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Introduction: FootprintiD

* |dentify a pedestrian through the footstep-induced vibration on the floor

* The unique walking patterns induce distinguishable vibration
* |t should consider the sensitivity to changing walking conditions including walking speed

and stepping locations

* Present a novel algorithm to infer pedestrian identity
* Select step signals based on stepping location
* Select supervised or transductive classifiers based on walking speed

* Apply RTSVM and ITSVM when the tested walking speeds vary from those in the labeled
training set
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Background: Vibration from Gaits

 Why people have different gaits

e Gait describes a subject’s walking pattern
including limb locomotion and neurological

control
* Why the location and frequency of the steps

affect the sensing signal
 Vibration signal waveforms can be different due
to material heterogeneity and structural layout

* The higher the step frequency, the longer the
step length, and the faster the walking speed

(a) Fast Walk, s=142step/min (b) Slow Walk, s=95step/min
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System Overview

* |dentify pedestrians by classifying gait patterns

* Gait patterns would be distinguishable based on each person’s walking habits

* Need to overcome variations due to structural difference of each floor and
step frequency variation by walking speed
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1. Data Sensing

* Place a sensing unit on the floor and fix geophone ,
¢

to preserve high-frequency signals . AN N\
3 g‘, V0 | 1

* Convert the velocity of the monitored surface to —
voltage by geophone ke

* Convert the signal into a digitized signal with a 10-bit
ADC module sampled at 1000 Hz

(a) Person # 1 time domain (b) Person # 1 frequency domain
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2. Information Extraction

e Conduct feature extraction to represent a person’s footstep effectively

* Step Events Detection -> threshold = p, 5 + 305,

* Form a Step Event by finding consecutive candidate windows which have higher energy
value over the threshold

* Inter-footstep step frequency and relative location

e Estimate the excepting the
highest and lowest K values

* Intra-footstep frequency

* Normalize the signal energy to remove the footstep-sensor distance difference
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3. Structural Vibration Handler

* Should select SEs that are from approximately ——
the same area from each trace w551
* Even similar foot strikes are only comparable '
when they are from the same area o |H o

4 5 6 7 8 9

* Infer step location based on the SE of the st I
closest area to the sensor to overcome
structural variation

e Calculate the average value of SE energy using a sliding window to smooth the trend
change

* Select the peak of the sequence of calculated value as the closest area to the sensor
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4. Step Frequency Variation Handler

* Aim to acquire better accuracy, even though a large amount of labeled
training data is not collected from diverse walking speeds

-> Accuracy vs. Performance

* Choose between supervised learning and transductive learning based on the
detected footstep step frequency

* Apply the supervised learning model (SVM) directly for a dataset with step frequencies in
the labeled training data

e Use an iterative transductive support vector machine (ITSVM) algorithm if the step
frequency is not in the labeled training data
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Support Vector Machine (SVM)

* Find the maximum-margin hyperplane w by
minimizing the loss function, given two-class
training data
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e Achieve high accuracy in identifying the participants when they walk at a
specific speed during a short amount of time

- How about different step frequency?

References: https://en.wikipedia.org/wiki/Support-vector_machine 10/20



Transductive SVM (TSVM)

* Find the maximum-margin hyperplane w and bias term b by minimizing the
following loss function, given two-class training data and unlabeled data

I
. 1
min  =||w||? +C, Z max (1 — yg(wT $(x4) + b),0)
w,b 2
g=1
l+u
+Cp ) max(1-w'g(xg) +bl,0),
g=I+1

* Tend to find boundaries in regions where there is less labeled and unlabeled
data (low-density separation method)

- How about reducing irrelevant unlabeled data?
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Refined Transductive SVM (RTSVM)

* Need to refine the relevant unlabeled data for the training of each binary
TSVM to overcome the irrelevant unlabeled data problem

* A selected unlabeled dataset leads to a faster training speed
e Utilize supervised SVM to pre-select unlabeled SEs, which are most likely to be
classiorj
e Use multi-class SVM with labeled data to predict the identity of all unlabeled SEs

* Calculate the most frequently appearing class in each trace as the class of the trace and
use SEs for the binary TSVM modeling

- How about various step frequencies?
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Iterative Transductive SVM (ITSVM)

* Train multi-class TSVM model in an iterative way
* Label some unlabeled data in the frequency of u + o to increase the size of the ‘labeled’

dataset

* Construct multi-class RTSVM with the test data with step frequencies of u + 20 and u +

30 based on the updated labeled dataset

p+ 3o
ji+ 2o

p+a

(a) Datasets change with continuity

4 labeled positive data

A |abeled negative data

(2 unlabeled positive data
unlabeled negative data

(b) Datasets change with discontinuity

f%._ o A labeled positive data

u+30 *Og A labeled negative data
[ ] {2 unlabeled positive data
unlabeled negative data
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Load Test

* Figure out the reasonable threshold to cluster the Step Events indicating
negligible differences caused by structural variation

* The load test uses ball drops to understand structural vibration without human behavior
randomness

(@) Load test experiment deployment (b) Impulse similarity comparison (xcorr)

* The structural variation effects [T
Hallway
on footstep induced vibration
impulse 1 impulse2 impulse 3 impulse 4 impulse 5 o
data can be clearly observed !
t E
in the area monitored by one T d o
sensor S ) - -
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Controlled Human Test

* Collect data for seven controlled step frequencies with metronome beats

Gender \ StepFreq py-30¢ pu—-20 pu—-o pu pu+o pu+2c p+3c
Male 95 103 111 119 127 134 142
Female 98 107 116 125 134 143 152

e Consider various step frequency due to randomness in human behavior

* Check that the variations are small enough and each level is clearly distinguishable

-’g 160 (c) Measured step frequency in controlled experiment
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Evaluation of System Factors

 Compare the effect of the amount of labeled training dataset, step location,

and step frequency to identification accuracy

(b) Stride location variation
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Algorithm Analysis

e Evaluate the identification accuracy and runtime for scalability using SVM,
TSVM, RTSVM, and ITSVM

(a) Single step frequency result analysis
1 B ] |
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SVM

ITSVM

ID accuracy
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H ‘ ‘ RTSVM
0 .'-_I m |:|FootprintID
M-30 M-20 M-O M M+O H+20 H+30
Step frequency
Algorithms SVM (train on ) SVM (trainon g +30) TSVM  RTSVM ITSVM (FootprintID)
Runtime Avg. (s) 0.8724 9.7886 382.4303 74.7586 218.9920

Runtime Std. (s) 0.0496 0.9174 94.8886  8.3837 18.9385
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Uncontrolled Experiments

* Evaluate the system based on
pedestrian’s natural walking form

* Achieve the best accuracy due to
the higher accuracy on the low
step frequency data in case of
ITSVM

* Improve identification accuracy
from 67% to 90% when threshold
discards half of the data

Models

SVM TSVM RTSVM _ITSVM (FootprintID)

labeled: y, unlabeled: i + o,
p + 20, ji = 30, uncontrolled
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labeled: , unlabeled:
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labeled: p,
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56% 52%
56% 54%
50% 22%

22%

45%
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Conclusion

* Present the FootprintID system which identifies pedestrians using footstep
induced structural vibrations

e Characterize the variation of footstep induced structural vibration signals and
design ITSVM learning algorithm

* |dentify correct pedestrians up to 96% accuracy by ITSVM with the average
step frequency u dataset as training data

* Demonstrate to improve 1.5X identification accuracy in uncontrolled

experiments based on ITSVM
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