
Favocado: Fuzzing the Binding Code of JavaScript Engines 
Using Semantically Correct Test Cases

Sung Ta Dinh*, Haehyun Cho*, Kyle Martin+, Adam Oest^, Kyle Zeng*, Alexandros Kapravelos+, Gail-Joon Ahn*-,
Tiffany Bao*, Ruoyu Wang*, Adam Doup´e*, and Yan Shoshitaishvili*

*Arizona State University, +North Carolina State University, ^PayPal, Inc., -Samsung Research
NDSS 2021

Minkyung Park
mkpark@mmlab.snu.ac.kr

March 16, 2022



Contents
• JavaScript binding code

• Fuzzing challenges

• Favocado design

• Evaluation

• Conclusion

2/23



JavaScript and its fuzzing
• JavaScript (JS) is a dynamic language interpreted by JS engines

• e.g., Chrome V8, SpiderMonkey, Chakra, etc.

• The use of JS has expanded into the entire computing ecosystem
• Adobe Acrobat utilizes JS engines to provide dynamic or interactive content through 

JS code embedded in PDF documents

• It is difficult to effectively fuzz JS engines because of the language’s 
syntactical correctness
• JS engines parse user input code into an abstract syntax tree (AST) and then process 

the tree
• User inputs that cannot be transformed into an AST are easily rejected before being 

processed

• Existing fuzzers use context-free grammars or existing correct test cases

3/23



JavaScript and its fuzzing
• It is also important to generate semantically correct JS codes 

• Many JS statements have interdependent relationships
• Correct use of method names, argument types, and return types
• e.g., not using after free

• Most JS fuzzers cannot generate fully semantically correct test cases
• Some fuzzers generates semantic-aware test cases, but the percentage of 

rejected test cases is a significant problem
• E.g., CodeAlchemist

• The problem becomes more severe in JS binding layers

4/23



JavaScript binding layer
• JS engines provide a binding layer to provide functionality implemented in unsafe 

languages such as C and C++
• JS cannot be used to directly implement low-level functionalities and those are 

implemented in native code
• e.g., memory management and file access

• JS binding code translates data representation
• It creates and maps data types between JS 

and native code
• Then, JS scripts can call native functions or 

control data of native components
• e.g., DOM object
• During the translation, type- and memory-safety features cannot be implemented

5/23



Challenges to fuzz JS binding layer (1)
• It is practically impossible to generate legitimate JS test cases

• Fuzzers need to input many JavaScript statements as a basic testing unit 
à A semantically incorrect test case has to stop executing and retire

• Typical JS test cases that trigger the execution of binding code once raise 
the excessive number of JavaScript exceptions
• It involves two steps (i) creating the object and (ii) setting a property or calling a 

function

• To fuzz the binding layers, a fuzzer should generate syntactically and
semantically correct test cases to eliminate runtime exceptions

6/23



Challenges to fuzz JS binding layer (2)
• The input space is enormous

• There are many object types that are accessible through the binding 
layer as a DOM
• Each DOM object may have a multitude of methods and properties

• Creating all objects to enumerate all properties and manipulate all
methods is simply infeasible

• An effective fuzzer should be able to optimize the test case 
generation by reducing the size of the input space

7/23



Favocado approach
• Favocado is a new fuzzing approach to find vulnerabilities in the binding layers of JS 

engines

• Generating legitimate test cases
• Favocado parses semantic information from the Interface Definition Language (IDL) files or API 

references to obtain semantic information
• Such as exact types and possible values of binding objects

• Favocado uses the information to complete a fuzzed statement and prevents unexpected 
runtime errors

• Reducing input spaces

8/23



Favocado approach
• Favocado is a new fuzzing approach to find vulnerabilities in the binding layers of JS 

engines

• Generating legitimate test cases
• Reducing input spaces

• One unique feature of the JavaScript binding layer is the relative isolation of different DOM 
objects

• Different DOM objects are implemented as separate native modules unless an object in a module 
can be used by code in another module
• E.g., spell.check() in Adobe Acrobat’s spell module and Net.HTTP.request() in its Net.HTTP module

• Based on the relations between objects, the entire input space is divided into equivalence classes
• Favocado only mutate within each equivalence class

spell.check()
Net.HTTP.request()

Net.HTTP.request()
spell.check()

=

9/23



Favocado overview

Semantic information construction Dynamic test case generator

10/23



Semantic information construction
• Favocado extracts 
• (1) Binding object names

