
IKP: Turning a PKI Around with
Decentralized Automated Incentives

Stephanos Matsumoto
Carnegie Mellon University/ETH Zurich

Raphael M. Reischuk
ETH Zurich

Abstract—Despite a great deal of work to improve the TLS
PKI, CA misbehavior continues to occur, resulting in unau-
thorized certificates that can be used to mount man-in-the-
middle attacks against HTTPS sites. CAs lack the incentives
to invest in higher security, and the manual effort required
to report a rogue certificate deters many from contributing to
the security of the TLS PKI. In this paper, we present IKP, a
platform that automates responses to unauthorized certificates
and provides incentives for CAs to behave correctly and for
others to report potentially unauthorized certificates. Domains
in IKP specify criteria for their certificates, and CAs specify
reactions such as financial penalties that execute in case of
unauthorized certificate issuance. By leveraging smart contracts
and blockchain-based consensus, we can decentralize IKP while
still providing automated incentives. We describe a theoretical
model for payment flows and implement IKP in Ethereum to
show that decentralizing and automating PKIs with financial
incentives is both economically sound and technically viable.

I. INTRODUCTION

Transport Layer Security (TLS) [30] secures much of the en-

crypted client-server communication in the World Wide Web:

HTTPS [77], which runs over TLS, is now estimated to be used

in more than half of all page loads in web browsing [39]. The

security of the TLS public-key infrastructure (PKI) heavily

relies on certificate authorities (CAs), who make a business

out of certifying the authenticity of sites’ public keys. Without

the correct operation of CAs, the use of encryption provides

no benefit, as clients may use a key that does not actually

belong to the legitimate server.

Unfortunately, CAs have shown to be prone to compromises

and operational errors. These failures have occurred all around

the world, including the US [26, 64], France [51], the Nether-

lands [42], Turkey [50], and China [52]. Even Symantec,

which has almost a quarter of the TLS-certificate market

share [10], issued unauthorized certificates for Google and

almost 2,500 unauthorized certificates for both real and unreg-

istered domains as part of a test in 2015 [80, 81]. Thus, while

CAs play a critical role to the security of the TLS ecosystem,

they have failed in this role by issuing unauthorized certificates

in error, maliciously issuing certificates to avoid changing

browser requirements [56], or even selling CA authority as

a service [74]. Some of these failures have led to man-

in-the-middle (MitM) attacks, allowing the interception of

communication with popular sites such as Google, Microsoft

Live, Skype, and Yahoo [65, 66].

We observe that despite the need for CAs to invest more in
security, there are insufficient incentives for them to do so.

CAs that issue unauthorized certificates enable MitM attacks

between clients and domains, who suffer the consequences

of a rogue CA’s misbehavior [59]. These MitM attacks are

often only visible to those being attacked, since an adversary

could present an unauthorized certificate for a domain only to

some clients, so that the other clients do not even know that

the unauthorized certificate exists. Moreover, while CAs may

face the consequence of being distrusted by browsers [52, 72],

some CAs are “too big to fail,” meaning that their removal

would block access to too many HTTPS sites and is thus

unlikely. While proposed solutions to the above problems

exist [54, 83], CAs generally gain little reward for a reputation

of security and face few consequences for misbehaving [14].

We also observe that due to a lack of automation,
reporting unauthorized certificates is time and labor-
intensive. When a CA issues an unauthorized certificate for a

domain, a detector (the entity who discovers the certificate) has

several options. First, a detector can contact the misbehaving

CA directly, because only the CA can revoke the certifi-

cate. However, if the CA is malicious, it may never revoke

the certificate, leaving the domain open to potential MitM

attacks. Even revocation may not help since some widely-

used browsers do not check revocation information at all [55].

The detector could instead contact browser vendors, who can

update client browsers to reject the certificate [49]. However,

such a response is unlikely except for relatively popular sites.

A detector could also pursue legal action against the CA, but

this process may be long, costly and ultimately unfruitful, due

in part to the fact that CAs are located in approximately 52

countries [33], each with its own legal system. Thus due to the

unlikely recourse and the effort required, there are insufficient

incentives for detectors to report unauthorized certificates.

Therefore, in this paper we ask two fundamental questions:

how can we better incentivize correct CA behavior and
the reporting of misbehavior, and how can we automate
the processing of an unauthorized certificate report? In

particular, how can we formally define what it means for a

CA to behave correctly? What incentives can we offer CAs

and detectors? What mechanisms are necessary for automating

the handling reports of misbehavior, and what benefits does

automation provide?

As a first step towards answering these questions, we

propose Instant Karma PKI (IKP), an automated platform

for defining and reporting CA misbehavior that incentivizes

CAs to correctly issue certificates and detectors to quickly

2017 IEEE Symposium on Security and Privacy

© 2017, Stephanos Matsumoto. Under license to IEEE.

DOI 10.1109/SP.2017.57

410

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

report unauthorized certificates. IKP allows domains to specify

policies that define CA misbehavior, and CAs to sell insurance

against misbehavior. We also propose a formal model for

incentive analysis to show that IKP provides incentives for

CAs and detectors and punishes misbehaving CAs. We further

show that with our incentive structure, even CAs that collude

with other domains or detectors cannot profit financially.

More concretely, for the TLS Web PKI, IKP allows partici-

pating HTTPS domains to publish domain certificate policies
(DCPs), policies that specify criteria that the domains’ TLS

certificates must meet. Any violation of these policies consti-

tutes CA misbehavior. IKP allows participating CAs to sell

reaction policies (RPs) to domains, which specify financial

transactions that execute automatically when an unauthorized

certificate is reported. Domains affected by the certificate, the

detector, and the CA receive payments via these transactions.

The payment amounts are set such that CAs expect to lose

money by issuing unauthorized certificates, and detectors

expect to gain money by reporting unauthorized certificates.

