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Abstract—Live migration, the process of transferring a run-
ning application to a different physical location with minimal
downtime, can provide many benefits desired by modern cloud-
based systems. Furthermore, live migration between different
cloud providers enables a new level of freedom for cloud users
to move their workloads around for performance or business
objectives without having to be tied down to any single provider.
While this vision is not new, to-date, there are few solutions and
proof-of-concepts that provide this capability. As containerized
applications are gaining popularity, we focus on the design
and implementation of live migration of containers across cloud
providers. CloudHopper, our proof-of-concept live migration ser-
vice for containers to hop around between Amazon Web Services,
Google Cloud Platform, and Microsoft Azure is evaluated using
a common web-based workload. CloudHopper is automated
and supports pre-copy optimization, connection holding, traffic
redirection, and multiple interdependent container migration. It
is applicable to a broad range of application use cases.

Index Terms—containers, live migration, cloud computing

I. INTRODUCTION

The popularity of deploying containerized applications
in the cloud has been increasingly gaining momentum as
container technologies are maturing. Recent offerings based
on container technologies for Platform-as-a-Service (PaaS)
clouds, such as Amazon Elastic Container Service [1] and
Google Kubernetes Engine [2] are a testament to this new
demand. Containers are becoming the de-facto standard for
deployment whether they are deployed inside Infrastructure-
as-a-Service (IaaS) virtual machines (VMs) or deployed in
cloud container services.

With the rise of containers, we revisit a long-desired ca-
pability to freely move around application workloads across
different data centers and cloud providers. If containers can
be live-migrated with no client-perceived downtime, cloud
users would have the flexibility to run their services on the
right provider at the right time, enabling a number of useful
application management capabilities such as load balancing,
resource management, and live maintenance [3]-[7].

Live application migration is the process of transferring the
state of a running application to a remote location where it will
be restored with minimal downtime. Typically, live migration
is performed on a hypervisor-based virtual machine (VM) in
order to migrate its running operating system and processes.
While it is feasible to migrate VMs across the wide area [8],
[9], it may not be practical for cloud users as it requires
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hypervisor-level functionality that is not readily accessible by
cloud users.

Instead of VMs, containers are an alternative virtualization
technology commonly used to deploy applications. Containers
are a more application-focused solution [7] as abstractions
of system calls and resources are provided directly to each
process [10], but isolated from the default resource context
of the host machine. This isolation is normally implemented
using namespaces and control groups [11], [12]. Namespaces
are used to confine a process to its own resource group. For
example, a container can be assigned a network namespace
that only allows it to see a specific set of network interfaces
and a PID namespace that limits the processes it can see to
the ones that are running inside it. Additionally, control groups
are used to limit the amount of resources a certain process can
use. For example, the memory control group can be used to
limit the amount of memory a process can utilize. These two
core concepts make containerization possible.

In this paper, we focus on live migration of applications
running within multiple containers. Our contributions are a
fully automated live migration solution, CloudHopper that en-
ables containerized applications to hop around different clouds
with no client-perceived downtime. We have successfully
migrated applications between three of the most popular cloud
providers (Amazon Web Services, Google Cloud Platform, and
Microsoft Azure) across the wide area. For realistic application
workloads, using pre-migration and migration optimizations,
migrated containers may be down for under half a minute.
However, during that period, CloudHopper maintains con-
nectivity such that clients only perceive a delayed response,
instead of actual downtime. Cloud users can simply use our
automated solution to live-migrate entire applications or parts
of applications, hopping out of one cloud into another cloud, or
hopping between data centers. The main ideas that distinguish
CloudHopper from previous work are automated container
workflow, multi-container support, realistic workloads, real-
world conditions using commercial clouds, and zero downtime
migration with connection holding and traffic redirection. We
believe this is a step towards achieving cloud interoperabil-
ity [13] with increased mobility and ease of management [14].

II. BACKGROUND

In this section, we present the background on live migration
and support for live migration in containers.
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A. Live Migration

There are two types of live memory migration: (1) process
migration, and (2) virtual machine migration. The former
focuses on migrating a specific group of processes, while the
latter migrates the memory state of the entire system altogether
from the operating system up. Process migration is light-
weight, but more restrictive due to problems of dependencies
of the migrated process being left on the host machine [15],
[16]. Virtual machine migration is less restrictive but can
create unnecessary performance overhead from migrating the
operating system when the goal is solely to migrate an
application [17].

Container migration can be classified as a type of process
migration, since a running container is simply a set of pro-
cesses running in an isolated environment. Although contain-
ers provide less isolation than traditional virtual machines,
from the point of view of the users, a container functions
very similarly to a virtual machine [10]. This makes container
migration a middle ground between process migration and
virtual machine migration.

