

BEFORE I BEGIN...

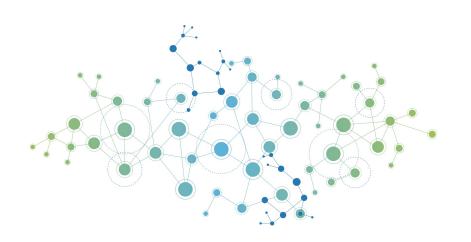
■ In 3-weeks for my FI seminar,

Road to decentralized Public Key Infrastructure (D-PKI)

- Problems with Centralized PKI (C-PKI)
 - Single point of failure, large attack surface, different registration/renewal methods per service providers, revocation/equivocation
 - Managing multiple PKIs (web, cloud, privately maintained, etc.) are a headache
 - Can we detect certificate misissuance? → CT (Certificate Transparency) logs
 - ✓ F-PKI: Enabling Innovation and Trust Flexibility in the HTTPS Public Key Infrastructure
 - Can we trust CAs? → CCADB (Common CA Database)
 - ✓ What's in a Name? Exploring CA Certificate Control
- Most D-PKI involves the usage of blockchain/DLT (B-PKI)
- In a nutshell... Enhancing PKI through Ethereum smart contracts

MMLAB MAIN SEMINAR

IKP: TURNING A PKI AROUND WITH DECENTRALIZED AUTOMATED INCENTIVES


STEPHANOS MATSUMOTO^{1,2} AND RAPHAEL M. REISCHUK²
1 CARNEGIE MELLON UNIVERSITY 2 ETH ZURICH

IEEE S&P 2017

Hyunsoo Kim (hskim@mmlab.snu.ac.kr) 2022. 05. 18

CONTENTS

MOTIVATIONS

INSTANT KARMA PKI (IKP)

ETHEREUM-BASED DESIGN AND EVALUATION

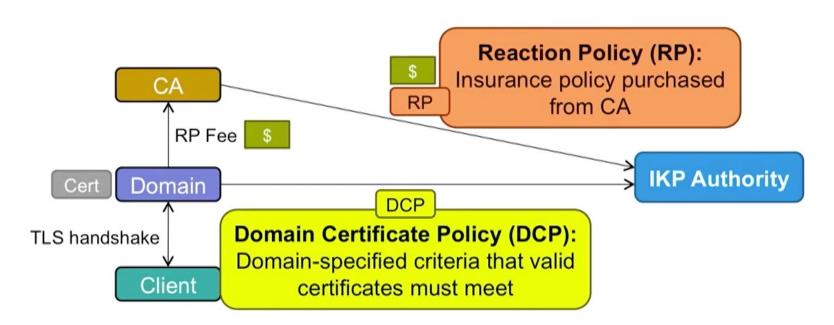
CONCLUSION & CRITIQUE

PROBLEMS IN THE WEBPKI

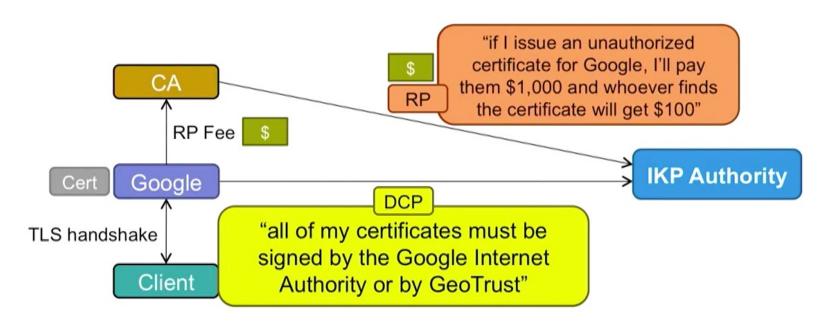
Reporting misissued certificates is time- and labor-intensive

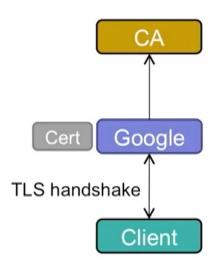
- How can we automatically handle and incentivize reports of misissued certificates?
- Not just certificates but also CAs
 - E.g. Symantec misissues 2,645 certificates for both existing(incl. Google) and unregistered domain names
 - CAs do not have the incentives and deterrents necessary for correct behavior
- How can we incentivize correct behavior and deter misbehavior in the TLS PKI?
 3/16

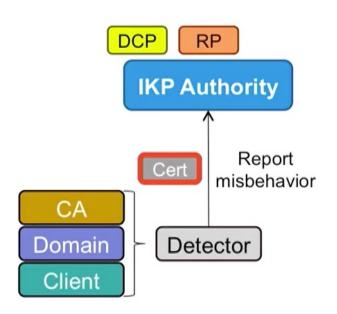
INSTANT KARMA PKI (IKP)


- Auditability: all information required to detect misbehavior is public
- Automation: react to CA misbehavior without additional action

- Incentivization: rewards to good CAs and for exposing misbehavior
- Deterrence: guaranteed punishment for misbehaving parties