Information about CA misbehavior and RP offerings are pub-

lic, allowing domains to use this information as an indicator of

how likely a CA is to maintain high security and thus protect

against unauthorized certificate issuance.

We have implemented a prototype of IKP in Ethereum [87],

a blockchain-based smart contract platform that provides

important properties for achieving incentivization and au-

tomation. Ether, the cryptocurrency underlying Ethereum, is

a natural basis for implementing financial transactions and

incentives. The smart contract ecosystem provides a public,

automated mechanism for handling detector reports and exe-

cuting financial transactions, ensuring quick responses to CA

misbehavior. Furthermore, Ethereum provides decentralization
so that no trusted third party is needed to register DCPs, RPs,

and financial assets. While incentivization and automation are

possible with a centralized third party, we protect IKP itself

against compromise by building it on top of Ethereum.

To provide realistic incentive amounts, we also analyze

certificate offers from the most widely-used CAs, quantifying

and bound the risks of CA misbehavior. These insights allow

us to predict realistic payment amounts for RP.

In summary, we make the following contributions:

• We present the design of IKP, including a framework for

domain policies and reactions to CA misbehavior.

• We demonstrate through an economic analysis that IKP

incentivizes good CA behavior and punishes misbehavior.

• We implement an IKP prototype in Ethereum and discuss

the present and future technical feasibility of IKP.

• We analyze real-world data from existing CAs to deter-

mine realistic values for RP offerings.

II. PROBLEM DEFINITION AND ADVERSARY MODEL

In a nutshell, the goal of this paper is to provide incentives

for correct CA behavior (i.e., due diligence when issuing

certificates) and automation in processing reports of unautho-

rized certificates from detectors. To achieve this goal, we must

design a system that can 1) define CA misbehavior, 2) evaluate

whether a given certificate constitutes misbehavior according

to the above definition, 3) specify reactions and payments

that will occur in response to CA misbehavior, 4) process
reports from detectors regarding unauthorized certificates, and

5) execute these reactions and payments automatically after a

CA has misbehaved. Achieving these goals allows us to deter

CA misbehavior by choosing payments that provide the ap-

propriate incentives for correct CA behavior and for reporting

unauthorized certificates. These incentives also increase the

number of entities monitoring CAs and thus the probability

that an unauthorized certificate is quickly detected. Automatic

execution of reactions and payments ensures ”instant karma”

in IKP: detectors quickly receive rewards and CAs quickly

receive punishment.

A. Desired Properties

A system achieving the above goals should have at least the

following properties:

• Public auditability: all information required to detect an

unauthorized certificate is publicly accessible.

• Automation: once CA misbehavior has been reported

and confirmed, reactions should automatically proceed

without requiring additional information or authorization.

• Incentivization: entities that expose CA misbehavior

have a positive expected return on investment (ROI).

• Deterrence: CAs have a negative expected ROI for issu-

ing an unauthorized certificate for a domain, regardless

of the entities they collude with.

As secondary goals, the system should achieve decentraliza-
tion (i.e., the absence of a central trusted entity in the system)

and MitM prevention (i.e., the rejection of all unauthorized

certificates by clients).

B. Adversary Model

Our adversary’s goal is to issue a rogue certificate while

maintaining a positive expected ROI. The adversary may

access the long-term private keys of one or more CAs (and

can thus issue arbitrary certificates from these CAs), as well as

those of colluding domains. The adversary may take any action

within the PKI (e.g., issuing/revoking certificates) or within

IKP (e.g., issuing RPs or reporting certificates) to obtain a net

positive ROI among all entities it controls. We assume that

the adversary cannot break standard cryptographic primitives,

such as finding hash collisions or forging digital signatures.

The adversary also cannot compromise the private keys of

arbitrary domains. In our blockchain-based instantiation, we

further assume that the adversary cannot control a majority of

hashing power in the blockchain network.

III. IKP OVERVIEW

In this section, we provide an overview of the key features

of IKP. We begin by introducing its main components, and

then describe the main functions of the system. An extended

version [60] of this paper provides additional material.

411

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

ClientClientDomainDomain

Detector

CA

Client

Domain

IKP Authority
• Global fund balance
• CA Registry
• DCP Registry
• RP Registry
• Misbehavior checker
• Payout enforcer

issue cert, RP

TLS handshake

register DCP

register RP

report rogue cert

CA
ClientDomainCACA

can act as

Fig. 1. Overview of the entities and functions in IKP.

A. Architecture

IKP is an extension of the standard TLS architecture, and

thus as in TLS, CAs issue certificates to domains, whose

servers carry out TLS handshakes with clients. As shown in

Figure 1, IKP introduces two new entities: the IKP authority
and detectors.

The IKP authority is responsible for the core functionality

of IKP. Specifically, the IKP authority maintains information

on CAs such as identifiers (e.g., DNS names), public keys

to authenticate to the IKP authority, and financial account

information at which to receive payments. The IKP authority

also stores domain certificate policies (DCPs), which are

provided by domains and can be used to computationally

determine whether a given certificate is authorized for a

domain, and reaction policies (RPs), which specify automatic

reactions that occur if an unauthorized certificate is reported.

The IKP authority is responsible for executing these reactions.

The IKP authority also maintains a balance called the global
fund, which can send and receive payments in IKP.

Detectors are responsible for reporting suspicious certifi-

cates to the IKP authority. They monitor certificates issued by

CAs, and report any certificates they deem to be unauthorized.

Any entity, be it a CA, domain, or client, can detect and report

CA misbehavior. Each detector must have a financial account

at which it can receive rewards for successfully reporting an

unauthorized certificate.

Entities in the standard TLS architecture have additional re-

sponsibilities. CAs who have registered with the IKP authority

can issue RPs, thus acting as a sort of “insurer” against CA

misbehavior. Domains register DCP with the IKP authority,

providing a public policy that defines CA misbehavior (i.e.,

issuing an unauthorized certificate). While Figure 2 shows

intuitive examples of a DCP and an RP, the logic of both DCPs

and RPs is determined by machine-understandable policies

specified by the domain and by the CA, respectively, providing

flexibility in addition to automation and financial incentives.