There are many different implementations of container-
based live migration. Mainly, there are kernel-based imple-
mentations (BLCR [18], CRAK [19], legacy OpenVZ [20],
Zap [21], Linux-CR [4]) and user space ones (DMTCP [22],
CRIU [5]). Kernel-based implementations have more capa-
bilities and are able to fully migrate the system state of a
process. However, they are highly dependent on loading a
kernel module or modifying the kernel itself [4]. As a result,
user space approaches were introduced with a common goal of
avoiding kernel modification. Many of these implementations
require loading libraries or modules in advance, reducing their
general ease of use [16]. CRIU is one of the most actively
developed implementations, works well with a standard kernel,
and requires no changes to application code. Thus, CloudHop-
per is built on top of CRIU’s memory migration capabilities.

Note that to fully support live container migration across
clouds, migrating just the memory state is insufficient. We
will also need to migrate storage and networks, as described
in Section III.

B. Migration Support for Containers

Next, we discuss existing container technologies and their
support for live migration. Docker [23] is the most popular
implementation of operating system-level virtualization. Com-
pared to traditional virtual machines, Docker focuses more
on running applications and less on emulating hardware. Its
developer-centric features are also easy to use, making it
widely popular [24]. Given its mainstream adoption, we would
like to implement our work to support Docker containers.
However, according to our initial experiments, Docker’s in-
tegration with CRIU (since version 3.11) is experimental and
not mature enough to function well in practice.

Therefore, we consider a lower-level container technology
that is also used by Docker, runC [25] as an alternative. Docker
uses runC under containerd, an API backend for accepting
action requests from the frontend Docker binary, to manage

containers [26]. However, runC is designed to be more generic
than Docker and can be used on its own to manage containers.
CloudHopper supports runC containers. One key disadvan-
tage of using runC is that container networking is not sup-
ported, so we will need to manually create a networking stack
to enable containers to communicate. Details of our container
networking approach is further explained in Section IV-A2.

III. SYSTEM DESIGN

In this section, we discuss the design of CloudHopper
to enable live migration of containerized applications across
clouds. Our design goals are as follows:

1) Multi-cloud support. Containers can be live migrated
between different cloud providers across the wide area.

2) Interdependent container support. Web applications are
often deployed as multiple interdependent containers
that need to be migrated together.

3) Short migration time. Containers are not responsive dur-
ing migration, so fast migrations will make the service
appear live and responsive to clients.

4) Secure data transfer. Live migration requires transfer
of system state possibly containing sensitive client and
service information which should be encrypted.

5) No failed client connections. Containers are not respon-
sive during migration, so we need a hold and redirect
mechanism to handle new incoming client connections
during migration.

6) Automated migration. Live migration requires setting up
the right environment and coordinating between source
and target sites. Automating these steps is desirable for
ease of use.

Next, we discuss each design goal and solution in details.

A. Multi-Cloud Support

CloudHopper needs to work between multiple clouds, so our
design should be agnostic to the cloud provider. All required
software and components should be able to run on any provider
and should not need to use any provider-specific services.

We implement and evaluate our system on commercial
clouds by migrating between Amazon Web Services (AWS),
Google Cloud Platform (GCP), and Microsoft Azure as they
are the top three most popular cloud providers [27]. Our exper-
iments are the first of its kind that demonstrate live migration
of realistic workloads between commercial providers across
the wide area. This is in contrast to previous work that have
experimented with migrating containers between hosts inside
a testbed or inside the same enterprise data center [28], [29].

B. Interdependent Container Support

We support migrating a common realistic setup where mul-
tiple interdependent containers are deployed together as a fully
functional web application. These containers need to work
together to service client requests. For example, WordPress, is
a commonly used website software that consists of a MySQL
and a WordPress container. While live migration of multiple
interdependent VMs has been previously studied [8], [30],
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Fig. 1. System architecture with containers running at the source site before
migration.

[31], we are the first to design and evaluate the performance
of live migration on interdependent containers.

A key issue in designing CloudHopper to support interde-
pendent container migration is network migration. In order
for components to easily locate each other after migration,
their IP addresses should not change. We implemented basic
container networking using network namespaces to emulate
“bridge mode” networking in Docker and solve this problem
for runC containers as described in Section IV. In order to
keep the same IP addresses, an IPSec VPN as shown in
Figure 1 is set up between the source and target hosts across
different cloud providers such that all hosts and containers can
communicate using private IP addresses in the same subnet.
This VPN tunnel has an added benefit as it allows data between
the two sites to be transferred securely. We use strongSwan, an
open source IPSec implementation [32] for this. An additional
host is created on each side to act as a NAT gateway as shown
at the bottom of Figure 1.

C. Short Migration Time

Typically, container live storage and memory migration can
be broken down into three basic steps:

i Checkpoint: perform a memory checkpoint freezing the
container and dumping all of the container’s memory
state to a set of files using CRIU,

ii Transfer: transfer the checkpointed memory state and
the container’s local persistent storage from the source
to the target, and

iii Restore: restore the container at the target.

During all three steps, the container is non-responsive and
appears down. The downtime could vary depending on the
amount of active memory that is checkpointed, the amount
of local persistent storage the container uses, and available
bandwidth in the network between source and target.