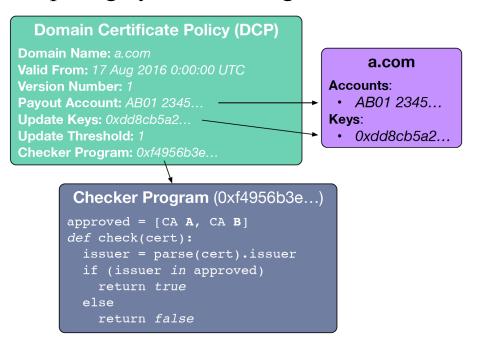

Architecture


Example



Example RP payout

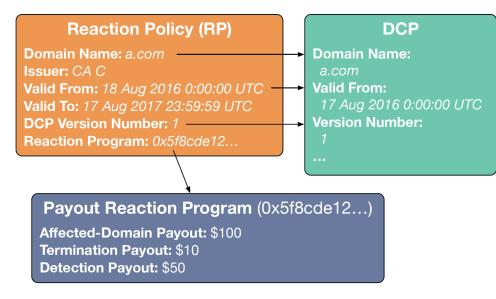
Example RP payout



DOMAIN CERTIFICATE POLICIES (DCPs)

- Domains publicize certificate criteria
- Financial account information enables automatic payouts
- Checker program (smart contract) allows expressive range of policies
- Protected from tampering by threshold signature scheme

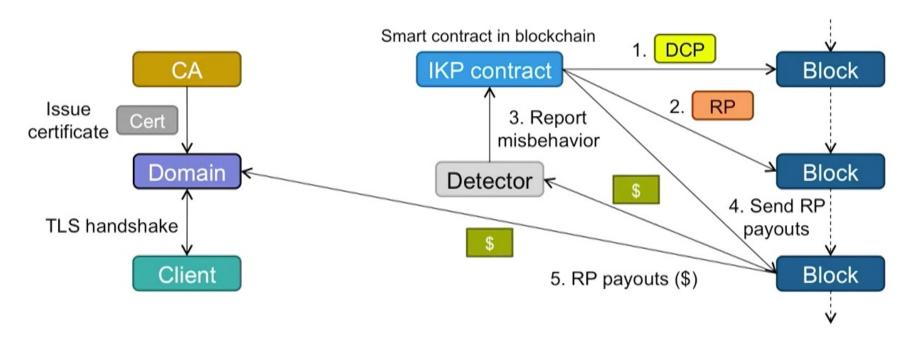
BOOTSRAPING DCPS


- How can we ensure that a domain firstever submitting a DCP is legit?
- Allowing any DCPs to be registered could cause problems
- Bootstrap proofs
 - Protect integrity of initial DCP registration
 - Domains send certificate chain(s) anchored in a known root CA key
 - Registrations can be overriden with more independent chains
 - Example)
 - 1. Alice claims mmlab.snu.ac.kr is her domain, provides a verifiable certificate chain, which is actually corrupted
 - 2. MMLAB_DCP_{Alice} is successfully registered
 - 3. Bob claims mmlab.snu.ac.kr is his domain, provide two verifiable certificate chain
 - 4. IKP authority overrides MMLAB_DCP_{Alice} with MMLAB_DCP_{Bob}

REACTION POLICIES (RPS)

- Purchased from CAs, negotiated between the domain and the CA
- Independent of certificates issuance
- For one instance of misbehavior
- Payouts program (smart contract)
 - {Affected-Domain, Termination} payout: CA → Domain
 - Domains who fell victims of unauthorized certificates
 - Detectors payout: CA → Detector
 - Paid to whomever reports an unauthorized certificate issued by IKP CA

INCENTIVES IN IKP


- Carefully designed to provide financial gurantees
- CAs
 - Paid for correctly issuing a certificate in IKP
 - ✓ Gain a business edge over free CAs like [Let's Encrypt]
 - Cannot profit by collustion with domains/detectors
- Detectors
 - Profit from reporting a misissued certificate
 - Fined for spuriously reporting certificates

IKP IN ETHEREUM

Design overview

IMPLEMENTATION

- Prototype in Solidity (*Github link is dead*)
 - Only handled certificates with SHA-256 hash and RSA signatures
 - Relies on RSA verification as Ethereum Virtual Machine (EVM) primitive
- IKP operations are cheap
 - One-time IKP deployment cost: \$4.55 @ 2017
 - Operational costs were a small fraction of certificate costs
 - Even considering the 10x price increase of ETH \rightarrow \$45 for IKP deployment

Operation	Approx. Cost (USD)
CA registration	\$0.2507
CA update	\$0.0950
DCP registration	\$0.5830
DCP update	\$0.4970
RP creation	\$0.6223
RP termination	\$0.2728
Pre-report misbehavior	\$0.1754
Report misbehavior	\$0.4094
Send RP payouts	\$0.2961

CA	Certificate	Cost
Highest-Risk		
GlobalSign [5]	Wildcard	\$849
GlobalSign	DomainSSL	\$249
StartCom [9, 71]	Ext. Validation	\$199
StartCom	Org. Validation	\$119
Entrust [7]	Wildcard	\$699
	• • •	
Certum [3]	Commercial SSL	\$25
Starfield [8]	Standard SSL	\$7
Comodo [4]	EV SSL	\$99
IdenTrust [6]	Multi Domain SSL	\$299
IdenTrust	Standard SSL	\$99

CONCLUSION AND CRITIQUE

- Auditability: DCPs and RPs live on the Ethereum blockchain
- Automation: IKP authority implemented as a smart contract
- Incentivization: payouts align incentives with desired behavior
- Deterrence: misbehaving CAs face public, financial penalties

Critiques

- Relying on number of verifiable chains in bootstrap proof is questionable, perhaps using CT logs for membership proof is a better approach
- Weak or no argument regarding the use of Ethereum, is it necessary to use public PoW-based blockchain?
- Amounts of incentives/payouts are unclear

Thank your!