B. Operation

We now summarize the actions that occur in IKP, some of

which are shown in Figure 2.

Detector

CA A

a.com

IKP Authority
• Collect registration fees
• Store DCPs/RPs
• Process detector reports
• Execute payouts

Reaction Policy (RP)
"If anyone issues an

unauthorized cert for a.com,
I’ll pay them $X and whoever
finds such a cert will get $Y“

Domain Certificate
Policy (DCP)

"Only CAs A and B can
issue certificates for a.com" cert {a.com, K’} "Unauthorized

certificate!"

cert {a.com, K}

Fig. 2. Sample interactions between entities in IKP. As in Figure 1, yellow
denotes a CA and purple denotes a domain.

TABLE I
EXPLANATION OF FIELDS IN A CA REGISTRATION.

Field Use

CA name identify CA
Valid from specify start period of information validity
Payment account receive payments for CA
Public keys list of CA’s public keys
Update keys authorize updates to this information (default: empty)
Update threshold threshold of signatures required for updates (default: 1)

CA registration. A CA registers its information with the IKP

authority. Specifically, the CA registers its identifier, financial

account information, one or more public keys, and an update

policy as shown in Table I. To update its registration, the CA

must provide signatures on the update with a threshold number

of its update private keys.

Domain registration. A domain registers a DCP with the

IKP authority. Specifically, the domain registers its Domain

Name System (DNS) name, one or more public keys, financial

account information, and a checker program that decides

whether a given certificate is authorized for the domain.

RP issuance. A registered domain negotiates the terms of an

RP with a registered CA. The RP contains the domain name,

CA identifier, validity period, a reference to the domain’s DCP,

and a reaction program that contains the payments that occur

in response to CA misbehavior. The domain pays the CA to

issue the RP, with the IKP authority acting as a mediator to

ensure a fair exchange.

Certificate issuance. A domain obtains a certificate from a

CA. The CA does not have to be the same one that issued

the domain’s RP, and does not need to have registered with

the IKP authority. Thus certificate issuance occurs in the same

way as in TLS.

Misbehavior report. A detector sends evidence of CA mis-

behavior (usually an unauthorized certificate) and its financial

account information to the IKP authority. The detector must

pay a small reporting fee to prevent detectors from reporting

all certificates they see. We also use a commitment scheme to

prevent frontrunning of detector reports. The IKP authority

runs the checker program on the certificate to determine

whether the certificate is authorized.

Reaction. If a reported certificate is unauthorized, the IKP

authority triggers a reaction by running the reaction program

412

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

specified in the domain’s RP. The reaction program usually

executes financial transactions, which are sent to the financial

accounts of the CA, domain, and detector as appropriate.

The use of checker programs and reaction programs provide

expressivity and extensibility to policies and reactions in IKP.

As we describe in Sections IV and V, DCPs can provide

features such as CA whitelisting, public-key pinning, and

short-lived certificate enforcement, while RPs can provide

financial payouts to parties beyond the CA, domain, and

detector.

IV. DOMAIN CERTIFICATE POLICIES (DCPS)

In this section, we take an in-depth look at domain cer-

tificate policies. In particular, we describe the features and

format of DCPs, and present several examples of DCPs that

enable various useful defenses against CA misbehavior. We

conclude this section by describing the relevant operations for

registering and updating DCPs.

A. Design Principles

We begin by describing the fundamental principles on which

we base our design for DCPs. In particular, we identify

three main design principles: 1) policies are domain-specified,

2) policies offer sufficient expressiveness, and 3) policy infor-

mation is public, authenticated, and consistent. These princi-

ples help ensure that we can use DCPs to determine certificate
authorization (i.e., whether a certificate is considered autho-

rized or not for a given domain) securely and effectively.

1) Domain-specified policies. The information used to deter-

mine certificate authorization is specified by that domain itself.

We observe that only domains know with certainty which

certificates they have and have not authorized. Therefore, to

enable others to deem certificates unauthorized as opposed to

simply suspicious, domains must specify policies governing

their certificates. By adhering to this principle, we can ensure

that any entity with a domain’s policy information can be a

detector and find unauthorized certificates for that domain.

2) Policy expressiveness. The information used to determine

certificate authorization is expressed in a Turing-complete

language and can thus represent arbitrarily complex policies.

Proposed certificate policies in the literature [44, 84] allow

domains to specify only a small set of parameters (e.g., gov-

erning how their certificates should be verified or how errors

in the TLS handshake should be handled). These policies

cannot be changed in a backwards-compatible way without

upgrading all client browsers and possibly all existing domain

policies. Moreover, such policies do not enable the automation

of reaction to CA misbehavior. IKP provides a general format

for DCPs by allowing domains to specify executable code that

determines whether or not a given certificate is authorized and

specifies concrete reaction to misbehavior.

3) Public, authenticated, and consistent information. The

information used to determine certificate authorization is

stored in a publicly accessible location, is globally consistent,

and its authenticity can be verified by the public. Publicly

Domain Certificate Policy (DCP)
Domain Name: a.com
Valid From: 17 Aug 2016 0:00:00 UTC
Version Number: 1
Payout Account: AB01 2345…
Update Keys: 0xdd8cb5a2…
Update Threshold: 1
Checker Program: 0xf4956b3e…

a.com
Accounts:
• AB01 2345…

Keys:
• 0xdd8cb5a2…

Checker Program (0xf4956b3e…)
approved = [CA A, CA B]
def check(cert):
 issuer = parse(cert).issuer
 if (issuer in approved)
 return true
 else
 return false

Fig. 3. A sample DCP with a checker program written in pseudocode.

TABLE II
EXPLANATION OF DCP FIELDS.

