix A). Internally, we will also make use of

an LWE-based HEIP scheme (denoted by Σlwe, see Section 2.2). An

algorithmic description of KWPIR is defined in the following.

• ppKV ← KWPIR.setup(1𝜆,KV) : Attempts at writing KV
a finite number of times, using 𝑏 ← F.write(KV,H), and
otherwise aborts if 𝑏 is never set to 1. Finally, runs the

setup algorithm ppLWE ← LWEPIR.setup(1𝜆, F)4, and re-

turns ppKV = (ppLWE,H).
• (q, st) ← KWPIR.query(ppKV, k): Runs (h1, . . . , h𝑘) ← H(k),
and then lets 𝒇H(k) = (𝑓1, . . . , 𝑓𝑚) be the vector where 𝑓𝑖 = 1

if and only if 𝑖 ∈ H(k), and is 0 otherwise. Finally, returns

(q, st) ← LWEPIR.query(ppLWE,𝒇H(k)).
• r ← KWPIR.respond(ppKV,KV, q): Let 𝑭 ← Matrix(F) ∈
Z𝑁×𝑑𝑝 , and returns r← LWEPIR.respond(ppLWE, 𝑭 , q).
• x ← KWPIR.process(ppKV, st, r): Runs the function x ←
LWEPIR.process(ppLWE, st, r), and returns x.

Correctness of KWPIR. The correctness argument is given below

in Theorem 5.1 for KWPIR follows as a consequence of choosing F
as BFFp, and where LWEPIR is parametrised using the parameters

𝑞, 𝑝 , 𝑛, 𝜎 , and 𝑁 .

Theorem 5.1 (Correctness of KWPIR). Let F be a Binary Fuse Filter
for Z𝑝 , and let LWEPIR be a correct PIR for index-based queries for
generic databases DB ∈ Z𝑁×𝑤𝑝 , with LWE parameters 𝑞, 𝑝 , 𝑛, 𝜎 , and
𝑁 . Then KWPIR is a correct PIR scheme for making keyword queries
against KV.

Proof. The proof of correctness almost follows immediately

from the LWEPIR scheme — based on the choice of 𝑞, 𝑝 , and 𝜎 with

respect to 𝑁 — and the false-positive rate 𝜖 . The difference is that

𝒇H(k) is an indicator vector, where 𝑘 values are set to 1, rather than

a single element. As desired, the eventual decryption x is equal to a

4F is interpreted as a standard DB containing 𝑁 elements in Z𝑝 .

4114

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

sum of the form:

𝑭 [h1 (k)] + . . . + 𝑭 [h𝑘 (k)] mod 𝑝

= F[h1 (k)] + . . . + F[h𝑘 (k)] mod 𝑝

= F.reconstruct(k,H)
= fpt𝜖 (k, x),

□

False-positives and larger data elements. Note explicitly that

PIR correctness only considers the case where a query is made for

an element that belongs to F. By definition, the filter responds to

such queries with 100% accuracy, in other words false-negatives

cannot occur. We do not prove any property for false-positives

occurring in the PIR scheme, and so we do not have to consider

the impact of false-positives occurring in the formal definition.

However, speaking concretely on the possibility of a false-positive

occurring, let us consider the encoding of values as hk∥x, where
h : K ↦→ {0, 1}𝑚𝑢

is a randomoracle hash function. In this regime, it

would be necessary to find a key k0, such that F.reconstruct(k0,H)
returns 𝑦∥x0, for some value x0, where 𝑦 = hk0 and k0 ∉ KV. By
the definition of h, this occurs with probability 2

−𝜇/2
.

This concrete estimation relies on encoding the entire data value

in a single entry of the filter, which may harm performance. As

mentioned in Section 4, it is trivial to adapt KWPIR to consider

longer data elements without increasing the size of 𝑝 , by using a

concatenated filter regime.

Security of KWPIR. The formal security argument of KWPIR
follows in Theorem 5.2. Ultimately, this is as a consequence of

LWEPIR being a secure index-based PIR scheme.

Theorem 5.2 (Security of KWPIR). Let LWEPIR be a secure PIR
scheme satisfying ℓ-query indistinguishability (ℓ-QINDAPIR) for index-
based queries, for generic databases DB ∈ Z𝑁×𝑑𝑝 , with LWE pa-
rameters 𝑞, 𝑝 , 𝑛, 𝜎 , and 𝑁 . Let KV be a key-value map, containing
𝑚 = 𝑁 /𝑘 elements, represented using a filter, F, and a set of 𝑘 hashes
H. Then KWPIR is (ℓ/𝑘)-kwQINDBPIR secure for making keyword
queries against F, based on the hardness of LWE𝑞,𝑛,𝑝,𝜎 .

Proof. LetA be a PPT adversary in the ℓ-QINDAPIR experiment,

where PIR = LWEPIR, and likewise let B be a PPT adversary in

the (ℓ/𝑘)-kwQINDBPIR security game that A runs as a subroutine.

After initialisation, B produces their lists of keys (k1, . . . , kℓ/𝑘) and
k′
1
, . . . , k′

ℓ/𝑘 to be queried, and sends these to A. Then, A runs:

(𝑖𝜄,1, . . . , 𝑖𝜄,𝑘) ← F.check(𝜄,H), (𝑗𝜄,1, . . . , 𝑗𝜄,𝑘) ← F.check(𝜄,H),

for each 𝜄 ∈ [ℓ/𝑘], and concatenates these lists into two lists of

length ℓ , of the form:

(𝑖1,1, . . . , 𝑖1,𝑘 , 𝑖2,1, . . . , 𝑖ℓ/𝑘,𝑘), (𝑗1,1, . . . , 𝑗1,𝑘 , 𝑗2,1, . . . , 𝑗ℓ/𝑘,𝑘) .

Then,A submits both of these lists to the challenger in the ℓ-QINDAPIR
experiment, and learns a list of ℓ queries Q = (q1, . . . , qℓ). By the

nature of LWEPIR, each q𝑙 (for 𝑙 ∈ [ℓ]) is an LWE-based cipher-

text of the form described in Section 2.2. Therefore, A breaks Q
into ℓ/𝑘 contiguous segments of length 𝑘 , where we write Q𝜄 =
(q𝜄,1, . . . , q𝜄,𝑘) to denote the segment containing the vector of val-

ues (q(𝜄−1) · (ℓ/𝑘)+1, . . . , q(𝜄−1) · (ℓ/𝑘)+𝑘), for 𝜄 ∈ [𝑘]. Then, A runs

q̃𝜄 ← Σlwe .eval(Q𝜄 , 1𝑘), for each 𝜄 ∈ [ℓ/𝑘], where 1𝑘 is the 𝑘-

dimensional all-one vector — in other words, performing a ho-

momorphic sum of each of the ciphertexts. Finally, A returns

Q̃ = (q̃1, . . . , q̃ℓ/𝑘) to B. When B returns 𝑏′ to A, A simply for-

wards 𝑏′ to their challenger.

