Favocado: Fuzzing the Binding Code of JavaScript Engines
Using Semantically Correct Test Cases

Sung Ta Dinh*, Haehyun Cho*, Kyle Martin+, Adam Oest”?, Kyle Zeng*, Alexandros Kapravelos+, Gail-Joon Ahn*-,
Tiffany Bao*, Ruoyu Wang*, Adam Doup’e*, and Yan Shoshitaishvili*
*Arizona State University, +North Carolina State University, APayPal, Inc., -Samsung Research

NDSS 2021

Minkyung Park
mkpark@mmlab.snu.ac.kr
March 16, 2022

Contents

e JavaScript binding code

* Fuzzing challenges
* Favocado design

e Evaluation

* Conclusion

JavaScript and its fuzzing

* JavaScript (JS) is a dynamic language interpreted by JS engines
e e.g., Chrome V8, SpiderMonkey, Chakra, etc.

* The use of JS has expanded into the entire computing ecosystem

* Adobe Acrobat utilizes JS engines to provide dynamic or interactive content through
JS code embedded in PDF documents

* |t is difficult to effectively fuzz JS engines because of the language’s
syntactical correctness

. Jﬁ engines parse user input code into an abstract syntax tree (AST) and then process
the tree

e User inputs that cannot be transformed into an AST are easily rejected before being
processed

* Existing fuzzers use context-free grammars or existing correct test cases

JavaScript and its fuzzing

* It is also important to generate semantically correct JS codes

* Many JS statements have interdependent relationships

* Correct use of method names, argument types, and return types
* e.g., not using after free

* Most JS fuzzers cannot generate fully semantically correct test cases

* Some fuzzers generates semantic-aware test cases, but the percentage of
rejected test cases is a significant problem

* E.g., CodeAlchemist

* The problem becomes more severe in JS binding layers

JavaScript binding layer

* JS engines provide a binding layer to provide functionality implemented in unsafe

languages such as C and C++

* JS cannot be used to directly implement low-level functionalities and those are

implemented in native code
* e.g., memory management and file access

 JS binding code translates data representation

* |t creates and maps data types between JS
and native code

* Then, JS scripts can call native functions or
control data of native components

* e.g., DOM object

JavaScript

e L
JS Engine Binding Code

JS Runtime System

* During the translation, type- and memory-safety features cannot be implemented

Challenges to fuzz JS binding layer (1)

* It is practically impossible to generate legitimate JS test cases

* Fuzzers need to input many JavaScript statements as a basic testing unit
- A semantically incorrect test case has to stop executing and retire

* Typical JS test cases that trigger the execution of binding code once raise
the excessive number of JavaScript exceptions

* |t involves two steps (i) creating the object and (ii) setting a property or calling a
function

* To fuzz the binding layers, a fuzzer should generate syntactically and
semantically correct test cases to eliminate runtime exceptions

Challenges to fuzz JS binding layer (2)

* The input space is enormous

* There are many object types that are accessible through the binding
layer as a DOM

 Each DOM object may have a multitude of methods and properties

* Creating all objects to enumerate all properties and manipulate all
methods is simply infeasible

* An effective fuzzer should be able to optimize the test case
generation by reducing the size of the input space

Favocado approach

* Favocado is a new fuzzing approach to find vulnerabilities in the binding layers of JS
engines

* Generating legitimate test cases
* Favocado parses semantic information from the Interface Definition Language (IDL) files or API
references to obtain semantic information
* Such as exact types and possible values of binding objects
* Favocado uses the information to complete a fuzzed statement and prevents unexpected
runtime errors

* Reducing input spaces

Favocado approach

* Favocado is a new fuzzing approach to find vulnerabilities in the binding layers of JS
engines

* Generating legitimate test cases

* Reducing input spaces
* One unique feature of the JavaScript binding layer is the relative isolation of different DOM
objects
» Different DOM objects are implemented as separate native modules unless an object in a module
can be used by code in another module
* E.g., spell.check() in Adobe Acrobat’s spell module and Net.HTTP.request() in its Net.HTTP module
spell.check() — Net.HTTPrequest()
Net.HTTPrequest() spell.check()