Field Use

Domain name identify domain for which the policy is active
Valid from specify start period of DCP’s validity
Version number identify version of this domain’s DCP
Payment account receive payments for domain
Checker program implement the DCP’s certificate policy
Update addresses (default empty) authorize DCP updates
Update threshold (default 1) thresh. of signatures required for DCP updates

accessible information ensures that all potential detectors

can find unauthorized certificates using a domain’s policy

information. Globally consistent information ensures that all

potential detectors see the same policy for a domain and can

thus determine with certainty whether a certificate for that

domain is authorized.

B. DCP Contents

We now describe the contents of a DCP. Figure 3 shows a

sample DCP, and Table II describes the fields of a DCP. In

short, a DCP contains identifying information for the domain,

(its DNS name and financial account information) and for the

policy (the Valid From and Version Number fields).

A DCP also contains the policy itself, namely, the threshold

of signatures required to authorize changes to the DCPs (the

update keys and update threshold) and the checker program.

The Valid From and Version Number fields of a

DCP are used in part to help determine whether or not a

certificate constitutes CA misbehavior. In particular, each RP

is tied to a specific version of a domain’s DCP, and a given

certificate only triggers an RP if 1) the certificate’s validity

period began after the DCP’s Valid From time, 2) the

RP’s Version Number field matches that of the DCP, and

3) the checker program deems the certificate unauthorized

(as described below). Because the DCP defines misbehavior

by the output of the checker program, an update to a DCP

only increments the version number if the checker program is

changed. This prevents a domain from having to renegotiate

an RP for changing DCP fields unrelated to its policy, such as

its financial account information.

413

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

The update keys and update threshold protect a domain

against the loss or compromise of a private key. We allow

a domain to update its DCP by authorizing the update with

signatures from a threshold of its update keys. Because DCPs

are crucial to determining CA misbehavior, domains should

protect against unauthorized updates with a sufficiently high

update threshold. Our recovery system is not foolproof; a do-

main is ultimately responsible for managing its own recovery

addresses. However, our approach provides a tunable level of

security and recoverability for each domain. In order to guard

against a mass loss or compromise of its private keys, a domain

can store some of its private keys offline, with trusted peers,

or even with a large group of authorities such as one provided

by the CoSi protocol [82].

C. Sample Checker Programs
We now present example checker programs in IKP. These

examples represent a range of existing proposals to improve

the TLS PKI and demonstrate the flexibility of IKP’s checker

programs. For the following examples, we assume the use of

X.509 v3 certificates [27], but we note that checker programs

can define their own formats or handle multiple formats,

allowing different certificates formats to coexist in IKP. We

also assume access to a method to parse a certificate and

extract the contents of its fields.

CA whitelisting. A checker program can enforce the use of

certain CAs by extracting the Issuer Name field of the

certificate and checking whether the issuer is on a whitelist

of CA names. In order to enforce the use of a specific

set of CA keys, the checker program can instead extract

the Authority Key Identifier extension for X.509

and check the identifier against a whitelist. In either case,

the program first defines a whitelist and then performs the

appropriate check.

Public key pinning. A checker program can implement a form

of public key pinning by extracting the Subject Public
Key Info field of the certificate and checking this key

against a whitelist. Similarly to above, the program defines

the whitelist and performs the appropriate check. We note

that unlike other key pinning solutions, no trust on first use is

necessary because DCPs are public and consistent and thus the

client can simply check the domain’s DCP for the key pins.

Short-lived certificates. A checker program can enforce the

use of short-lived certificates [85] by checking that a certifi-

cate’s validity period does not exceed a given maximum value.

This can be done by extracting the Not Before and Not
After fields from the certificate and calculating the time

difference to determine the length of the certificate’s validity

period, and checking that this length is less than a specified

maximum allowable value.

Wildcard restrictions. A checker program can prevent the

use of wildcard certificates by simply extracting the Subject
Name field and checking that the wildcard character * does

not appear.

Certificate Transparency. A checker program can implement

criteria similar to those of Certificate Transparency [54] by

checking for proof that the certificate has been publicly logged.

The checker program first defines a list of trusted logs. The

program can then query the logs directly or take a proof from

a trusted log as input in addition to the certificate itself.

Combining checker programs. An additional benefit of

public consistent DCPs is that domains can see other checker

programs and model their own from these programs. We

additionally allow domains to call other checker programs.

This feature allows a domain to write a checker program that

simply calls a set of checker programs, thus allowing the

domain to combine existing policies. For example, a domain

can specify that all criteria in the called checker programs

must be fulfilled by requiring that all referenced programs

deem a certificate authorized, or specify that some threshold

of referenced programs must do so by counting the number

of referenced programs that deem the certificate authorized.

D. DCP Operations

We now describe relevant operations for a DCP. Specifi-

cally, we cover the initial registration of a domain’s DCP as

well as the update process.

DCP registration. A domain D requests to initially register

its DCP in the blockchain by sending a message to the IKP

authority containing its DNS name, the contents of its initial

desired DCP, and information to authenticate itself to the

IKP authority. Specifically, to authenticate itself, D provides

a signature on its name and DCP with 1) its DNSSEC [13]

private key, as well as a DNSSEC signature chain to the

ICANN root zone key, or 2) its TLS private key, as well as a

certificate chain from the corresponding public key to a root

CA key. This authentication method, which we call the use of

a bootstrap proof, provides a way for D to show control over

its identifier and public key by leveraging an existing PKI.

Because IKP is tied to TLS and hence to DNS names, we can

use bootstrap proofs to protect DCP squatting by malicious

entities that do not own the names they claim.

It is safer to use DNSSEC-based bootstrap proofs, as

DNSSEC has had far fewer compromises than TLS and only

requires a single root key to be stored by the IKP authority,

However, in a measurement we conducted using data from

Censys [31], we found that only 649 of the top 100,000 most

popular domains use both DNSSEC and HTTPS. Therefore,

few domains will be able to reap the benefits of using

DNSSEC-based bootstrap proofs.