We now show that A simulates the (ℓ/𝑘)-kwQINDBPIR game

perfectly for B. This amounts to showing that Q̃ is a list of queries

for the keywords submitted by B, corresponding to (k1, . . . , kℓ/𝑘)
when 𝑏 = 0, and (k′

1
, . . . , k′

ℓ/𝑘) when 𝑏 = 1.

Without loss of generality, let us consider the case of 𝑏 = 0.

Notice that q̃𝑙 is an encryption of the vector 𝒇H(k) . This is be-

cause q̃𝑙 results from the homomorphic evaluation of the sum of

(q(𝑙−1) · (ℓ/𝑘)+1, . . . , q(𝑙−1) · (ℓ/𝑘)+𝑘), where q(𝑙−1) · (ℓ/𝑘)+𝑡 is a query
that encrypts 𝒇h𝑡 (k) — in other words, the all-zero vector with a 1 in

position h𝑡 (k) — for 𝑡 ∈ [𝑘]. Furthermore, we know that this homo-

morphic evaluation is correct because Σlwe is parameterised to be

correct for DB of size𝑚, while the map KV only contains 𝑁 /𝑘 ele-

ments (and thus requires 𝑁 /𝑘 homomorphic operations). Therefore,

the extra homomorphic computations performed by A will not

violate correctness when each query is applied to theDB associated

with KV. Note that, by the definition of KWPIR, q̃𝑙 is a cipher-

text encrypting LWEPIR.query(ppLWE,𝒇H(k)), which is equivalent

to KWPIR.query(ppKV, k). The argument above holds identically

in the case that 𝑏 = 1. Therefore, the simulation produced by A
corresponds exactly to the real game in (ℓ/𝑘)-kwQINDBPIR.

Now, consider that the possibility that B has non-negligible

advantage: this translates directly into a non-negligible advantage

for A in ℓ-QINDAPIR, since each of the queries submitted by A are

valid against a DB of size 𝑁 . Given that LWEPIR is a secure PIR

scheme based on the LWE𝑞,𝑛,𝑝,𝜎 assumption, we conclude that B
has negligible advantage similarly. □

5.1 Square-Root Matrix Encoding
By fixing the matrix description 𝑭 ∈ Z𝑁×𝑑𝑝 of the concatenated

filter, we immediately align KWPIR with FrodoPIR [18]. This is

because, we effectively treat each row in the filter “database” as

a single element, as is done in FrodoPIR. However, we can easily

express KWPIR in terms of an LWEPIR scheme that allows “square-

root” database encoding as well. To achieve this, we simply modify

the filter matrix representation 𝑭 to encode multiple rows of the fil-

ter on a single row. This way we can achieve 𝑭 ∈ Z
√
(𝑁 ·𝑑)×

√
(𝑁 ·𝑑)

𝑝

which results in asymptotically smaller communication overheads

(which we discuss shortly). Then, when querying against 𝑭 , the
task is simply to decode only the elements of the response that

correspond to the desired columns of 𝑭 . Thus, the actual filter

representation does not have to change at all.

6 PERFORMANCE EVALUATION
In this section, we discuss parameter settings, implementation de-

tails and experimental evaluation of the KWPIR protocol.

6.1 Implementation
PIR scheme. As previously discussed, we can use any underlying

LWEPIR scheme to implement KWPIR. While the choice of scheme

impacts bandwidth costs (due to differences in database encoding),

4115

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

the actual online runtimes are largely equivalent. This is due to

the fact that the online phase always needs to run 𝑂 (𝑁 · 𝑑) opera-
tions regardless of the database format. We emphasise here that we

focus on detailing the costs of a simple implementation that will

more readily usable by non-expert developers, and we ignore the

possibility of using optimised matrix multiplication algorithms.

Due to these reasons, for our implementation and instantiation,

we decide to use the FrodoPIR Rust implementation
5
as a base for

our own implementation.
6
We call this instantiation ChalametPIR.

Our changes to the FrodoPIR codebase include adding API support

for keyword databases, and incorporating an adapted Rust imple-

mentation of Binary Fuse filters.
7
Our adaptations of Binary Fuse

filters include handling of plaintext operations in Z𝑝 , and modifying

the algorithm to work with key-value maps. For bandwidth costs,

we provide cost calculations for ChalametPIR instantiated using

both FrodoPIR [18] and SimplePIR [28] as the underlying LWEPIR
scheme. We further benchmark the offline and online phases of

ChalametPIR, taking into account both underlying approaches. We

highlight explicitly how the modification of the database format

in FrodoPIR and SimplePIR can result in interesting performance

trade-offs. Since the number of offline and online server operations

should be equivalent in both cases (modulo modification of LWE

parameters), we provide runtimes only using our FrodoPIR-based
implementation.

Online runtimes of SimplePIR. Note that FrodoPIR and SimplePIR
compute exactly the same number of online mod 𝑞 operations (even

assuming the different matrix encodings). Given this fact, reim-

plementing SimplePIR in Rust will not lead to interesting results

when comparing the runtimes of both schemes. As a result, and

to avoid making unfair performance comparisons (where the Rust

implementation of FrodoPIR is likely to outperform the Golang im-

plementation
8
of SimplePIR), we only make reference to the online

runtimes of FrodoPIR throughout this experimental analysis.

Experimental parameters. For our FrodoPIR-based implemen-

tation [18] we consider an LWE dimension of 𝑛 = 1774, modulus

𝑞 = 2
32

to provide 𝜆 = 128 bits of security [1]. For SimplePIR, we
use 𝑞 = 2

32
and 𝑛 = 1024. To establish the size of 𝑝 , the plaintext

modulus, in FrodoPIR, we must take into account the database size

𝑚. Primarily, we consider key-value map sizes of 2
16 ≤ 𝑚 ≤ 2

20
,

where 𝑝 = 2
10

for𝑚 ∈ {216, 217, 218}, and 𝑝 = 2
9
for𝑚 ∈ {219, 220}.

For these experiments, we set the size of each value entry (of the

form hash(k)∥x) as simulated to be 1 kB (𝑤 = 2
13

bits) in length.

In this setting, 𝜖 = 𝜇/2, where 𝜇 can be configured based on the

choice of hash function. The choice of 𝑝 when using SimplePIR
is simulated using the open-source code of [28]. To compare with

existing Keyword PIR schemes [35, 43], we additionally experiment

with three databases of the form:

• 𝑚 = 2
20
,𝑤 = 2

11
(256 B), and 𝑝 = 2

9
;

• 𝑚 = 2
17
,𝑤 = 30 · 213 (30 kB), and 𝑝 = 2

9
;

• 𝑚 = 2
14
,𝑤 = 100 · 213 (100 kB), and 𝑝 = 2

9
.