In order for storage and memory migration to appear
live, all three steps need to take a very short amount of
time. CloudHopper’s approach is to reduce the amount of
memory state and persistent storage that needs to be check-
pointed/transferred while the container is down by pre-copying
and transferring only changes during downtime.

We introduce a set of pre-migration steps that perform
storage and memory pre-copy prior to the actual migration,
thus the name pre-copy. For storage pre-copy, we first copy

the image from the source to the target. Then, during mi-
gration, we use rsync to copy only the changes from the last
copied version. For memory pre-copy, we use CRIU’s iterative
migration capability which can pre-dump a full copy of the
memory state, keep track of changes, and iteratively dump
changes. The full copy is large as it is the same size as the
amount of memory used by the container, whereas iterative
dumps are typically smaller. A pre-dump does not freeze the
container, but it may have an impact on its performance.
With this approach, the pre-dump can be transferred ahead of
time during pre-migration while the container is still running
and responsive. Then during migration, the iterative dump is
transferred using rsync resulting in a shorter downtime.
Putting pre-migration and migration together, we have

i Pre-dump: checkpoint the container’s memory using
CRIU’s pre-dump capabilities,

ii Pre-copy: transfer the pre-dumped memory state and the
container’s local persistent storage from the source to the
target,

iii Checkpoint: perform a memory checkpoint, freezing the
container and dumping memory state changes to a set of
files called a “checkpoint image” using CRIU’s iterative
checkpoint,

iv Transfer: transfer the checkpointed memory state
changes and the container’s local persistent storage
changes from the source to the target using rsync,

v Restore: restore the container at the target.

The container is down in steps (iii)-(v), which, by design, takes
a shorter amount of time than the basic approach.

We further considered reducing the overhead of dumping to
local disk in step (iii) and copying from local disk over the
network in step (iv) by using Network File System (NFS) to
perform these two steps as one single action. We set up an
NFS server at the target site and mount it on the source and
target as a networked file system. Then, we execute steps (iii)
and (iv) together by dumping the memory state directly to a
directory on the NFS server, automatically transferring it to
the target. Also, for step (iv) we copy the image at the source
to a directory on the NFS server which again is automatically
transferred to the target. However, we found in our initial eval-
uation that NFS introduced significant performance overhead
and our downtime for this approach was high. Therefore, this
optimization is excluded from our evaluation.

We also introduce a few more optimizations that attempt to
shorten the transfer time in step (iv) as discussed and evaluated
in Section IV-C.

D. Secure Data Transfer

During live migration, persistent storage and memory state
that contains sensitive client and service information such
as passwords, session keys, and transaction information is
transferred. Securely transferring such data over an encrypted
channel is required. The VPN tunnel between source and target
sites as discussed in Section III-B provides many benefits,
including a secure channel that we use for data transfer.
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E. No Failed Client Connections During Migration

During the short container downtime in steps (iii)-(v), we
must continue to appear live to existing clients and any new
incoming clients. Therefore, CloudHopper incorporates a hold
and redirect mechanism at the source which holds incoming
traffic during migration and eventually redirects them to the
target when the service is restored and ready.

In our system, we build a web application to hold connec-
tions called the holding application and use HAProxy [33]
to handle redirection. HAProxy is already used to handle
incoming connections at the host to support multiple container
networking as to be discussed later in Section IV-A2. During
normal operations, HAProxy would forward incoming client
connections to the web server container. However, during
migration, new incoming client connections are instead for-
warded from HAProxy to the holding application. The holding
application keeps the connections alive until it detects that the
target is up. It then redirects all held connections to the target.
In addition, HAProxy will periodically run a health check on
the target site and redirect all clients to the target site when
the site is up. With these two components, it is guaranteed that
a web-based application will not drop any connections, given
that the server is working under normal load conditions, i.e.,
not overloaded.

For the HAProxy configuration, source containers, target
containers, and the holding application are set up as “back-
ends”. Prior to migration, only the source container is enabled
in the configuration while both the target and the holding appli-
cation are disabled. The holding application is also designated
as the backup backend, meaning it will only be used when both
normal backends (source or target containers) are unavailable.
This is intentional because it should only be accessible during
migration per its design.

CloudHopper’s holding application is a Python-based web
application developed with Flask [34]. We chose Flask as it is
easy to setup and can perform connection buffering as desired.
The application is then deployed with Gunicorn [35], a Python-
based web server which can serve the application with good
performance. The holding application works by first accepting
incoming connections from HAProxy. Then, it periodically
polls the target service with HTTP requests until it receives a
desired response. Finally, it will return an HTTP 302 response
to redirect the client to the target site. In order to ensure that
target site polling is not excessive, we use a Memcached [36]
instance to store the status of the target site as global state for
all holding application threads to check before polling.

During the same time, the HAProxy instance on the source
host will also be polling the target backend, so the remaining
connections in its own queue will also be automatically
dispatched to the (now online) target.