* Based on the relations between objects, the entire input space is divided into equivalence classes
* Favocado only mutate within each equivalence class

Favocado overview

IDL files

Semantic Information

interface INTERFACE_NAME {
const unsigned long value = 12345;
attribute Node node;
void func(long argument, ...);

Test case Generator (fuzz.js)

API references

Class: Doc
Method: addIcon
Parameters:
cName — The name of the new object
icon — The Icon object to add

Semantic information construction

Binding_objects["object"] = {
"properties": ({
"propl": {
"read only":"None", "type": "boolean"
}

},
"methods": {

"func": [{
"exception":0, "num arg":1,
"args":{"arg0":"DOMString"},
H,
},
"has parent":1,
"p_typename":"parent_ object type"
}

Statement
formats

Semantic Context
information information

Ty

Ty Ty

Generate test cases

Execute test cases

Fuzzing: run fuzz. js

Dynamic test case generator

10/23

Semantic information construction

* Favocado extracts

e (1) Binding object names
* A name of each object and a name of a parent

e (2) Binding object methods
e Each method’s name and all arguments’ types

e Checks whether a method can raise an
exception

* (3) Binding object properties
* A name, type, and possible string values of
each property
* Checks whether a property is read-only

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Binding_objects["HTMLDialogElement"] = ({
"properties":
{

"open":

{
"read_only":"None", "type":"boolean"
}o
"returnValue":
{
"read_only":"None", "type":"DOMString"
}
Yo
"methods":
{
"close":
{
"exception":0, "numarg":1,
"args":{"arg0":"DOMString"},
bo
"showModal":
{
"exception”":1, "numarg":0,
"args":{},
bo
"show":
{
"exception":0, "numarg":0,
"args":{},
}
}I
"has_parent":1,
"p_typename":"HTMLElement"
}

Semantic information construction

* Favocado finds binding objects related each other using semantic information

1 "ImageCapture":

2 [{

"Blob", "ImageBitmap", "MediaStreamTrack", "
PhotoCapabilities"
4 }1]

5
6 "Crypto":

7 [{
8 "ArrayBufferView", "SubtleCrypto"

9 }1]

Listing 3: An example of related objects discovered by
Favocado.

* By the relation between objects, the entire input spaces can be divided into
equivalence classes

Test case generator

» Test case generator (fuzz.js) dynamically generates and executes JS statements
inside a target JS engine

* Itincludes the semantic information, context information, statement formats,
and pre-defined JS statements,

* Context information: a list of allocated variable names with their types
* The generator maintains the context information to prevent unexpected runtime errors
* E.g., reference and type errors

Statement formats

e Statement formats

var obj = new obj(args)

obj.prop = value

var variable = obj.method with return(args)
obj.method without_return(args)
for(var i=1l; i++; i<n) { statements }
array|[index] = value

obj._ proto__ = obj;

obj._ defineSetter_ (prop, func)

obj. defineGetter_ (prop, func)
obj.prototype.method ()

function(args) { statements }

RowoJdoouUubdWNR

e

Test case generator

» Test case generator (fuzz.js) dynamically generates and executes JS statements
inside a target JS engine

* Itincludes the semantic information, context information, statement formats,
and pre-defined JS statements,

* Pre-defined JS statements
* To manually initialize some binding objects that cannot be initialized automatically

* Usually, binding objects that require environment-specific data such as IP address or image
files

Test case generator

(S

=

HoOoOwooJdJoUl&dWN

Initialize all objects a

while (1) {

}

Select a statement format
Complete the selected format
Log the complete statement
try {

Execute the statement
} catch (error) {

Continue the loop

}

For setup, Favocado randomly selects a set of targeted
binding objects
* The related objects also should be selected

Firstly, it initializes all objects that are going to be fuzzed
via predefined statements

It randomly selects a statement format

Then, it completes the format using the semantic
information and the context information