Finally, for the parameters of BFFp, we consider both cases of

𝑘 = 3 and 𝑘 = 4, where 𝑘 is the number of hash functions. When

5
https://github.com/brave-experiments/frodo-pir

6
https://anonymous.4open.science/r/chalamet-3A2E

7
Original code: https://github.com/ayazhafiz/xorf

8
https://github.com/ahenzinger/simplepir

calculating the number of entries in the filter for these cases, we

set ç = 1.13 and ç = 1.08, respectively. In some cases we provide

only benchmarks for 𝑘 = 3, which provides a lower bound on

the efficiency of the approach in terms of bandwidth and server

computation.

Computational setup and financial costs. For estimating the

runtime of ChalametPIR and maintaining the comparisons as fair

as possible with previous work, we use two AWS EC2 instances

almost identical to the ones used in [43]
9
: (i) Intel(R) Xeon(R) CPU

E5-2686 v4 @ 2.30GHz, 32GiB of memory (referred in AWS EC2

as “t2.2xlarge”), and (ii) Intel(R) Xeon(R) Platinum 8124M CPU @

3.00GHz, 72GiB of memory and 36vCPU (referred in AWS EC2

as “c5.9xlarge”). In particular, we use the “t2.2xlarge” machine to

compare performance with existing index-based LWE PIR schemes,

and we use the “c5.9xlarge” machine to compare with the SparsePIR

keyword PIR scheme [43]. In addition, we provide benchmarks

using a Macbook M1 Max, to highlight how efficient operations are

when they run on commodity hardware. All of our experiments

use single-thread execution and results are taken as the average of

100 runs.

In terms of other performance metrics, we use the current AWS

financial cost structure for running a server in the “c5.9xlarge” [5].

Therefore, the CPU per-hour cost is estimated as $1.53/36 = $0.0425

(since this machine has 36 vCPUs, and we run single-threaded),

the download cost is $0.09 per GB, and the upload cost is zero.

Furthermore, following prior works, we define the rate as the ratio
of the retrieved record size to the response size, and the throughput
as the ratio of the database size to the server’s online computation

time.

6.2 Experimental Analysis
Here, we describe the concrete online runtime and bandwidth costs

of ChalametPIR (based on both FrodoPIR and SimplePIR). In Ap-

pendix B, we provide additional benchmarks that highlight the

minimal rise in costs relative to index-based PIR. Furthermore, we

discuss how offline costs scale, relative to preparing the one-time

cost of the state that is sent to the client.

Bandwidth. The bandwidth costs for ChalametPIR are given

in Table 1. Clearly, the query and response are far more balanced

in the case of SimplePIR as opposed to FrodoPIR. As previously
alluded, FrodoPIR optimises for the download as this results in

reduced financial costs when running the server functionality on

standard cloud architectures (since upload costs are typically free).

See Table 3 for more details.

Regardless, the total costs are fairly small, requiring data transfer

in the order of kilobytes to perform a keyword query. In the case

of using FrodoPIR as the underlying PIR scheme, the advantage of

having a smaller download is that the rate is ≈ 0.3. In other words,

the size of the response ciphertext is only ≈ 3× larger than the

original record.

Runtimes. ChalametPIR runtimes are minimal (as seen in Table 2):

client operations (query and parsing) require a small number of

milliseconds, and the server response only requires more than a

second for the 2
17 × 100 kB database size. Otherwise, server costs

9
Ubuntu PC, 3.7 GHz Intel Xeon W-2135, 12-core CPU, 64 GB RAM.

4116

https://github.com/brave-experiments/frodo-pir
https://anonymous.4open.science/r/chalamet-3A2E
https://github.com/ayazhafiz/xorf

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

|KV| # keys × |value| Query (kB) Response (kB)
(𝑚 ×𝑤) 𝑘 = 3 𝑘 = 4 𝑘 = 3 𝑘 = 4

LWEPIR = FrodoPIR

𝑚 ↑

2
16 × 1 kB 287 276 3.2 3.2

2
17 × 1 kB 579 553 3.2 3.2

2
18 × 1 kB 1157 1106 3.2 3.2

2
19 × 1 kB 2314 2212 3.56 3.56

2
20 × 1 kB 4628 4424 3.56 3.56

𝑤 ↑
2
20 × 256 B 4628 4424 0.89 0.89

2
17 × 30 kB 579 553 96 96

2
14 × 100 kB 72 69 291 291

LWEPIR = SimplePIR

𝑚 ↑

2
16 × 1 kB 31.89 31.17 31.89 31.17

2
17 × 1 kB 44.65 43.64 44.65 43.64

2
18 × 1 kB 63.78 62.34 63.78 62.34

2
19 × 1 kB 90.36 88.32 90.36 88.32

2
20 × 1 kB 127.56 124.68 127.56 124.68

𝑤 ↑
2
20 × 256 B 63.78 62.34 63.78 62.34

2
17 × 30 kB 256.18 250.4 256.18 250.4

2
14 × 100 kB 180.71 180.71 176.63 176.63

Table 1: Bandwidth costs (kB) for ChalametPIR.

DB (𝑚 ×𝑤) Query Response Parsing

Macbook M1 Max

2
16 × 1024 B 0.010597 6.5508 0.22001

2
17 × 1024 B 0.038866 12.473 0.21894

2
18 × 1024 B 0.051996 24.452 0.21658

2
19 × 1024 B 0.14442 54.053 0.24204

2
20 × 1024 B 0.24049 116.89 0.24384

EC2 “t2.t2xlarge”

2
16 × 1024 B 0.050048 37.830 0.47251

2
17 × 1024 B 0.1787 74.733 0.47046

2
18 × 1024 B 0.19739 143.82 0.46782

2
19 × 1024 B 0.4219 319.82 0.50735

2
20 × 1024 B 0.8471 634.21 0.56381

EC2 “c5.9xlarge”

2
20 × 256 B 1.3699 133.58 0.090116

2
17 × 30 kB 0.055415 1846.6 10.663

2
14 × 100 kB 0.0040465 760.64 35.485

Table 2: Online performance (milliseconds) of ChalametPIR
(LWEPIR = FrodoPIR, 𝑘 = 3). Response is a server operation,
while Query and Parsing are run by the client.

amount to only hundreds of milliseconds. Since these times are

achieved using single-threaded processing, and given that the com-

putation is a series of independent vector-column multiplications,

parallelisation would significantly reduce these times. In addition,

these times do not take into account any optimisations that could be

introduced with sub-cubic matrix multiplication formulae [14, 49].