To ensure that the holding application does not become
overloaded, HAProxy will send only a few (5-10) connections
to the holding application while the remaining client connec-
tions will wait in HAProxy’s queue. The holding application
is not as robust as HAProxy, so we use HAProxy to handle the

majority of the load. We also set the HAProxy queue timeout
to a value long enough to cover the migration duration.

Note that although HAProxy has a queue, its queue cannot
completely replace the holding application’s functionality.
This is because HAProxy was not designed for this purpose
and always requires an available backend to function. With-
out a holding application as an available “backend” during
migration, HAProxy would mark the service as down and
immediately return a HTTP 503 Service Unavailable response
while the source container is being migrated. We experimented
with many HAProxy settings to see if we could avoid using
a holding application such as setting the frontend connection
limit in HAProxy to zero, effectively preventing connections
from being forwarded to the backends regardless of avail-
ability. However, several clients experienced connection resets
during migration and HTTP 503 responses. As a result, the
holding application is required to guarantee liveness.

This design, combined with transfer time optimizations,
will make a client connection during migration appear as
experiencing slow connectivity. Clients do not know that the
server is being migrated or is under maintenance. Our holding
application solution is designed specifically for web-based
applications. We have yet to explore solutions for other types
of applications, but plan to explore them as part of future work.

F. Automated Migration

The process of setting up the system architecture and
performing live migration is automated using Ansible [37],
an open-source software provisioning, configuration manage-
ment, and application-deployment tool. This allows anyone
to easily reproduce the environment and control it during the
migration process. This also facilitates evaluation of the system
because the migration process can be repeatedly performed in
a controlled manner. Since Ansible is already used in many
cloud-based application deployments, this will make it easy for
end-users to incorporate our work into their existing workflow.

IV. SYSTEM IMPLEMENTATION

In this section, we describe the details of our system
implementation for the containers, automated live migration,
and live migration optimizations.

A. Containers

Our approach to container creation and networking to sup-
port deployment of applications is discussed next.

1) Container creation: Our containers are created using
Docker images. Although our implementation uses runC, we
use Docker images as they represent state-of-the-art common
real-life applications.

Initially, Docker images are pulled from the image server
(DockerHub) to the host. Skopeo [38] is used to convert each
image into an Open Containers Initiative (OCI) compliant
image, which is then extracted into an OCI bundle with
umoci [39]. The bundle, at this stage, is ready for container
creation. However, we still need to provide parameters such
as port mappings, volume mappings, and resource requests.
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Fig. 2. Container networking setup using namespaces, virtual interfaces,
bridge, and HAProxy.

These options will be translated from Docker’s format and
then specified in the configuration file in the extracted OCI
bundle accordingly.

2) Container networking: Most basic use cases for Docker
containers involve the use of port mappings and inter-container
network links. Networking is essential because containers are
usually designed to be self-contained (per the microservices
architecture [40]) and thus require links to other containers to
function together as a system. However, runC does not directly
support networking between containers. We can implement
container networking by creating a network namespace for
the container.

Figure 2 depicts the networking setup used on both source
and target hosts to support container networking in runC. We
create a bridge interface between the host and the containers.
Additional containers on the same host can be added to
the same bridge to enable them to communicate with each
other. We then create a pair of virtual Ethernet interfaces per
container to connect between the bridge and the container’s
network namespace.

Finally, the container will need to communicate to external
clients. A service on the host which can redirect requests
from the host to the appropriate container is needed. We use
HAProxy for this purpose. Note that HAProxy is also used for
other purposes as discussed in Section III-E.

Initially, we experimented with using Socat [41] for this
purpose instead of HAProxy because it is easy to set up
Socat to forward incoming connections seamlessly. However,
Socat has limited capabilities as it can only directly forward
incoming connections. When the container is being migrated,
Socat cannot hold incoming connections, leading to perceived
application downtime. Connection holding is needed to sup-
port live migration. Therefore, we use HAProxy not only to
provide networking between the containers and the outside
world, but also to avoid perceived application downtime along
with the holding application described in Section III-E.

B. Migration

CloudHopper uses Ansible to automate the entire migration
solution from setting up the source and target hosts and
environment, to running the migration, and tearing down
the setup. Currently, our implementation supports migration
between three cloud providers (AWS, GCP and Azure).

Assuming that the source host is already running the
Wordpress and MySQL containers, our automated workflow
provisions target hosts and VPN hosts on both sides. Then,
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Fig. 3. Restoring containers at the target site in the final stage of migration.

it configures the cloud provider’s VPN (i.e., AWS VPC)
settings to have the source and target hosts use the respective
source and target VPN hosts as gateways. Container images
are placed at the target before migration to set the persistent
storage’s initial state. HAProxy is also set up on both sides to
forward traffic to the application. Refer back to Figure 1 for
the initial state before a migration takes place.

