## FootprintID: Indoor Pedestrian Identification through Ambient Structural Vibration Sensing

Shijia Pan, Tong Yu, Mostafa Mirshekari, Jonathon Fagert, Amelie Bonde, Ole J. Mengshoel,
Haeyoung Noh, and Pei Zhang, IMWUT '2017

#### **Chorom Hamm**

MMLAB-SNU

crhamm@mmlab.snu.ac.kr

Feb 16, 2021

#### **Outline**

- Introduction
- System Design and details
- Evaluation
- Conclusion

### Introduction: FootprintID

- Identify a pedestrian through the footstep-induced vibration on the floor
  - The unique walking patterns induce distinguishable vibration
  - It should consider the sensitivity to changing walking conditions including walking speed and stepping locations
- Present a novel algorithm to infer pedestrian identity
  - Select step signals based on stepping location
  - Select supervised or transductive classifiers based on walking speed
  - Apply RTSVM and ITSVM when the tested walking speeds vary from those in the labeled training set

### **Background: Vibration from Gaits**

- Why people have different gaits
  - Gait describes a subject's walking pattern including limb locomotion and neurological control
- Why the location and frequency of the steps affect the sensing signal
  - Vibration signal waveforms can be different due to material heterogeneity and structural layout
  - The higher the step frequency, the longer the step length, and the faster the walking speed



#### **System Overview**

- Identify pedestrians by classifying gait patterns
  - Gait patterns would be distinguishable based on each person's walking habits
- Need to overcome variations due to structural difference of each floor and step frequency variation by walking speed



### 1. Data Sensing

- Place a sensing unit on the floor and fix geophone to preserve high-frequency signals
- Convert the velocity of the monitored surface to voltage by geophone
- Convert the signal into a digitized signal with a 10-bit ADC module sampled at 1000 Hz
- Observe a clear difference in both time and frequency domains of different gaits from two pedestrians





100

frequency (Hz)

**Amplifier** 

Geophone

200

150

#### 2. Information Extraction

- Conduct feature extraction to represent a person's footstep effectively
- Step Events Detection  $\rightarrow threshold = \mu_{wse} + 3\sigma_{wse}$ 
  - Form a Step Event by finding consecutive candidate windows which have higher energy value over the threshold
- Inter-footstep step frequency and relative location
  - Estimate the average time interval between consecutive Step Events excepting the highest and lowest K values
- Intra-footstep frequency
  - Normalize the signal energy to remove the footstep-sensor distance difference

#### 3. Structural Vibration Handler

- Should select SEs that are from approximately the same area from each trace
  - Even similar foot strikes are only comparable when they are from the same area
- Infer step location based on the SE of the closest area to the sensor to overcome structural variation



- Calculate the average value of SE energy using a sliding window to smooth the trend change
- Select the peak of the sequence of calculated value as the closest area to the sensor

### 4. Step Frequency Variation Handler

 Aim to acquire better accuracy, even though a large amount of labeled training data is not collected from diverse walking speeds

#### → Accuracy vs. Performance

- Choose between supervised learning and transductive learning based on the detected footstep step frequency
  - Apply the supervised learning model (SVM) directly for a dataset with step frequencies in the labeled training data
  - Use an iterative transductive support vector machine (ITSVM) algorithm if the step frequency is not in the labeled training data

### **Support Vector Machine (SVM)**

 Find the maximum-margin hyperplane w by minimizing the loss function, given two-class training data

$$\min_{\mathbf{w},b} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{q=1}^{l} \max(1 - y_q(\mathbf{w}^T \phi(\mathbf{x}_q) + b), 0).$$





- Achieve high accuracy in identifying the participants when they walk at a specific speed during a short amount of time
  - → How about different step frequency?

### **Transductive SVM (TSVM)**

• Find the maximum-margin hyperplane w and bias term b by minimizing the following loss function, given two-class training data and unlabeled data

$$\min_{\mathbf{w}, b} \frac{1}{2} ||\mathbf{w}||^2 + C_1 \sum_{q=1}^{l} \max(1 - y_q(\mathbf{w}^T \phi(\mathbf{x}_q) + b), 0) \\
+ C_2 \sum_{q=l+1}^{l+u} \max(1 - |\mathbf{w}^T \phi(\mathbf{x}_q) + b|, 0),$$

- Tend to find boundaries in regions where there is less labeled and unlabeled data (low-density separation method)
  - → How about reducing irrelevant unlabeled data?