ChalametPIR SparsePIR
FrodoPIR SimplePIR Onion Spiral

Online costs: 220 × 256 B

Query (kB) 287 63.78 63 14

Response (kB) 0.89 63.78 127 21

Runtime (s) 0.13358 0.13358† 3.04 1.44

Rate 0.28 0.004 0.002 0.012

Throughput (MB/s) 1916 1916 84 178

Cost (USD) 1.65e−6 7.05e−6 4.68e−5 1.88e−5

Online costs: 217 × 30 kB

Query (kB) 579 256 63 14

Response (kB) 96 256.18 127 86

Runtime (s) 1.8466 1.8466† 41.91 11.57

Rate 0.313 0.117 0.236 0.349

Throughput (MB/s) 2218 2218 98 354

Cost (USD) 3e−5 4.37e−5 5.05e−4 1.43e−4

Online costs: 214 × 100 kB

Query (kB) 72 180.71 63 14

Response (kB) 291 176.63 508 242

Runtime (s) 0.76064 0.76064† 17.32 5.91

Rate 0.344 0.566 0.197 0.413

Throughput (MB/s) 2692 2692 118 347

Cost (USD) 3.4e−5 2.41e−5 0.25e−4 9.05e−5

Table 3: Online cost comparison for ChalametPIR (LWEPIR ∈
{FrodoPIR, SimplePIR}, and 𝑘 = 3) with SparsePIR, based on
Onion [39] and Spiral [36] PIR. Server costs computed on
AWS EC2 ‘c5.9xlarge’. †: Online runtimes for SimplePIR are
estimated as equivalent to FrodoPIR, since the number of
operations is essentially equivalent. Green and light green
indicate the most and second-most optimal cases.

6.3 Keyword PIR Performance Comparison
The schemes of [43] and [35] represent the most efficient single-

server keyword PIR protocols to date. In particular, the SparsePIR

scheme of [43] represents the state-of-the-art in terms of perfor-

mance (both communication and runtimes).

In Table 3, we compareChalametPIR— instantiatedwith LWEPIR ∈
{FrodoPIR, SimplePIR} — against SparsePIR — instantiated with

Onion [39] (“OnionSparsePIR”) and Spiral [36] (“SpiralSparsePir”)

PIR. Since [43] does not provide an open-source implementation

of their work, we report the numbers given in their paper. Note

that the runtimes of [43] are given with specific AVX2 and AVX-

512 instruction sets with SIMD instructions enabled, while we do

not use such optimisations. Finally, we provide server runtimes

of ChalametPIR using our FrodoPIR-based implementation. We

assume equivalent runtimes for a SimplePIR-based implementation,

since the number of operations is the same, modulo difference in

their choice of LWE security parameters. To simplify the rest of

the comparison, we refer to the benchmarked map taking sizes in

4117

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

(220 ×256 B), (217 ×30 kB), (214 ×100 kB) as case I, case II, and case
III, respectively.

In terms of runtimes, ChalametPIR is an order of magnitude

quicker in case I, with speed-up factors of 6.25× and 7.78× for cases
II and III, respectively. This leads to a significant improvement in

throughput, processing ∼ 2GB of data per second, while SparsePIR

achieves only hundreds of MB.

In terms of client download, ChalametPIR with FrodoPIR ex-

cels in the setting where the elements are smallest, since the client

download is dependent only on the parameter𝑤 . For case I, this con-

figuration is > 23× more efficient than SparsePIR, with a download

size of < 1 kB. For case II, we can already see that SpiralSparsePIR

is competitive with ChalametPIR with FrodoPIR, achieving similar

download costs. Finally, for case III, ChalametPIR with SimplePIR
achieves the lowest bandwidth cost across the board, while FrodoPIR
has a comparatively larger cost, due to𝑤 being larger. We can see

that these trends are represented in the rate also, since this is de-

termined by the ratio of the ciphertext download size with respect

to the retrieved element. In terms of client upload, since FrodoPIR
naturally favours optimising download instead of upload, FrodoPIR-
based ChalametPIR performs poorly across all cases. In contrast,

SparsePIR provides the best trade-off in terms of upload across all

cases.

Finally, in terms of AWS EC2 financial costs, ChalametPIR is

by far the cheapest PIR scheme to use across all database sizes.

Concretely, a server implementation of ChalametPIR with either

LWEPIR scheme results in between 3×—11.4× and cost savings.

This cost metric is important for general application providers, that

do not have native access to hardware to run server-side software,

and must resort to using commercial cloud-computing infrastruc-

ture. In B.2, we show that the offline costs of ChalametPIR have a

largely insignificant impact compared with the per-query online

costs, when considering amortisation over even moderate client

usage, and improving further still for widely-used systems.

Constant-weight PIR. As was shown in [43], the constant-weight
PIR scheme of [35] performs much more slowly and with much

larger bandwidth constraints than the SparsePIR approach, even

for much smaller databases. We attempted to acquire results for

each of the larger cases ourselves, but were unable to get full perfor-

mance figures from the provided implementation in [35], due to the

experiments failing to terminate. Given that [43] shows SparsePIR

is over an order of magnitude more efficient with respect to nearly

all of the performance criteria, it is clear that ChalametPIR would

achieve a similar (if not more stark) set of contrasts.

7 DISCUSSION

Applications. Information retrieval that allows for a false positive

rate has attracted significant interest in recent years, especially

in distributed and database systems, where false positives can be

tolerated to a degree, and minimal space usage is crucial [9]. While

there have been several proposals to efficiently solve this problem [3,

38], privacy has not been deeply considered. Providing efficient

KWPIR is a step forward in solving this lack of consideration. In

other areas, KWPIR are fundamental tools for building credentials-
checking (C3) services, which check if a username, password pair is

exposed in order to prevent credential-stuffing attacks or credential-
tweaking attacks [41], as they are one of the most prevalent forms

of account compromise [50]. Naively, index-based PIR solutions

to this problem allow for only retrieving breached passwords. A

keyword-based solution allows for querying for a specific username,

password pair, which can better alert a user of a breach of their

credentials. Interesting future work can focus on analysing how

important the role of database privacy plays in such problem, and

how such guarantees can be imported to the KWPIR setting.

Keyword PIR is also a natural fit for private pattern matching:
privately identifying occurrences of a given string in text. Specifi-

cally, for the “exact” version of the problem: retrieve occurrences

where the given query exactly matches a substring in the text. The

need for privacy in these cases relies on querying on text that can

be considered sensitive information [31]. Adapting our scheme for

this problem will need to determine how to properly construct the

different structures and parameters, and we leave this extension as

future work.

Batch PIR. Batch PIR performs𝑄 PIR queries in a single batch, but

where processing and communication costs are concretely smaller

than the trivial case of launching 𝑄 independent PIR queries. As is

noted in [28], LWEPIR schemes naturally are amenable to generic

batching techniques introduced in [29], to reduce the total server

time from far below 𝑂 (𝑄𝑁), by partitioning the database into 𝑄

chunks, and running independent PIR queries on each of these

smaller chunks. Since batch PIR is not the main focus of this work,

we encourage the reader to see [28] for more details.

Database updates. As noted in previous works [18, 28], LWEPIR
approaches do not provide native support for handling database

updates, beyond re-running the offline state generation proce-

dure. Standard telescopic database update mechanisms can be ap-

plied [30], but devising instantiation-specific approaches represents

an interesting open problem.