Test case generator

(S

Statement formats
) |
FOr setup, [... .oi - v oo carge) f targeted
1 1 2|obj.prop = value
blndlng Ob 3|var variable = obj.method with return(args)
4 |obj.method without return(args)
d The rE|a 5|for(var i=1l; i++; i<n) { statements }
6 |array[index] = value
gum & v : 7|obj._ proto_ = obj;
1|Initialize all objects 8|obj._ defineSetter (prop, func)
: ° H 1+ 1r 9|0b].__defineGetter_ (prop, func) '
§ Whlé:le(.i:: ; statement format FIrStIy' It Irl‘o obj .prototype.method () O be fuzzed
4 Complete the selected format Vla predeﬁl‘l function(args) { statements }
5 Log the complete statement
6 try {
7 Execute the statement
8 } catch (error) ({
g } Continue the loop ° It r‘andoml i ‘= ob3 F’method ‘W’ — ‘ﬂ
1] L J J ,]
* Then, it co I 1 1 i antic
18] fO ma t 10 Semantic information

obj ——propertiesk{ methods %{ args

Context information

variable name —{ type ‘

16/23

Test case generator

(S

=

HoOoOwooJdJoUl&dWN

Initialize all objects a

while (1) {

}

Select a statement format
Complete the selected format
Log the complete statement
try {

Execute the statement
} catch (error) {

Continue the loop

}

For setup, Favocado randomly selects a set of targeted
binding objects
* The related objects also should be selected

Firstly, it initializes all objects that are going to be fuzzed
via predefined statements

It randomly selects a statement format

Then, it completes the format using the semantic
information and the context information

Evaluation

* Q1. Are existing JavaScript engine fuzzers sufficient to fuzz
JavaScript binding code?

e Q2. Can Favocado discover new vulnerabilities in real-world
JavaScript runtime systems?

* Q3. Can Favocado be applied to fuzzing different types of binding
code in JavaScript runtime systems?

* Q4. How does Favocado compare to state-of-the-art JavaScript fuzzers
that can fuzz binding code?

Experiment setup

* Implementation
* An IDL parser based on a chromium parser and API parsers for parsing PDF readers

e System and parameter setup
8 VMs: 2 cores and 4GB of memory for each VM
» Set to select less than 6 object

* Targeted JS runtimes (recent versions are used)
* PDF readers: Adobe Acrobat Reader and Foxit PDF Reader
e Chromium (Mojo and DOM) and WebKit (DOM)

* Counting distinct bugs: to prevent overcounting, the authors manually analyzed all
crashes

e Counted if an instruction pointer address (where a crash occurred) was different from the others
and a unique series of minimized JavaScript statements caused a crash

Suitability of Favocado

* CodeAlchemist is a state-of-the-art JavaScript engine fuzzer that focuses on
generating valid test cases

* How many semantically correct test cases can be generated shows the suitability
as a binding code fuzzer

* Among 100K test cases, 28% were valid without causing a runtime error but could
not make a crash

* From 8,647 seed files, 100K test cases were generated

Breakdown of Runtime Errors Breakdown of Runtime Errors
Success Rate Fail Rate Syntax Error Reference Error Type Error :: : Success Rate Fail Rate Syntax Error ~ Ref. Error Type Error
Chromium 90.92% 9.08% 6.55% 18.97% 74.48%
28.24% 71.76% 1.76% 34.80% 63.44% WebKit 90.75% 9.25% 6.31% 21.81% 71.87%