Using TLS-based bootstrap proofs requires the IKP author-

ity to select a list of accepted root CA keys, and also runs the

risk that an unauthorized certificate can be used to register a

DCP. To address the first problem, the IKP authority could

simply select a set of 28 root certificates which are present in

most popular desktop and mobile operating systems and web

browsers [75]. To address the second problem, we can allow

domains to override an existing registration by submitting

multiple independent bootstrap proofs. This approach makes

registration easy for most domains, but allows a domain whose

registration is stolen by an adversary with an unauthorized

certificate to recover by obtaining an additional certificate.

414

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

We note that bootstrap proofs can make it more difficult

for legitimate domains to register themselves with the IKP

authority, and are not foolproof. However, given the crucial

role DCPs play in IKP, we need to protect them from being

easily claimed and held by adversaries. We also do not

envision bootstrap proofs as a long-term solution, as they

are based on PKIs that suffer from the problems that we

aim to solve with IKP. We can instead configure the IKP

authority such that as deployment increases, the bootstrap

proof requirement can be relaxed or eliminated.

Updates. A domain D can update its information by sending

a transaction to the IKP contract with its new DCP or registra-

tion and signatures from a threshold number of its update keys.

The IKP authority verifies each of these signatures, checks

that the number of signatures is at least the threshold number

required by D’s current DCP, and if so, updates D’s DCP in

its registry. Recall that the IKP authority only increments the

version number of D’s DCP if the checker program changes.

V. REACTION POLICIES (RPS)

In this section, we take an in-depth look at reaction policies.

In particular, we begin by explaining the principles behind the

design of RPs, and describe the contents of RPs. We then

describe payout reaction programs, which provide financial

incentives in IKP. We conclude this section by describing the

relevant operations for issuing RPs, selecting the relevant RP

for a domain, and executing an RP.

A. Design Principles

We begin by describing the design principles upon which

we base our design of RPs. In particular, we identify three

main design principles for RPs: 1) certificate-independence,

2) policy-adherence, and 3) single-use. These principles help

ensure that reactions to misbehavior do not cause perverse

incentives or unintended consequences. We next discuss the

three principles in detail.

1) Certificate-independence. An RP should be decoupled

from public-key certificates. Like certificates, RPs are negoti-

ated between CAs and domains. However, certificates and RPs

are independent: CAs issue RPs in addition to certificates,

and therefore domains can obtain certificates and RPs from

different CAs. RPs provide a relying party with a measure of

confidence in a domain’s certificates, and serve a fundamen-

tally different role from certificates in the IKP ecosystem. In

particular, an RP protects a domain against any unauthorized

certificate issuances during the lifetime of the RP.

2) Policy-adherence. An RP should be bound to a specific

policy for a domain. In particular, since a DCP may change

over time, an RP should represent a reaction to violations of

a specific version of a domain’s DCP. Binding an RP to a

specific DCP version ensures consistency between the criteria
for certificate authorization and the reaction to the violation of

those criteria. This principle also implies that a domain must

have a DCP before obtaining an RP.

3) Single-use. An RP should be limited to a single instance of

CA misbehavior. Because RPs may execute financial payments

Reaction Policy (RP)
Domain Name: a.com
Issuer: CA C
Valid From: 18 Aug 2016 0:00:00 UTC
Valid To: 17 Aug 2017 23:59:59 UTC
DCP Version Number: 1
Reaction Program: 0x5f8cde12…

DCP
Domain Name:
 a.com
Valid From:
 17 Aug 2016 0:00:00 UTC
Version Number:
 1
…

Domain Name:
a.com

Payout Reaction Program (0x5f8cde12…)
Affected-Domain Payout: $100
Termination Payout: $10
Detection Payout: $50

Fig. 4. A sample RP with a payout reaction program. The domain name and
version number in the RP must match those of the DCP, and the start of the
RP’s validity must be after that of the DCP.

TABLE III
EXPLANATION OF RP FIELDS.

Field Use

Domain name identify domain for which the RP is active
Issuer CA who issued the RP
Valid from specify start period of RP’s validity
Valid to specify start period of RP’s validity
Version number version of domain’s DCP used to trigger RP
Reaction program implement a response to CA misbehavior

for which funds must be available, enforcing single-use RPs

helps ensure the availability of such one-time resources for

each instance of misbehavior. Single-use RPs also prevent ad-

versaries colluding with domains or detectors from repeatedly

triggering an RP to obtain payouts. Thus each time a CA issues

a certificate that violates a domain’s DCP, one of the domain’s

RPs is triggered and then terminated. We note that domains can

have multiple RPs at a given time to protect against multiple

instances of CA misbehavior. However, we anticipate that in

the vast majority of cases, a domain will only have a single

RP at a given time.

B. RP Contents

We now describe the contents and format of RPs. Figure 4

shows the format of a sample RP, and Table III describes

each field of an RP. Like a DCP, an RP contains identifying

information for the domain as well as for the issuing CA. An

RP also specifies a validity period and identifies the version of

the domain’s DCP for which it is active. Finally, the reactions

that take place are specified as an address to a contract.

A reaction program contains code that can be executed by

the IKP authority when a certificate meeting certain criteria

is reported and the relevant domain’s checker program deems

the certificate to be unauthorized. As described in Section V-C,

we expect reaction programs to execute financial transactions.

After a reaction to CA misbehavior is triggered via a reaction

program, the RP containing the reaction program is destroyed.

A reaction program defines the following three methods:

1) trigger, which executes when an unauthorized certificate

is reported for the domain named in the RP, 2) terminate,

which executes upon request from a domain whose CA issued

415

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

an unauthorized certificate, and 3) expire, which executes

upon request from a CA after the RP has expired.