In our implementation, the migration process can be broken
down into five steps as discussed in Section III. We coordinate
the migration steps with HAProxy and our holding application
as follows:

i Pre-dump using CRIU.

ii Pre-copy transfer using rsync over the VPN.

iii Checkpoint using CRIU. At this point the container is
down, so HAProxy is instructed to disable the source
container in its list of backends, and the holding appli-
cation is enabled in its place.

iv Checkpoint transfer using rsync over the VPN. Op-
timizations in this step to reduce transfer time are
discussed in Section I'V-C.

v Restore after the transfer completes. We instruct the
target host to immediately restore the container. When
migrating interdependent containers, we must be careful
about when we issue restores. We do not want the web
container up and running, handling client requests while
the database container is still being migrated over, as
that would cause application-level errors. We discuss
a scheduling optimization in Section IV-C to ensure
that containers are restored at the same time to shorten
restoration delays.

As we have multiple containers, each container is similarly
migrated in parallel. The entire migration process is handled
by a Python script called by Ansible to run on both hosts.
Subprocesses are created to handle each container. Figure 3
depicts the overall migration process at step (v) when we are
restoring the containers at the target.

After the restore, the holding application polls the appli-
cation at the target site until the target site is ready and all
held connections are redirected. The holding application is
then disabled from HAProxy’s list of backends. Ideally, DNS
records should be updated to point to the target site after this
step, but in actual production deployments DNS propagation
takes time. Some clients may still access the application at
the source site. To handle these new incoming connections,
we keep HAProxy and the VPN running. HAProxy will
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Fig. 4. System after migration.

automatically use the target host as a new “backend” once it
has detected that the target is up. The set up at the source host
can then be gracefully taken down once client connections no
longer arrive at the source. Figure 4 depicts the system after a
successful migration. Migrated containers continue to function
like regular containers. They can be migrated again using the
same workflow.

C. Optimizations

We employ the following optimizations in CloudHopper to
increase migration performance.

1) Scheduling: To ensure that all interdependent containers
can be restored without causing application-level errors in
the checkpoint transfer step (step iv), the transfer of each
container can be scheduled relative to each other so that every
container finishes its transfer at the same time. This is done by
sorting all containers by transfer size. We schedule the largest
container first. We schedule transfer of the next container when
the previous container has a remaining transfer size that is
equal to its transfer size, and so on. In contrast to sequential
transfers and parallel transfers without scheduling, scheduling
uses network bandwidth more efficiently and enables us to start
all containers immediately upon arrival at the target. However,
in order to measure the transfer size, an extra step needs to
be performed before the actual transfer in which we use rsync
to perform a transfer dry run and record the total transfer size
from its output.

2) Compression: Using rsync’s —z command line option,
data can be compressed and then transferred to the target host.
This reduces the network bandwidth used during migration.
We use the default compression level implemented in rsync.

V. EVALUATION

In this section, we describe our experimental setup, evalu-
ation methodology, and evaluation metrics.

A. Experimental Setup

The goal of our evaluation is to migrate common web-based
workloads running on containers. While there are no standard
benchmarks, we use WordPress as the target application as it
is a popular choice for creating websites. Thus, we will be
live-migrating an application consisting of two containers, a
WordPress Apache httpd container and a MySQL container.

In order to test the performance of CloudHopper, we evalu-
ate the impact of client load on migration performance. We use
a load generator, Siege [42], and vary the number of concurrent

TABLE I
MACHINE SPECIFICATIONS.

Host Provider Machine type vCPUs | RAM (GB) Region
Source AWS t3.medium 2 4 ap-northeast-1
Source VPN AWS t3.small 2 2 ap-northeast-1
Target GCP nl-standard-1 1 3.75 asia-northeast-a
Target VPN GCP nl-standard-1 1 3.75 asia-northeast-a
Target Azure Standard D1 v2 1 3.5 Japan East
Target VPN Azure Standard D1 v2 1 35 Japan East
Client Azure Standard D2s v3 2 8 Japan East
TABLE I
EXPERIMENT SCENARIOS.
Scenario ‘Workload Optimization
Name Concurrent Throughput Parallel | Scheduling | Compression
i (tr ion/s)
0Oc 0 0 v v
1c 1 27.34 v v
Sc 5 68.12 v '
10c 10 71.53 v v
50c 50 68.14 v v
100c 100 65.74 v v
200c 200 64.04 v '
400c 400 63.12 v v
Unscheduled 400 63.12 v
Sequential 400 63.12
Compressed 400 63.12 v v v

clients issuing POST requests to the WordPress container. Note
that this creates a mix of read/write workload not only on the
WordPress container, but also consequently on the MySQL
container. The set of URLs selected are from the ones available
in the WordPress REST API. For all of our experiments, Siege
tries to randomly add new content to five parts of a Wordpress
blog, namely posts, comments, categories, tags, and users via
a POST request to the corresponding API endpoint.