Alternative LWE PIR Schemes. The DoublePIR [28] and Hint-

lessPIR [34] schemes provide alternative LWEPIR protocols that

could be considered in the context of ChalametPIR. In both of these

approaches, the central idea is that the square-root matrix encoding

means that the client does not need the full offline state to decode

online queries. In essence, they can use another layer of PIR to re-

trieve only the elements in the offline hint that are required. In this

paradigm, FrodoPIR and SimplePIR simply represent a trivial solu-

tion to download the entire hint database. In DoublePIR, the idea is
to provide another layer of SimplePIR but where the client queries

the hint as the intended database. In HintlessPIR, the idea is that
using RLWE-based PIR schemes can lead to performance improve-

ments compared with the aforementioned approaches. However,

as we discussed in 6.2, since these changes only impact the offline

phase, the results that we represent for the online phase would

largely be equivalent in each of the cases.

Multi-server keyword PIR. The proposed KWPIR framework is

not applicable to multi-server constructions of PIR, which differ in

that they do not tend to use LWE-based instantiations of PIR. Multi-

server constructions of keyword PIR exist (e.g. from distributed

point functions [16, 24, 30]), and are generally more efficient than

single-server counterparts. However, there are many applications

and setups where non-collusion (trust) assumptions are completely

4118

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

non-viable. In this work, we focus on building efficient single-server

keyword PIR constructions, which are much more versatile in that

implementers do not have to make such trust assumptions.

8 CONCLUSION
In this work, we built a simple framework for constructing Keyword

PIR based on state-of-the-art index-based PIR schemes. We refer to

this framework as KWPIR, and derive ChalametPIR as a concrete

instantiation of it that is compatible with LWEPIR schemes. The

frameworkmakes uses of novel key-value filters (Binary Fuse filters)

and arrives at computational and communicational overheads that

are essentially competitive with their index-based counterparts. We

implemented ChalametPIR in Rust as a proof-of-concept, and with

it illustrate that the scheme is more efficient than state-of-the-art

keyword-based schemes.

9 ACKNOWLEDGEMENTS
This work was supported by NOVA LINCS via the grants with

reference codes UIDB/04516/2020 (DOI: 10.54499/UIDB/04516/2020)

and UIDP/04516/2020 (DOI: 10.54499/UIDP/04516/2020), and by the

financial support of FCT.IP. The authors would like to thank Henry

Corrigan-Gibbs, Fernando Virdia, and the CCS reviewers for helpful

comments and feedback.

REFERENCES
[1] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness

of Learning with Errors. J. Math. Cryptol. 9, 3 (2015), 169–203. http://www.

degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

[2] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,

Karn Seth, and Kevin Yeo. 2021. Communication-Computation Trade-offs in PIR,

See [6], 1811–1828.

[3] Stephen Alstrup, Gerth Brodal, and Theis Rauhe. 2001. Optimal Static Range

Reporting in One Dimension. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing (Hersonissos, Greece) (STOC ’01). Association
for Computing Machinery, New York, NY, USA, 476–482. https://doi.org/10.

1145/380752.380842

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with

Compressed Queries and Amortized Query Processing. In 2018 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, 962–979. https://doi.org/

10.1109/SP.2018.00062

[5] AWS. [n. d.]. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/

pricing/on-demand/ https://aws.amazon.com/ec2/pricing/on-demand/. Accessed

18th January 2024..

[6] Michael Bailey and Rachel Greenstadt (Eds.). 2021. USENIX Security 2021. USENIX
Association.

[7] Burton H. Bloom. 1970. Space/Time Trade-offs in Hash Coding with Allowable

Errors. Commun. ACM 13, 7 (1970), 422–426. https://doi.org/10.1145/362686.

362692

[8] Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George

Varghese. 2006. An Improved Construction for Counting Bloom Filters. In

Algorithms - ESA 2006, 14th Annual European Symposium, Zurich, Switzer-
land, September 11-13, 2006, Proceedings (Lecture Notes in Computer Science,
Vol. 4168), Yossi Azar and Thomas Erlebach (Eds.). Springer, 684–695. https:

//doi.org/10.1007/11841036_61

[9] Andrei Broder and Michael Mitzenmacher. 2003. Network Applications of Bloom

Filters: A Survey. Internet Mathematics 1, 4 (2003), 485 – 509.

[10] Sofía Celi and Alex Davidson. 2024. Call Me By My Name: Simple, Practical

Private Information Retrieval for Keyword Queries. Cryptology ePrint Archive,

Paper 2024/092. https://eprint.iacr.org/2024/092 https://eprint.iacr.org/2024/092.

[11] Benny Chor, Niv Gilboa, and Moni Naor. 1998. Private Information Retrieval by

Keywords. Cryptology ePrint Archive, Report 1998/003. https://eprint.iacr.org/

1998/003.

[12] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private

Information Retrieval. In 36th FOCS. IEEE Computer Society Press, 41–50. https:

//doi.org/10.1109/SFCS.1995.492461

[13] Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J. Wu, and Bryan

Ford. 2023. Authenticated private information retrieval. In 32nd USENIX Security

Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3835–3851.

https://www.usenix.org/conference/usenixsecurity23/presentation/colombo

[14] Don Coppersmith and Shmuel Winograd. 1990. Matrix Multiplication via

Arithmetic Progressions. J. Symb. Comput. 9, 3 (mar 1990), 251–280. https:

//doi.org/10.1016/S0747-7171(08)80013-2

[15] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. 2022. Single-

Server Private Information Retrieval with Sublinear Amortized Time. In EURO-
CRYPT 2022, Part II (LNCS, Vol. 13276), Orr Dunkelman and Stefan Dziembowski

(Eds.). Springer, Heidelberg, 3–33. https://doi.org/10.1007/978-3-031-07085-3_1

[16] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval

with Sublinear Online Time. In EUROCRYPT 2020, Part I (LNCS, Vol. 12105), Anne
Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 44–75. https://doi.org/10.

1007/978-3-030-45721-1_3

[17] Alex Davidson and Carlos Cid. 2017. An Efficient Toolkit for Computing Private

Set Operations. In ACISP 17, Part II (LNCS, Vol. 10343), Josef Pieprzyk and Suriadi

Suriadi (Eds.). Springer, Heidelberg, 261–278.

[18] Alex Davidson, Gonçalo Pestana, and Sofía Celi. 2023. FrodoPIR: Simple, Scalable,

Single-Server Private Information Retrieval. PoPETs 2023, 1 (Jan. 2023), 365–383.
https://doi.org/10.56553/popets-2023-0022

[19] Fan Deng and Davood Rafiei. 2006. Approximately detecting duplicates for

streaming data using stable bloom filters. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, Chicago, Illinois, USA, June
27-29, 2006, Surajit Chaudhuri, Vagelis Hristidis, and Neoklis Polyzotis (Eds.).

ACM, 25–36. https://doi.org/10.1145/1142473.1142477

[20] Peter C. Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller

than Bloom and Xor. CoRR abs/2103.02515 (2021). arXiv:2103.02515 https:

//arxiv.org/abs/2103.02515

[21] Changyu Dong, Liqun Chen, and Zikai Wen. 2013. When private set intersection

meets big data: an efficient and scalable protocol. In ACM CCS 2013, Ahmad-Reza

Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM Press, 789–800. https:

//doi.org/10.1145/2508859.2516701

[22] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.