We note that an RP has a start and end time for its

validity, rather than only a start time as a DCP does. An

RP, like a certificate, has a limited validity period, but can

be prematurely terminated if the issuing CA misbehaves. If

an RP is terminated for any reason, the specified amount of

funds is split between the domain and the issuing CA based

on the fraction of the RP’s validity period that has passed. The

exact payouts are detailed below.

C. Payout Reaction Programs

We now provide a framework for payout reaction programs,

which specify a series of financial payments that execute in

response to CA misbehavior. Financial payments are important

to achieving incentivization, since financial payments be quan-

tified and analyzed. Our goal in designing a framework for this

class of reaction programs is to provide a general model for

who should receive payments under different circumstances of

misbehavior.

We identify three relevant parties who may receive pay-

ments if a method from a payout reaction program is executed:

1) the domain, which we denote by D, 2) the certificate-

issuing CA, which we denote by C, and 3) the detector,

which we denote by d. As Figure 4 shows, a payout reaction

program specifies three payouts: affected-domain payouts,

termination payouts, and detection payouts. To ensure that the

IKP authority has a sufficient balance for these payouts, an

amount E is sent to the global fund when the RP is issued.

Affected-domain payouts. The affected-domain payout (writ-

ten a) is paid to domain D in the event that a registered CA

issues an unauthorized certificate in D’s name. The payout

compensates D for the security risk it incurs by having

an unauthorized certificate that could be used in a MitM

attack. The domain does not receive this payout in case of

misbehavior by an unregistered CA.

Termination payouts. The termination payout (written t) is

split between domain D and CA C if D terminates the RP.

The termination payout compensates D for lost trust in C
after its misbehavior and contributes to the costs of obtaining

a new certificate and/or RP. The split of the termination payout

between D and C is proportional to the amount of time left

in the RP’s validity. To ensure that D receives some minimum

amount of funds, we set a systemwide parameter τ that D is

guaranteed to receive. Letting α ≤ 1 denote the fraction of

the RP’s remaining validity, we then have

tD = α · (t− τ) + τ (1)

Because 0 ≤ α ≤ 1, we see that tD is bounded by

τ ≤ tD ≤ t (2)

We note that although C does receive funds from the termina-

tion payout in spite of its misbehavior, we show in Section VI

that C loses funds compared to if it had behaved correctly.

Detection payouts. The detection payout (written δ) is the

amount paid to whomever reports an unauthorized certificate

to the IKP contract. The payout provides an incentive for

entities to monitor CA operations in search of unauthorized

certificates. Domains can negotiate their own detection reward;

high-profile domains may choose to specify a higher detection

payout than domains for which security is less important.

The RP specifies the detection payout for misbehavior by

a registered CA. If a detector reports misbehavior by an

unregistered CA, the detector instead receives a smaller payout

amount m. This reduced payout deters a collusion attack that

we describe in Section VI.

D. RP Operations

We now describe relevant operations for an RP issued in

IKP. Specifically, we cover RP issuance as well as the sce-

narios in which each of the reaction program’s three methods

(trigger, terminate, and expire) are executed.

RP issuance. When a domain D wants to purchase an RP

from a CA C registered in IKP, the two parties first agree on

the terms of the RP or certificate out of band. In particular,

for an RP with a payout reaction contract, D and C negotiate

the payouts a t, and δ, as well as the price ρ of the RP. IKP

sets two constraints on the amounts that must hold:

t < ρ < a+ τ (3)

m < δ (4)

These constraints are justified in Section VI.

Once C and D have agreed on the terms of the RP, we must

ensure that a domain who purchases an RP in IKP obtains what

it agreed on with the CA, and conversely, that the CA receives

the appropriate payment for the RP that it has issued. We can

achieve such a fair exchange by having the IKP authority act

as a third-party escrow.

Specifically, D sends the payment for the RP or certificate to

the IKP authority, along with the hash of the RP or certificate

and C. In turn, C creates and sends the RP or certificate to

the IKP authority. To ensure that the IKP authority has enough

funds to pay out the appropriate parties, C may also need to

send additional funds to the IKP authority (see Section VIII).

The IKP authority then verifies that 1) the RP or certificate

hashes to the value provided by D, 2) the amount of funds

that C has sent over (if necessary) is sufficient to ensure that

the global fund will be able to send the payouts in case of

misbehavior, and 3) the terms of the RP meet the constraints

described above. If any of these criteria do not hold, then the

domain’s fee ρ is returned and the issuance is canceled. If all

of these criteria hold, ρ is transferred to C and any funds sent

with C’s message are transferred to the global fund.

Domain RP selection. The IKP authority maintains a mapping

between domains and a list of their currently-active RPs. When

a domain purchases a new RP, the IKP authority adds the new

RP to the domain’s corresponding list ordered by the validity

ending time. When misbehavior is reported, the IKP authority

triggers the appropriate reaction in the first policy in the list.

This scheme ensures an unambiguous reaction to an instance

of CA misbehavior while also triggering the RP that expires

the soonest.

416

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

RP trigger. If C is found to have issued an unauthorized

certificate for a domain D, then the trigger method of D’s

RP is automatically executed. For payout reaction programs, D
receives the affected-domain payout a and its share termination

payout tD, the detector receives the detection payout δ, and

C receives its share of the termination payout t − tD. The

IKP authority then removes the RP from the list of D’s RPs.

The IKP authority also records the time at which a detector

reported misbehavior by C to handle the termination case

below.

RP termination. If C is found to have misbehaved, any

domain D that has an RP issued by C can prematurely

terminate the RP. To do so, D sends a message to the IKP

authority with the RP it wishes to terminate. The IKP authority

checks that the RP’s validity began before C’s last misbehavior

and that the RP has not yet expired, and if so, executes the

terminate method. In this case, D receives its share of the

termination payout tD and C receives its share t− tD.

RP expiration. Once the validity period for an RP belonging

to a domain D has ended, the IKP authority simply removes

the RP from the list of D’s RPs. Because doing so can reduce

the liability of the issuing CA C, the IKP may also note the

reduction in liability and return funds as necessary to C’s

payment account.