Siege, by default, generates load to a static set of HTTP
requests, but WordPress does not allow the same POST request
(same content) to be submitted more than once. If the same
request shows up, WordPress does not create a new blog
element. In order to create new posts throughout our migration
experiments, Siege was modified to add string randomization
functionality so that every HTTP request is unique. The flag
for our custom option is “-s” or “~-random-strings”
which will replace every region in the POST body starting
with a “*” and ending with a with a random string of the
same length (inclusive of the region markers).
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B. Methodology

The test environment consists of a source host on Amazon
Web Services (AWS) and a target host on Google Cloud
Platform (GCP) or Microsoft Azure. When migrating between
a pair of providers, a client host on the third provider runs
Siege to create load on the application containers during
migration.

As mentioned earlier, VPN hosts were also set up on
both source and target cloud sites. Specifications of virtual
machines used as hosts in our experiments are provided in
Table L.

Experiments were performed with varying amounts of work-
load and different optimizations to evaluate their impact on
performance. Each experiment is repeated ten times. Details
of experiment scenarios are provided in Table II. Note that
Siege allows us to control the number of concurrent clients,
but not the transaction rate. The reported transaction rates
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TABLE III
AVERAGE TIME SPENT DURING PRE-MIGRATION AND MIGRATION FOR ALL EXPERIMENT SCENARIOS.

Scenario Pre-Migration Migration Total
Pre-Dump | Pre-copy Total Checkpoint | Diff Transfer | Restore | Total Downtime (s)
(s) (s) (s) (s) (s) (s) (s) (s)
Oc (Azure) 0.300 4.243 4.543 0.587 0.337 0.720 5.460 7.104 11.647
Oc (GCP) 0.327 4.487 4.814 0.613 0.350 0.717 5.867 7.547 12.361
lc (GCP) 0.310 4.33 4.640 0.633 0.380 3.420 5.470 9.903 14.543
5¢ (GCP) 0.433 4.953 5.387 0.713 0.357 4.227 5.347 10.643 16.030
10c (GCP) 0.590 6.133 6.723 0.907 0.383 4.673 5.353 11.317 18.040
50c (GCP) 1.170 7.033 8.203 1.917 0.376 12.710 5.630 20.633 28.836
100c (GCP) 1.015 7.222 8.237 3.930 0.455 11.410 5.222 21.017 29.254
200c (GCP) 0.936 7.053 7.989 4.763 0.503 13.370 5.470 24.106 32.095
400c (GCP) 1.430 8.890 10.320 5.948 0.690 12.370 5.448 24.456 34.776
Unscheduled 1.133 8.506 9.639 5.853 0.590 14.016 5.890 26.349 35.988
Sequential 1.370 7.640 9.010 5.550 0.720 15.080 11.320 32.670 41.680
Compressed 0.956 14.596 15.552 6.680 0.600 33.534 5.008 45.822 61.374
are measured from the experiments. The system throughput TABLE IV
is already maxed out at around 60-70 transactions/sec when SIZE OF PRE-DUMP AND CHECKPOINT FILES THAT NEED TO BE MIGRATED.
; ; Scenario MySQL WordPress
there' are 10 concurrent clients. Beyond that, the system is Pre-diimp | Checkpoint | Pre-diomp | Checkpoint
Worklng under heavy load. (MB) (MB) (MB) (MB)
. Oc (Azure) 129.000 2.067 88.333 19.667
C. Metrics 0c (GCP) | 127272 3.592 71227 17.882
The following metrics are used to evaluate performance and le (GCP) | 131.333 20.333 89.000 45.000
. . 5c (GCP) 134.333 35.000 108.667 59.000
are averaged over the ten runs for each experiment scenario. 10c (GCP) 135.000 36.000 176.000 37333
1) Pre-Migration and Migration Time: Each step of the 50c (GCP) 167.000 54.250 347.000 433.800
migration process is measured separately, providing a detailed 100c (GCP) | 167.000 56.900 320.400 849.000
erspective of mieration performance 200c (GCP) 168.200 73.000 385.600 954.200
persp g P : 400c (GCP) | 168.250 63.750 388.750 | 1102.250

2) Image Size: In the migration process, two sets of files
are created: pre-dump image and checkpoint image. The sizes
of these two images directly influence the time needed for their
transfer and consequently the total time needed to migrate the
application. The size of each image is measured separately
with the disk usage (du) command.

3) Migration Transfer Throughput: To easily compare
between different optimization strategies, migration transfer
throughput is also calculated from the actual amount of data
transferred during the migration (not including the pre-dump
step) and the time taken to transfer.

4) Client Response Time: To measure the impact of live
migration on the application’s performance from the perspec-
tive of a client, client-perceived response times during the
migration were recorded from Siege’s output.

VI. RESULTS

In this section, experiment results are presented and dis-
cussed using the metrics defined in the previous section.

A. Migration Time

CloudHopper’s migration time is shown in Table III. Results
from all experimental scenarios between AWS and GCP are
reported and results from one scenario between AWS and
Azure is reported as the results are similar to GCP.