• A name of each object and a name of a parent

• (2) Binding object methods
• Each method’s name and all arguments’ types 
• Checks whether a method can raise an

exception

• (3) Binding object properties
• A name, type, and possible string values of 

each property
• Checks whether a property is read-only

11/23



Semantic information construction
• Favocado finds binding objects related each other using semantic information

• By the relation between objects, the entire input spaces can be divided into 
equivalence classes

12/23



Test case generator
• Test case generator (fuzz.js) dynamically generates and executes JS statements 

inside a target JS engine
• It includes the semantic information, context information, statement formats, 

and pre-defined JS statements, 

• Context information: a list of allocated variable names with their types
• The generator maintains the context information to prevent unexpected runtime errors
• E.g., reference and type errors

• Statement formats

13/23



Test case generator
• Test case generator (fuzz.js) dynamically generates and executes JS statements 

inside a target JS engine
• It includes the semantic information, context information, statement formats, 

and pre-defined JS statements, 

• Pre-defined JS statements
• To manually initialize some binding objects that cannot be initialized automatically
• Usually, binding objects that require environment-specific data such as IP address or image 

files

14/23



Test case generator
• For setup, Favocado randomly selects a set of targeted 

binding objects 
• The related objects also should be selected

• Firstly, it initializes all objects that are going to be fuzzed 
via predefined statements

• It randomly selects a statement format
• Then, it completes the format using the semantic 

information and the context information

15/23



Test case generator
• For setup, Favocado randomly selects a set of targeted 

binding objects 
• The related objects also should be selected

• Firstly, it initializes all objects that are going to be fuzzed 
via predefined statements

• It randomly selects a statement format
• Then, it completes the format using the semantic 

information and the context information

16/23



Test case generator
• For setup, Favocado randomly selects a set of targeted 

binding objects 
• The related objects also should be selected

• Firstly, it initializes all objects that are going to be fuzzed 
via predefined statements

• It randomly selects a statement format
• Then, it completes the format using the semantic 

information and the context information

17/23



Evaluation
• Q1. Are existing JavaScript engine fuzzers sufficient to fuzz 

JavaScript binding code? 

• Q2. Can Favocado discover new vulnerabilities in real-world 
JavaScript runtime systems? 

• Q3. Can Favocado be applied to fuzzing different types of binding 
code in JavaScript runtime systems? 

• Q4. How does Favocado compare to state-of-the-art JavaScript fuzzers 
that can fuzz binding code? 

18/23



Experiment setup
• Implementation

• An IDL parser based on a chromium parser and API parsers for parsing PDF readers

• System and parameter setup
• 8 VMs: 2 cores and 4GB of memory for each VM 
• Set to select less than 6 object

• Targeted JS runtimes (recent versions are used)
• PDF readers: Adobe Acrobat Reader and Foxit PDF Reader
• Chromium (Mojo and DOM) and WebKit (DOM) 

• Counting distinct bugs: to prevent overcounting, the authors manually analyzed all 
crashes
• Counted if an instruction pointer address (where a crash occurred) was different from the others 

and a unique series of minimized JavaScript statements caused a crash

19/23



Suitability of Favocado
• CodeAlchemist is a state-of-the-art JavaScript engine fuzzer that focuses on 

generating valid test cases

• How many semantically correct test cases can be generated shows the suitability 
as a binding code fuzzer

• Among 100K test cases, 28% were valid without causing a runtime error but could 
not make a crash
• From 8,647 seed files, 100K test cases were generated

CodeAlchemist Favocado

20/23



Distinct bugs found by Favocado
• Adobe Acrobat Reader 

• 39 bugs within just 2 weeks 

• Foxit Reader
• 3 use-after-free vulnerabilities

• Chromium
• For DOM binding objects, 6 bugs including 2 

vulnerabilities within 2 weeks
• For Mojo binding objects, 2 bugs including one 

vulnerability within 1 week

• WebKit
• 3 bugs for 4 days

21/23



Case study: Chromium
• Mojo is a platform-agnostic library that enables Inter Process 

Communication (IPC) between processes implemented in multiple 
programming languages 

Minimized JavaScript snippet for triggering a 
use- after-free vulnerability on Chromium

Resulted in deallocation of the smsRcv_A

22/23



Conclusion
• The paper proposes Favocado, a novel fuzzer for JavaScript binding 

code

• It can generate semantically correct test cases by using semantic 
information extracted from IDL files or API references

• It also dynamically handles runtime exceptions using the context 
information

• The evaluation shows its effectiveness by finding 61 vulnerabilities in 
4 different JS runtimes

23/23