VI. ANALYSIS

In this section, we analyze the design of IKP. In particular,

we model the incentives of each entity in the IKP ecosystem

by considering the flow of payments among entities for

each operation (such as RP issuance). Using this model, we

demonstrate two important guarantees that hold in IKP:

1) Incentives for DCP compliance and misbehavior report-

ing: issuing a certificate that complies with a domain’s

DCP or reporting a certificate that violates a domain’s

DCP results in a higher payout than alternative actions.

2) Disincentives against misbehavior and collusion attacks:

falsely reporting a valid certificate as unauthorized or

issuing a certificate that violates a domain’s DCP does

not result in a profit for a misbehaving detector or

CA, respectively, regardless of who the detector or CA

colludes with.

In the course of our analysis, we derive constraints on RP

terms that must hold for the above properties to be true.

A. Model

We begin by analyzing the payments that occur within the

model described by the constraints in the previous sections.

Table IV summarizes the payout amounts for each action in

IKP. For most of our analysis we consider a single RP lifetime

and certificate issuance, and use the following notation:

• D denotes the domain for whom a (possibly unautho-

rized) certificate is issued,

• R denotes the CA that issues the RP to D,

• C denotes the CA that issues the certificate to D,

• d denotes a detector who can choose whether or not to

report the certificate as unauthorized, and

TABLE IV
LIST OF PAYMENTS SENT FOR EACH EVENT. D REPRESENTS THE DOMAIN,

R IS THE CA THAT ISSUES THE RP, C IS THE CA THAT ISSUES THE

CERTIFICATE, d IS THE DETECTOR, AND F IS THE GLOBAL FUND. E
REPRESENTS THE AMOUNT SENT TO THE IKP AUTHORITY BY R.

Event From To Amount

Register CA C F rC

Register domain D F rD

Issue reaction policy D F ρ
R F E
F R ρ

Expire reaction policy F R E

Terminate reaction policy F D tD
F R E − tD

Report false misbehavior d F m

Report internal misbehavior d F m
F D a + tD
F d δ
F R E − tD
C F a + δ

Report external misbehavior d F m
F D tD
F d m
F R E − tD

• F denotes the global fund.

Note that R and C may be the same entity, and d may be any

entity (even one of D, R, or C).

To demonstrate the two central properties above, we con-

sider two scenarios of CA misbehavior. In the first scenario,

which we call internal issuance, the certificate-issuing CA C
is registered in IKP and in the second scenario, which we

call external issuance, C is not registered in IKP. Considering

these scenarios separately simplifies our analysis below. In

both scenarios, C issues a certificate to D, and can choose

whether or not to issue a certificate that complies with D’s

DCP or not. Detector d can then choose whether to report the

certificate as unauthorized or not.

For each case, we consider the payments made in the series

of events that must have occurred and can determine the net

reward of each entity by summing the payments it received

and subtracting the sum of the payments it made. We note

that we do not consider payments made outside of IKP, as we

cannot track or constrain these transactions.

Given our model, we can prove the following properties in

the two scenarios:

• Compensation of domains affected by misbehavior: a

domain with a DCP for whom an unauthorized certificate

is issued should receive a higher net payout after a

successful report.

• Rewards for successful detectors: a successful misbehav-

ior report results in a higher net payout for the detector

than an unsuccessful report or no report at all.

• Deterrence of internal misbehavior: a CA that has regis-

tered in IKP and issued an unauthorized certificate for a

domain has a negative net payout.

• Collusion-proofness for external misbehavior: in the sec-

ond scenario, a CA that has not registered in IKP cannot

417

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

collude with any set of other entities to gain a positive

net reward from issuing an unauthorized certificate.

The last property highlights the need to consider collusion
attacks in IKP. In particular, we must verify that a misbehaving

C cannot collude with other entities and sum their net rewards

to gain a profit. We observe that C will only collude with

entities that receive a positive net payout on their own, but

can purposely misbehave in order to trigger RP payouts. To

ensure that no possible collusion can result in a profit for C,

we sum the rewards of all positive-reward entities with those

of C to find the maximum profit that C can receive.

In our analysis, we assume that the CA R (who issued the

RP to D) has registered in IKP, and that the domain D has

registered a DCP. We do not consider these operations in our

analysis due to the fact that they occur once and thus should

not factor into the analysis of an individual RP’s lifetime,

which may occur (with its costs) many times.

B. Scenario #1: Certificate Issuance inside IKP

For the first scenario, we consider whether or not C misbe-

haves by issuing a non-compliant certificate, and whether or

not a detector d reports this misbehavior. We assume that the

issuance has taken place and the appropriate payments have

been made. We observe that if no misbehavior is reported,

then the RP will eventually expire, regardless of whether C
misbehaves. Thus we consider only three cases: 1) no detector

reports misbehavior, 2) C issues a compliant certificate and

detector d reports it, and 3) C issues a rogue certificate and

detector d reports it.

The first section of Table V shows the results for this

scenario, that is, how much is paid out to the involved entities,

according to Table IV, aggregated into the three cases.

Regarding the affected domain D, we observe that in the

case of reported misbehavior, D receives an additional a+ tD
than it would if no misbehavior was reported. In order for D to

profit, we require ρ < a+tD. Since we know from Equation 2

that tD ≥ τ and since we want a positive compensation for

all values of tD, we set the slightly stronger constraint

ρ < a+ τ (5)

thus ensuring compensation of affected domains.

Regarding detector d, we observe that if d reports misbehav-

ior correctly, it receives −m+ δ. To ensure that a successful

report is rewarded, the quantity −m+ δ must be positive, and

thus we set the constraint

m < δ (6)

which thus ensures rewards for successful detectors (and

unsuccessful detectors simply lose the reporting fee m).

Regarding CA C, we make a case distinction as follows.