Total time includes the time taken in all steps, whereas
downtime only starts from the checkpoint step onwards. Total
time and downtime increase as the workload increases in all
scenarios because more data needs to be transferred. The
total downtime is as short as 7.547 seconds when there
is no client workload and up to 24.456 seconds with 400
concurrent connections for AWS to GCP migrations. For heavy

workloads, the downtime is roughly the same at around 24
seconds regardless of the number of concurrent clients. Note
that during this downtime, roughly a GB of data is being
migrated. Migrating from AWS to Microsoft Azure has similar
but slightly better performance.

Additionally, there appears to be a short delay after the
restore step until the containers become responsive. Restore
times are roughly the same for all workloads at 5 seconds.

B. Image Size

Image sizes are provided in Table IV. The size of each pre-
dump image is dependent on the amount of memory allocated
and utilized by the container. The size of each checkpoint
image indicates the amount of changes to the memory state.
MySQL, as a database application, has larger image sizes
when there are more transactions and updates. On the other
hand, WordPress, as a mostly stateless web server, uses more
memory to serve a larger number of concurrent connections,
resulting in larger image sizes.

When idle (no clients), the pre-dump size of MySQL is
considerably larger than that of WordPress at 127.272 MB
compared to 71.227 MB. This is due to the way MySQL
allocates memory to maintain its buffer pool [43]. This can
be further observed as the size of the MySQL pre-dump
image barely grows with increasing workload, maintaining
a consistent size of 167-168 MB when there are 50—400
concurrent connections.

The checkpoint size of MySQL increases due to the amount
of modifications made to the content of the website. In idle
state, barely any changes are made as the checkpoint size is
only 3.592 MB. The checkpoint size significantly increases
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Fig. 5. Response time.

when workload is introduced, steadily growing up to 73 MB.
The size with 400 concurrent clients being smaller could
possibly be an anomaly in experimentation, but it might also
indicate that fewer changes were able to be made within a
similar amount of time because WordPress was overwhelmed
by the number of connections.

The pre-dump size of WordPress increases according to the
amount of workload. Interestingly, its pre-dump size drops
to 320.4 MB with 100 concurrent connections. Again, this
might be an error in experimentation, or simply convenient
timing when WordPress is able to handle the workload more
efficiently due to other dynamic environmental factors. The
pre-dump size further increases to 385.6 and 388.75 MB with
200 and 400 connections. The increase in size gets smaller
as the amount of workload increases which might indicate
that WordPress is reaching its maximum capacity. This is also
likely the reason why migrations with 200 and 400 concurrent
connections take a similar amount of time.

As WordPress needs to handle a large amount of connec-
tions, its checkpoint size also increases indicating a large
amount of memory allocation and change. Starting from
17.882 MB in idle state, the size increases up to 1.1 Gigabytes
with 400 concurrent connections.

Comparing the two containers, WordPress’s image sizes are
significantly larger, especially at higher amounts of workload.
This indicates that migration time is largely dependent on
the sheer size of WordPress’s images when workload is
introduced.

C. Response Time

Measured response times from the experiment with 100
concurrent connections are shown in Figure 5. Each step in
the migration process is illustrated with a vertical dashed line.

During normal operations, the average response time is
around 0.25 seconds. When workload is introduced, a signifi-
cant jump in response time up to 1.44 seconds can be observed.
The performance is further reduced in the pre-migration phase
as pre-migration competes for available computing resources
and bandwidth. After pre-migration, the average response time
starts to decrease again as the containers start to stabilize.

In the migration phase, the state of each container is frozen,
dumped, and transferred to the target host. No client requests
are served during this phase until the containers are completely
restored. The first set of responses to arrive at the target after
migration completes are the ones initiated before the migra-
tion itself. They are held and see very high response times.
This shows that CloudHopper successfully holds and redirect
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Fig. 6. Transfer throughput comparison between different optimizations.

connections during and after migration without dropping any
clients. After migration, the average response time recovers
back to normal levels.

D. Optimizations

1) Parallel Migration and Scheduling: Migration time and
throughput comparisons between each optimization strategy
are provided in Table III and Figure 6. All experiments shown
in Figure 6 are performed with 400 concurrent connections to
show the impact of CloudHopper’s optimizations under heavy
load. We also performed sequential migrations of individual
containers where no process is done in parallel for comparison.
The baseline throughput is the bandwidth of the network
connection between source and target measured with iPerf3
[44]. Note that for scheduling, we need to check the size
of the changes using rsync to perform a “diff” calculation.
However, for unscheduled or sequential migration, this step is
not necessary, but we performed it to simplify measurements.

It is quite evident that sequential migration performs worse
than parallel migrations, with an average downtime of 32.67
seconds. The restore time is double for sequential migration as
we need to restore the containers one after the other in order
of dependency (i.e., MySQL before WordPress).

Scheduling (400c) actually achieves slightly better perfor-
mance with 12.370 seconds transfer time compared to 14.016
seconds of unscheduled transfer. Both scheduled and unsched-
uled migration achieve a reasonably high transfer throughput
of 793.28 Mbps and 735.12 Mbps between AWS and GCP,
respectively.