2014. Cuckoo Filter: Practically Better Than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and Technologies
(Sydney, Australia) (CoNEXT ’14). Association for Computing Machinery, New

York, NY, USA, 75–88. https://doi.org/10.1145/2674005.2674994

[23] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005.

Keyword Search and Oblivious Pseudorandom Functions. In TCC 2005 (LNCS,
Vol. 3378), Joe Kilian (Ed.). Springer, Heidelberg, 303–324. https://doi.org/10.

1007/978-3-540-30576-7_17

[24] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Appli-

cations. In EUROCRYPT 2014 (LNCS, Vol. 8441), Phong Q. Nguyen and Elisabeth

Oswald (Eds.). Springer, Heidelberg, 640–658. https://doi.org/10.1007/978-3-642-

55220-5_35

[25] Thomas Mueller Graf and Daniel Lemire. 2020. Xor Filters. ACM J. Exp. Algorith-
mics 25 (2020), 1–16. https://doi.org/10.1145/3376122

[26] Thomas Mueller Graf and Daniel Lemire. 2022. Binary Fuse Filters: Fast and

Smaller Than Xor Filters. ACM J. Exp. Algorithmics 27 (2022), 1.5:1–1.5:15. https:

//doi.org/10.1145/3510449

[27] Carmit Hazay and Martijn Stam (Eds.). 2023. EUROCRYPT 2023, Part I. LNCS,
Vol. 14004. Springer, Heidelberg.

[28] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs, Sarah Meikle-

john, and Vinod Vaikuntanathan. 2023. One Server for the Price of Two: Simple

and Fast Single-Server Private Information Retrieval. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 3889–3905.

https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger

[29] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2004. Batch

codes and their applications. In 36th ACM STOC, László Babai (Ed.). ACM Press,

262–271. https://doi.org/10.1145/1007352.1007396

[30] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private Blocklist Lookups with

Checklist, See [6], 875–892.

[31] Vladimir Kolesnikov, Mike Rosulek, and Ni Trieu. 2018. SWiM: Secure Wild-

card Pattern Matching from OT Extension. In FC 2018 (LNCS, Vol. 10957), Sarah
Meiklejohn and Kazue Sako (Eds.). Springer, Heidelberg, 222–240. https:

//doi.org/10.1007/978-3-662-58387-6_12

[32] Eyal Kushilevitz and Rafail Ostrovsky. 1997. Replication is NOT Needed: SINGLE

Database, Computationally-Private Information Retrieval. In 38th FOCS. IEEE
Computer Society Press, 364–373. https://doi.org/10.1109/SFCS.1997.646125

[33] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. 2021.

Private Join and Compute from PIR with Default. In ASIACRYPT 2021, Part II
(LNCS, Vol. 13091), Mehdi Tibouchi and Huaxiong Wang (Eds.). Springer, Heidel-

berg, 605–634. https://doi.org/10.1007/978-3-030-92075-3_21

[34] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-Wu. 2023.

Hintless Single-Server Private Information Retrieval. Cryptology ePrint Archive,

Paper 2023/1733. https://eprint.iacr.org/2023/1733 https://eprint.iacr.org/2023/

1733.

[35] Rasoul Akhavan Mahdavi and Florian Kerschbaum. 2022. Constant-weight PIR:

Single-round Keyword PIR via Constant-weight Equality Operators. In USENIX

4119

https://doi.org/10.54499/UIDB/04516/2020
https://doi.org/10.54499/UIDP/04516/2020
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1145/380752.380842
https://doi.org/10.1145/380752.380842
https://doi.org/10.1109/SP.2018.00062
https://doi.org/10.1109/SP.2018.00062
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1007/11841036_61
https://doi.org/10.1007/11841036_61
https://eprint.iacr.org/2024/092
https://eprint.iacr.org/2024/092
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/1998/003
https://doi.org/10.1109/SFCS.1995.492461
https://doi.org/10.1109/SFCS.1995.492461
https://www.usenix.org/conference/usenixsecurity23/presentation/colombo
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1007/978-3-031-07085-3_1
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.1007/978-3-030-45721-1_3
https://doi.org/10.56553/popets-2023-0022
https://doi.org/10.1145/1142473.1142477
https://arxiv.org/abs/2103.02515
https://arxiv.org/abs/2103.02515
https://arxiv.org/abs/2103.02515
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2508859.2516701
https://doi.org/10.1145/2674005.2674994
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1145/3376122
https://doi.org/10.1145/3510449
https://doi.org/10.1145/3510449
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://doi.org/10.1145/1007352.1007396
https://doi.org/10.1007/978-3-662-58387-6_12
https://doi.org/10.1007/978-3-662-58387-6_12
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1007/978-3-030-92075-3_21
https://eprint.iacr.org/2023/1733
https://eprint.iacr.org/2023/1733
https://eprint.iacr.org/2023/1733

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Sofía Celi & Alex Davidson

Security 2022, Kevin R. B. Butler and Kurt Thomas (Eds.). USENIX Association,

1723–1740.

[36] Samir Jordan Menon and David J. Wu. 2022. SPIRAL: Fast, High-Rate Single-

Server PIR via FHE Composition. In 2022 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press, 930–947. https://doi.org/10.1109/SP46214.2022.

9833700

[37] Michael Mitzenmacher. 2002. Compressed bloom filters. IEEE/ACM Trans. Netw.
10, 5 (2002), 604–612. https://doi.org/10.1109/TNET.2002.803864

[38] Christian Worm Mortensen, Rasmus Pagh, and Mihai Pundefinedtraçcu. 2005.

On Dynamic Range Reporting in One Dimension. In Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of Computing (Baltimore, MD, USA)

(STOC ’05). Association for Computing Machinery, New York, NY, USA, 104–111.

https://doi.org/10.1145/1060590.1060606

[39] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Response

Efficient Single-Server PIR. In ACM CCS 2021, Giovanni Vigna and Elaine Shi

(Eds.). ACM Press, 2292–2306. https://doi.org/10.1145/3460120.3485381

[40] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. J. Algorithms
51, 2 (2004), 122–144. https://doi.org/10.1016/J.JALGOR.2003.12.002

[41] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas Ristenpart. 2019. Beyond

Credential Stuffing: Password Similarity Models Using Neural Networks. In 2019
IEEE Symposium on Security and Privacy (SP). 417–434. https://doi.org/10.1109/

SP.2019.00056

[42] Sarvar Patel, Giuseppe Persiano, Kevin Yeo, and Moti Yung. 2019. Mitigating

Leakage in Secure Cloud-Hosted Data Structures: Volume-Hiding for Multi-Maps

via Hashing. In ACM CCS 2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng

Wang, and Jonathan Katz (Eds.). ACM Press, 79–93. https://doi.org/10.1145/

3319535.3354213

[43] Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Don’t be Dense: Efficient

Keyword PIR for Sparse Databases. In 32nd USENIX Security Symposium (USENIX
Security 23). USENIX Association, Anaheim, CA, 3853–3870. https://www.usenix.

org/conference/usenixsecurity23/presentation/patel

[44] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. 2008. A Framework for

Efficient and Composable Oblivious Transfer. In CRYPTO 2008 (LNCS, Vol. 5157),
David Wagner (Ed.). Springer, Heidelberg, 554–571. https://doi.org/10.1007/978-

3-540-85174-5_31

[45] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2020. PSI from PaXoS:

Fast, Malicious Private Set Intersection. In EUROCRYPT 2020, Part II (LNCS,
Vol. 12106), Anne Canteaut and Yuval Ishai (Eds.). Springer, Heidelberg, 739–767.

https://doi.org/10.1007/978-3-030-45724-2_25

[46] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. 2018.