CodeAlchemist Favocado

Distinct bugs found by Favocado

L4 Ad O b e AC ro b at Re a d e r No. Target JavaScript Runtime System Type Exploitable Impact Status
1 Adobe Acrobat Reader v2019.012.20040 Use-after-free v High CVE-2019-8211
1 1 1 2 Adobe Acrobat Reader Use-after-free 4 High CVE-2019-8212
* 3 9 b u gs Wlt h In J u St 2 wee ks 3 Adobe Acrobat Reader Use-after-free v High CVE-2019-8213
4 Adobe Acrobat Reader Use-after-free v High CVE-2019-8214
5 Adobe Acrobat Reader Use-after-free v High CVE-2019-8215
6 Adobe Acrobat Reader Use-after-free v High CVE-2019-8220
. 7 Adobe Acrobat Reader Use-after-free v High CVE-2019-16448
° d 8 Adobe Acrobat Reader Use-after-free v High CVE-2020-3792
FOX It Re a e r 9 Adobe Acrobat Reader Use-after-free v High Reported
10 Adobe Acrobat Reader Untrusted pointer dereference v High CVE-2019-16446
° _ _ HIR A 11 Adobe Acrobat Reader Heap out-of-bound write 4 High CVE-2020-9594
3 u Se afte r fre e vu I n e ra b I I It I e S 12 Adobe Acrobat Reader Heap out-of-bound read v Moderate Reported
13 Adobe Acrobat Reader Uninitialized heap memory use v Moderate Reported
14 Adobe Acrobat Reader Uninitialized heap memory use v Moderate Reported
15 Adobe Acrobat Reader Uninitialized heap memory use v Moderate Reported
. 16 Adobe Acrobat Reader Type confusion v High CVE-2019-8221
17 Adobe Acrobat Reader Type confusion v High *Fixed
° C h ro m I u m 18 Adobe Acrobat Reader Type confusion v High *Fixed
19 Adobe Acrobat Reader Null pointer dereference X Low Reported
H H H H H Adobe Acrobat Reader Null pointer dereference X Low Reported
° FO r D O M b N d In g (0] bJ e Cts, 6 b u gs In CI u d N g 2 39 Adobe Acrobat Reader Null pointer dereference X Low Reported
T . . 40 Adobe Acrobat Reader v2020.009.20067 Use-after-free v High CVE-2020-9722
vu I nera b | I |t ies w |t h N 2 wee kS 41 Adobe Acrobat Reader Use-after-free v High Reported
42 Adobe Acrobat Reader Heap overflow v High Reported
. 43 Adobe Acrobat Reader Heap out-of-bout read v Moderate Reported
® FO r M OJ (0] b N d N g (0] bJ e CtS ’ 2 b u gS N CI u d N g one 44 Adobe Acrobat Reader Uninitialized heap memory use v Moderate Reported
ops . . 45 Adobe Acrobat Reader Null pointer dereference v Moderate Reported
vulnerabil |ty within 1 week 46 Foxit Reader v9.5 Use-after-free 4 High Reported
47 Foxit Reader Use-after-free v High Reported
48 Foxit Reader Use-after-free v High Reported
49 Chromium (Mojo) v84.0.4110.0 Use-after-free v High Reported
50 Chromium (Mojo) Null pointer dereference X Low Reported
51 Chromium (DOM) v84.0.4110.0 Heap overflow v High CVE-2020-6524
PY W e b Kit 52 Chromium (DOM) Security check fail v Moderate Reported
53 Chromium (DOM) Null pointer dereference X Low Reported
Chromium (DOM) Null pointer dereference X Low Reported
56 Chromium (DOM) Null pointer dereference X Low Reported
i 3 b u gS fO r 4 d ays 57 WebKit v2.28 Use-after-free v High Reported
58 WebKit Heap out-of-bound Write v High Reported
59 WebKit Heap out-of-bound Read v Moderate Reported
60 WebKit Null pointer dereference X Low Reported
61 WebKit Null pointer dereference X Low Reported

*Fixed = The vendor silently fixed a bug after we reported it.

21/23

Case study: Chromium

* Mojo is a platform-agnostic library that enables Inter Process
Communication (IPC) between processes implemented in multiple

programming languages

1 smsRcv_A = new blink.mojom.SmsReceiverPtr () ;
2 Mojo.bindInterface (blink.mojom.SmsReceiver.name,

mo jo.makeRequest (smsRcv_A) .handle) ;
3 ’////////”,,,
4 smsRcv_B = new blink.mojom.SmsReceiverPtr () ;
5 Mojo.bindInterface (blink.mojom.SmsReceiver.name,

mo jo.makeRequest (smsRcv_B) .handle) ;
6
7 smsRcv_A.receive ()

Minimized JavaScript snippet for triggering a
use- after-free vulnerability on Chromium

22/23

Conclusion

* The paper proposes Favocado, a novel fuzzer for JavaScript binding
code

* It can generate semantically correct test cases by using semantic
information extracted from IDL files or APl references

* It also dynamically handles runtime exceptions using the context
information

* The evaluation shows its effectiveness by finding 61 vulnerabilities in
4 different JS runtimes