Note that the time spent in the pre-migration phase for both
scheduled and unscheduled migrations theoretically should
have the same performance. However, our experiments show
that the time varies without any clear trend perhaps due to
dynamic conditions in the cloud.

Using compression does not provide any performance ben-
efit in our experiments. Compression takes roughly twice the
amount of time to transfer compared to other experiments.
This is due to the fact that compression adds more load on
the computing resources of the host, which actually becomes
a bottleneck compared to the available network bandwidth. If
the available network bandwidth is limited, then compression
might improve migration performance.

VII. RELATED WORK

In this section, we discuss related work. Table V presents a
concise summary of our discussion.
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TABLE V

COMPARISON BETWEEN RELATED WORK.

Name Target

Network Migration

Memory and Storage Migration

Application

Environment

CloudHopper Multi-container

VPN, connection
holding and redirection

pre-copy, scheduling

Web server/database

AWS, GCP, Azure

MIGRATE [45] Multi-container

Container-level

pre-copy

Different datacenter
(testbed)

Voyager [28] Single container

post-copy, layered FS

Web server/database

Same datacenter

ElasticDocker [29] Single container

by Cloud provider

pre-copy

Web server

Same datacenter

CloudNet [8] Multi-VM Commercial VPLS/ pre-copy, DRDB SPECjbb 2005, Kernel Different datacenter
Layer-2 VPN Compile, TPC-W (testbed)
COMMA [30] Multi-App, VPN pre-copy, controlled SPECWeb 2005, RUBis AWS,
Multi-VM pace, scheduling 3-tier web app Hybrid-Cloud
Supercloud [31] Multi-VM SDN, VXLAN post-copy, layered storage Zookeeper, Cassandra AWS, GCP

A. Container Live Migration

MIGRATE [45] is a container management framework
that prevents side-channel attacks by live-migrating containers
from one host to another in a different datacenter within
the same cloud provider. MIGRATE uses CRIU for memory
migration and maintains network connectivity after migration.
However, their focus is on hardening container environments
more than migration performance, which is not evaluated.

Voyager [28] is a single-container migration platform using
CRIU for live memory migration. A union filesystem is used
to support lazy copy of files (post-copy) so that restores can
happen immediately even before data transfer is completed.
Voyager has zero downtime during migration.

ElasticDocker [29] is a container platform which allows
automatic vertical scaling of an application. They support live
migration as one of their resource allocation mechanisms.
When there are insufficient computing resources on a host
VM, a container will be live migrated to a new host VM.
ElasticDocker uses pre-copy migration and compresses the
container into a tarball.

The main ideas that distinguish our work from the previous
work in container migration are multi-container setup, realistic
workloads, real-world conditions using commercial clouds,
and zero downtime migration with connection holding and
traffic redirection.

B. VM Live Migration

CloudNet [8] supports live WAN migration of multiple Xen
virtual machines across datacenters. They use pre-copy for
memory migration and Distributed Replicated Block Device
(DRBD) to replicate disk state. We share some common migra-
tion optimizations. To support network migration, CloudNet
needs access to routers in the source and target datacenters
to set up a layer-2 VPN. Their solution is suitable for cloud
providers who want to move workloads around, but not
accessible to the common cloud users like CloudHopper.

COMMA [30] is a coordination system for live WAN mi-
gration of multiple KVM virtual machines across datacenters.
COMMA’s goal is to minimize performance impact while
migrating multiple applications and multiple VMs. Pre-copy
memory migration is performed for each VM at a controlled
pace [9] and a VPN is used for network migration.

Supercloud [31] is a VM live migration system that lever-
ages a geo-replicated image file storage for disk/image migra-

tion and Xen’s pre-copy live memory migration. For network
migration, they use SDN and VXLAN tunnels. They focus on
developing an algorithm that automatically determines when
and where to move VMs for optimal performance.

The main ideas that distinguish our work from these previ-
ous work in multiple-VM live migration are multi-container
setup, real-world conditions using commercial clouds, and
zero downtime migration with connection holding and traffic
redirection.

VIII. SUMMARY

In this paper, we designed and implemented CloudHopper, a
functional live migration system for containerized applications.
Our work supports migration of multiple interdependent con-
tainers across commercial cloud providers with active clients
during migration. We have tested the system under realis-
tic load constraints. CloudHopper, with scheduled parallel
migration optimizations, can live-migrate a heavily loaded
WordPress and MySQL container from one cloud provider
to another across the wide-area, with an average downtime
of under 30 seconds. Note that this downtime is dominated
by data transfer between clouds. While the downtime may
seem long enough to be noticeable, CloudHopper hides this
from clients and keeps the application online by holding and
redirecting client connections.

We believe that our approach can be generalized for every
Docker image and container publicly available, provided that
the container is converted into the OCI format and that
its external resources are supported by CRIU. Future work
consists of further reducing migration time with other op-
timization techniques and creating a more generalized live
container migration platform that is applicable for non-web
applications.
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