Efficient Circuit-Based PSI via Cuckoo Hashing. In EUROCRYPT 2018, Part III
(LNCS, Vol. 10822), Jesper Buus Nielsen and Vincent Rijmen (Eds.). Springer,

Heidelberg, 125–157. https://doi.org/10.1007/978-3-319-78372-7_5

[47] Oded Regev. 2005. On lattices, learning with errors, random linear codes, and

cryptography. In 37th ACM STOC, Harold N. Gabow and Ronald Fagin (Eds.).

ACM Press, 84–93. https://doi.org/10.1145/1060590.1060603

[48] Ori Rottenstreich, Yossi Kanizo, and Isaac Keslassy. 2014. The Variable-Increment

Counting Bloom Filter. IEEE/ACM Trans. Netw. 22, 4 (2014), 1092–1105. https:

//doi.org/10.1109/TNET.2013.2272604

[49] Volker Strassen. 1969. Gaussian Elimination is Not Optimal. Numer. Math. 13, 4
(aug 1969), 354–356. https://doi.org/10.1007/BF02165411

[50] Kurt Thomas, Frank Li, Ali Zand, Jacob Barrett, Juri Ranieri, Luca Invernizzi, Yarik

Markov, Oxana Comanescu, Vijay Eranti, Angelika Moscicki, Daniel Margolis,

Vern Paxson, and Elie Bursztein. 2017. Data Breaches, Phishing, or Malware?

Understanding the Risks of Stolen Credentials. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (Dallas, Texas,

USA) (CCS ’17). Association for Computing Machinery, New York, NY, USA,

1421–1434. https://doi.org/10.1145/3133956.3134067

[51] Kevin Yeo. 2023. Lower Bounds for (Batch) PIR with Private Preprocessing, See

[27], 518–550. https://doi.org/10.1007/978-3-031-30545-0_18

[52] Mingxun Zhou, Wei-Kai Lin, Yiannis Tselekounis, and Elaine Shi. 2023. Optimal

Single-Server Private Information Retrieval, See [27], 395–425. https://doi.org/

10.1007/978-3-031-30545-0_14

[53] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. 2023. Pi-

ano: Extremely Simple, Single-Server PIR with Sublinear Server Computation.

Cryptology ePrint Archive, Paper 2023/452. https://eprint.iacr.org/2023/452

https://eprint.iacr.org/2023/452.

A GENERAL LWE PIR FRAMEWORK
A recent line of work [13, 18, 28, 34, 52] has focused on creating

practical PIR schemes based directly on LWE. We refer to them

as “LWE-based PIR” (LWEPIR) and we provide a high-level frame-

work that captures their functionality. This framework allows us to

discuss and implement the functionality of each of these existing

schemes.

A.1 High-level LWEPIR Framework
Each LWEPIR scheme relies on a variant of the Regev-based HEIP

scheme described in Section 2.2, where a large part of the encryp-

tion functionality can be performed in advance and be reused over

multiple clients. Hence, LWEPIR schemes have two phases: a pre-

processing phase that can be amortised over multiple clients, and a

per-client online phase.

Pre-processing Phase. Recall that the database (DB) has a size
denoted by𝑚 ∈ N. The purpose of the pre-processing phase is to
generate a global public state.

Server setup: (ppDB ← LWEPIR.setup(1𝜆,DB)). The server con-
structs theirDB containing𝑚 elements, each of size𝑤 , and samples

a short random seed 𝛽 ∈ {0, 1}𝜆 . Let𝑚 ·𝑤 =𝑚1 ·𝑚2, for𝑚1,𝑚2 ∈ N.
The server derives a matrix 𝑨 ← PRG(𝛽, 𝑛,𝑚,𝑞) ∈ Z𝑛×𝑚1

𝑞 , and

encodes the DB in a matrix representation as 𝑫 ∈ Z𝑚1×𝑚2

𝑝 . It then

computes 𝑴 ← 𝑨 · 𝑫 and publishes the pair (𝛽,𝑴). It returns the
public parameters ppDB containing LWE parameters (𝑞, 𝑝, 𝑛, 𝜎), the
seed 𝛽 , PIR parameters (𝑚1,𝑚2), and (optionally) the matrix 𝑴 .

Online Phase. The online phase allows the client to query for the

desired database element.

Query. [(q, st) ← LWEPIR.query(ppDB, 𝑖)]: The client down-

loads (𝛽,𝑴) and derives 𝑨← PRG(𝛽, 𝑛,𝑚, 𝑞) ∈ Z𝑛×𝑚1

𝑞 . The client

then generates a unit vector 𝒇𝑖 : an all-zero vector with a single 1 at

the index 𝑖 . The client parses𝑞, 𝑝, 𝑛, 𝜎 from ppDB, calls (ppLWE, sk) ←
Σlwe .kgen(1𝜆, 𝑞, 𝑝, 𝑛, 𝜎), and runs 𝒄 ← Σlwe .enc𝑨(ppLWE, sk,𝒇𝑖),
where the 𝑖th element of 𝒄 , 𝑐𝑖 , is an LWE encryption with respect

to the 𝑖th column, 𝒂𝑖 , of 𝑨. The client parses (𝑨, 𝒄) = 𝒄 , lets q = 𝒄 ,
and lets st = sk · 𝑨. The client then sends q to the server.

Response. [r ← LWEPIR.respond(ppDB,𝑫, q)]: The server re-

ceives q, and then parses their database matrix as a concatenation

of column vectors: 𝑫 = (𝒅𝒃1 | . . . |𝒅𝒃𝑚2
). The server responds to the

client with a vector r, where the 𝑖th element 𝑟𝑖 of r is the ciphertext
computed as 𝑟𝑖 ← Σlwe .eval(ppLWE, q, 𝒅𝒃𝑖), for each 𝑖 ∈ [𝑚2].

Post-processing. [x← LWEPIR.process(ppLWE, r, st)]: The client
receives r and returns x← Σlwe .dec(st, sk, r).