### Refined Transductive SVM (RTSVM)

- Need to refine the relevant unlabeled data for the training of each binary TSVM to overcome the irrelevant unlabeled data problem  $\rightarrow k\text{-}class\ problem$ 
  - A selected unlabeled dataset leads to a faster training speed
- Utilize supervised SVM to pre-select unlabeled SEs, which are most likely to be class i or j
  - Use multi-class SVM with labeled data to predict the identity of all unlabeled SEs
  - Calculate the most frequently appearing class in each trace as the class of the trace and use SEs for the binary TSVM modeling
    - → How about various step frequencies?

### **Iterative Transductive SVM (ITSVM)**

- Train multi-class TSVM model in an iterative way
  - Label some unlabeled data in the frequency of  $\mu \pm \sigma$  to increase the size of the 'labeled' dataset
  - Construct multi-class RTSVM with the test data with step frequencies of  $\mu \pm 2\sigma$  and  $\mu \pm 3\sigma$  based on the updated labeled dataset



#### **Load Test**

- Figure out the reasonable threshold to cluster the Step Events indicating negligible differences caused by structural variation
  - The load test uses ball drops to understand structural vibration without human behavior randomness
  - The structural variation effects on footstep induced vibration data can be clearly observed in the area monitored by one sensor





#### **Controlled Human Test**

Collect data for seven controlled step frequencies with metronome beats

| Gender \ Step Freq | $\mu - 3\sigma$ | $\mu - 2\sigma$ | $\mu - \sigma$ | μ   | $\mu + \sigma$ | $\mu + 2\sigma$ | $\mu + 3\sigma$ |
|--------------------|-----------------|-----------------|----------------|-----|----------------|-----------------|-----------------|
| Male               | 95              | 103             | 111            | 119 | 127            | 134             | 142             |
| Female             | 98              | 107             | 116            | 125 | 134            | 143             | 152             |

- Consider various step frequency due to randomness in human behavior
  - Check that the variations are small enough and each level is clearly distinguishable



### **Evaluation of System Factors**

 Compare the effect of the amount of labeled training dataset, step location, and step frequency to identification accuracy







### **Algorithm Analysis**

 Evaluate the identification accuracy and runtime for scalability using SVM, TSVM, RTSVM, and ITSVM



| Algorithms       | SVM (train on $\mu$ ) | SVM (train on $\mu \pm 3\sigma$ ) | TSVM     | RTSVM   | ITSVM (FootprintID) |
|------------------|-----------------------|-----------------------------------|----------|---------|---------------------|
| Runtime Avg. (s) | 0.8724                | 9.7886                            | 382.4303 | 74.7586 | 218.9920            |
| Runtime Std. (s) | 0.0496                | 0.9174                            | 94.8886  | 8.3837  | 18.9385             |

### **Uncontrolled Experiments**

- Evaluate the system based on pedestrian's natural walking form
- Achieve the best accuracy due to the higher accuracy on the low step frequency data in case of ITSVM
- Improve identification accuracy from 67% to 90% when threshold discards half of the data

| Models                                                                                              | SVM | TSVM | RTSVM | ITSVM (FootprintID) |
|-----------------------------------------------------------------------------------------------------|-----|------|-------|---------------------|
| labeled: $\mu$ , unlabeled: $\mu \pm \sigma$ , $\mu \pm 2\sigma$ , $\mu \pm 3\sigma$ , uncontrolled | 56% | 52%  | 52%   | 67%                 |
| labeled: $\mu$ , unlabeled: $\mu \pm \sigma$ , $\mu \pm 2\sigma$ , $\mu \pm 3\sigma$                | 56% | 54%  | 51%   | 67%                 |
| labeled: $\mu$ , unlabeled: uncontrolled                                                            | 50% | 22%  | 22%   | 45%                 |



#### Conclusion

- Present the FootprintID system which identifies pedestrians using footstep induced structural vibrations
- Characterize the variation of footstep induced structural vibration signals and design ITSVM learning algorithm
- Identify correct pedestrians up to 96% accuracy by ITSVM with the average step frequency  $\mu$  dataset as training data
- Demonstrate to improve 1.5X identification accuracy in uncontrolled experiments based on ITSVM

# Thank you