A.2 PIR Guarantees
Correctness. Correctness of LWEPIR follows naturally from the

correctness of Σlwe. First, q is an encryption of the all-zero vector,

except in the 𝑖th position where it encrypts 1. By the correctness of

Σlwe, the server response is a public inner product of this encrypted
vector, and the sequence of vectors in Z𝑚1

𝑝 that make up the server

database. Since the client simply decrypts the server response, cor-

rectness of the inner product holds, providing that the conditions in

Lemma 2.2 hold for 𝑞, 𝜒,𝑚1. Therefore, the server learns the vector

x = (𝒅𝒃1 [𝑖], . . . , 𝒅𝒃𝑚2
[𝑖]) which is equal to the 𝑖th row, 𝑫 [𝑖], of the

database matrix.

Security. The security of the PIR scheme follows from the fact

that the client message is simply a vector of Σlwe encryptions. By

4120

https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1109/SP46214.2022.9833700
https://doi.org/10.1109/TNET.2002.803864
https://doi.org/10.1145/1060590.1060606
https://doi.org/10.1145/3460120.3485381
https://doi.org/10.1016/J.JALGOR.2003.12.002
https://doi.org/10.1109/SP.2019.00056
https://doi.org/10.1109/SP.2019.00056
https://doi.org/10.1145/3319535.3354213
https://doi.org/10.1145/3319535.3354213
https://www.usenix.org/conference/usenixsecurity23/presentation/patel
https://www.usenix.org/conference/usenixsecurity23/presentation/patel
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-030-45724-2_25
https://doi.org/10.1007/978-3-319-78372-7_5
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/TNET.2013.2272604
https://doi.org/10.1109/TNET.2013.2272604
https://doi.org/10.1007/BF02165411
https://doi.org/10.1145/3133956.3134067
https://doi.org/10.1007/978-3-031-30545-0_18
https://doi.org/10.1007/978-3-031-30545-0_14
https://doi.org/10.1007/978-3-031-30545-0_14
https://eprint.iacr.org/2023/452
https://eprint.iacr.org/2023/452

Call Me By My Name: Simple, Practical Private Information Retrieval for KeywordQueries CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

2
16

2
17

2
18

2
19

2
20

0

1,000

2,000

3,000

4,000

5,000

DB size [m]

Q
u
e
r
y
s
i
z
e
[k
B
]

KW-FrodoPIR

KW-SimplePIR

Index-FrodoPIR

Index-SimplePIR

2
16

2
17

2
18

2
19

2
20

0

20

40

60

80

100

120

140

DB size [m]

R
e
s
p
o
n
s
e
s
i
z
e
[k
B
]

KW-FrodoPIR

KW-SimplePIR

Index-FrodoPIR

Index-SimplePIR

2
16

2
17

2
18

2
19

2
20

0

100

200

300

400

500

600

DB size [m]

R
u
n
t
i
m
e
[m

s
]

KW-FrodoPIR

Index-FrodoPIR

Figure 3: Comparison of online costs (query/response sizes and runtime) for ChalametPIR with index-based LWEPIR ∈
{FrodoPIR, SimplePIR} schemes. We refer to index-based schemes with “Index” and keyword-based ones with “KW”. Note
that some values of Index-based and KW-based PIR schemes are almost equivalent, and differences are not always perceptible.

a trivial hybrid argument and the IND-CPA security of Σlwe, the
client message hides element that they are querying.

Efficiency. The concrete efficiency of LWEPIR depends on the

parameter choices. Intuitively, since the (amortisable) offline cost is

𝑴 ∈ Z𝑛×𝑚2

𝑝 (where 𝑛 ≪𝑚1) and the response is a vector r ∈ Z𝑚2

𝑝 ,

then the total bandwidth usage is significantly smaller than the size

of the database.

A.3 Additional Context and Differences
In the full version of this work [10], we discuss the background

literature that motivates the design of LWEPIR schemes. Further-

more, we analyse the differences between each of the schemes that

is present. In this work, we describe our PIR scheme in Section 5

using the FrodoPIR matrix formulation [18], as we believe it pro-

vides the cleanest interface for building a keyword PIR scheme.

We discuss in Section 5.1 the changes that can be made to support

alternative formats.

B ADDITIONAL BENCHMARKS
B.1 Comparison with Index-based PIR
In Figure 3, we highlight the performance comparison between

ChalametPIR and the underlying index-based LWEPIR schemes

of FrodoPIR and SimplePIR. In effect, we calculate the overhead of

introducing the keyword functionality. For both runtimes and band-

width costs, performing PIR over the Binary Fuse Filter description

results in only a very small magnification of both the query and

response sizes, when compared with an indexed array (with no

keyword query functionality).

B.2 Offline costs
Table 4 provides example offline costs for instantiating Chalamet-
PIR with both FrodoPIR and SimplePIR, based on running the com-

putation on a Macbook M1 Max device. The main difference is

in the size of the download (the computation and storage only

differ depending on the choice of LWE parameters). As we men-

tioned in Section 7, utilising alternative LWEPIR schemes such as

DoublePIR [28] orHintlessPIR [34] will potentially result in smaller

Offline performance

Sizes Runtime Storage
Download (MB)

(sec) (GB) FrodoPIR SimplePIR

2
16 × 1 kB 25866 0.226 5.54 32.07

2
17 × 1 kB 50772 0.452 5.54 45.35

2
18 × 1 kB 101010 0.904 5.54 64.14

2
19 × 1 kB 225710 1.808 6.16 90.71

2
20 × 1 kB 490110 3.616 6.16 128.28

Table 4: Offline server runtimes (sec), storage (GB), and client
download costs (MB) of offline steps for ChalametPIR, using
either FrodoPIR or SimplePIR, where 𝑘 = 3.

costs. As such, our benchmarks here provide an upper-bound that

provide a basis for understanding the performance of the offline

phase of ChalametPIR. Note that the computational and storage

costs of the offline phase amortise over all client queries, meaning

that this expensive one-time cost tends to zero for large systems of

clients. Furthermore, the one-time download for clients amortises

over all their queries.

Financial costs. Ultimately, even for moderate numbers of clients,

the offline costs become quickly insignificant compared with the

per-query online costs accounted for in Table 3. Finally, recent

improvements made by the HintlessPIR approach would likely

reduce these costs even further. Consequently, we consider the

offline phase to have little impact on the total costs of the scheme.

See the full version of this work [10] for wider discussion.

4121

	Abstract
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Homomorphic Encryption for Public Inner-Products
	2.3 Private Information Retrieval
	2.4 Key-Value Maps

	3 Probabilistic Key-Value Filters
	3.1 Key-Value Filters

	4 Binary Fuse Filters for ZZp
	5 Keyword PIR Construction
	5.1 Square-Root Matrix Encoding

	6 Performance Evaluation
	6.1 Implementation
	6.2 Experimental Analysis
	6.3 Keyword PIR Performance Comparison

	7 Discussion
	8 Conclusion
	9 Acknowledgements
	References
	A General LWE PIR Framework
	A.1 High-level Framework
	A.2 PIR Guarantees
	A.3 Additional Context and Differences

	B Additional Benchmarks
	B.1 Comparison with Index-based PIR
	B.2 Offline costs