We first consider the case C = R, that is, the same CA has

issued an RP and a certificate to domain D. In this case, we

observe (after summing up the entries for R and C) that for the

CA to lose money due to a possible misbehavior, we require

ρ < a + tD + δ. Again, since tD ≥ τ and we want a loss of

money for all possible values of tD, we obtain the stronger

TABLE V
REWARDS FOR EACH ENTITY IN DIFFERENT SCENARIOS.

Entity Unreported Rep.+Behave Rep.+Misbehave

Scenario #1: Certificate issuance by IKP-CA C

D −ρ −ρ −ρ + a + tD
d 0 −m −m + δ
R ρ ρ ρ− tD
C 0 0 −a− δ
F 0 m m

Scenario #2: Certificate issuance by non-IKP-CA C

D −ρ −ρ −ρ + tD
d 0 −m 0
R ρ ρ ρ− tD
C 0 0 0
F 0 m 0

inequality ρ < a + τ + δ which ensures the deterrence of

internal misbehavior for this scenario. However, this constraint

is subsumed by Equation 5, which sets a tighter bound on ρ.

The case of C �= R is similar. The RP-issuing CA R should

still profit since it has not misbehaved, and we thus require

ρ > tD. Because of t ≥ tD from Equation 2, we simply let

ρ > t (7)

and obtain a positive incentivization for R. Regarding the

misbehaving CA C, we simply require the values a and δ
to be positive, which is satisfied by definition.

Finally, to avoid collusion attacks in the first scenario, we

consider the entities besides C receiving a positive reward.

We observe that although both D and d profit in the case of

misbehavior, if we sum the rewards of D, d, R, and C, the

result is −m < 0, and thus a collusion between C and all

other parties does not profit.

C. Scenario #2: Certificate Issuance outside IKP

In the external scenario, we assume that the certificate-

issuing CA C does not register with IKP. We investigate,

as before, whether or not C misbehaves, and whether or not

d reports misbehavior. We again assume that domain D has

purchased an RP from CA R, and we again observe that

if no misbehavior is reported, then the RP expires and C’s

misbehavior status does not matter.

The second area of Table V shows the results for the external

scenario, that is, how much is paid out to the involved entities,

according to Table IV, aggregated into three cases as above.

We concentrate on the differences from the previous sce-

nario. First, note that the misbehaving domain C is not

punished and thus it is not deterred from misbehavior. The

reason is that external misbehavior cannot be deterred from

within IKP. On the other hand, the CA also does not receive

any payments for good behavior if outside IKP. Similarly,

detectors are not rewarded for spotting external misbehavior.

Handing out rewards would eventually drain the global fund.

Regarding the affected domain D, we have to consider

collusion attacks since a positive payout for an affected domain

might incentivize a malicious external CA to collude with that

domain. We thus consider again the entities besides C that

418

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

make a positive reward: As C does not need to pay anything,

colluding with any entity with a positive reward results in

net profit. Colluding with R does result in a net profit, but the

profit is less than collusion would yield if C behaved, and thus

this is not a viable strategy for C. However, C can collude

with the affected domain D if the reward −ρ+ tD is positive.

To avoid this, we set ρ ≥ tD, and since tD ≤ t and we

want this constraint to hold for all values of tD, we obtain the

stronger constraint ρ ≥ t which provides collusion-proofness

in the external scenario. However, this constraint is subsumed

by Equation 7. We note that this constraint does not imply that

an affected domain is losing money. The domain receives the

termination payout, which partially offsets the cost of the RP,

and additionally benefits from the fast detection offered from

having an RP. For the same reason, we additionally set the

detector d’s reward to m instead of δ in the case of external

misbehavior (see Table IV), so that the detector’s expected

reward is zero (see Table V).

We observe that honest CAs issuing RPs benefit from

joining IKP, as they receive rewards in any case. We further

stress that domains have no financial loss when joining IKP

and purchasing RPs since they receive positive compensation

for internal misbehavior and offset their loss in case of external

misbehavior. We also observe that the constraints set by

Equation 5, Equation 6, and Equation 7 can be easily satisfied

by C, who can select ρ, a, δ, and t based on the values of

the constants τ and m. We explore realistic values for these

parameters in Section IX-B.

VII. BLOCKCHAIN BACKGROUND

In this section, we provide a brief overview on blockchain-

based cryptocurrencies, which we use to instantiate IKP. In

particular, we describe the fundamental principles underlying

blockchains through Bitcoin, and then describe Ethereum

(which we use to implement IKP) and the advantages it

offers over Bitcoin. For further details on all issues related

to blockchains, we refer readers to a more complete view of

decentralized cryptocurrencies [21].

A. Blockchain Principles and Bitcoin

At a high level, decentralized cryptocurrencies such as

Bitcoin [67] are public ledgers created and maintained through

decentralized, peer-to-peer consensus. These ledgers are most

commonly implemented as blockchains, chains of blocks
linked by hash pointers to the previous blocks and containing

lists of transactions. This structure provides full history of

all past transactions and prevents the transactions from being

retroactively modified.

Bitcoin implements transactions with a small, limited-

capability scripting language called Script [1]. The use of

Script enables a wider range of transactions such as paying

to any account, to no account (thus destroying the coin), or to

the first account to solve a puzzle. Script is deliberately non-

Turing-complete because nodes must process Script to verify

transactions and malicious Script transactions could otherwise

cause nodes to loop forever. Script can also be used to store

non-financial transactions in the ledger, such as a key-value

store (used by proposals such as Namecoin [68] to implement

a DNS-like system).

Most blockchains grow through the mining process, in

which nodes in the network race to find a value v that, when

hashed with the hash of the previous block and the transactions

since that previous block, results in a hash value of a certain

form [15]. In Bitcoin, the hash must be of a certain form

(i.e., the computed hash value must be smaller than a target

value tuned) so that a new block is found approximately every

ten minutes. Using a cryptographically secure hash function

requires a brute-force search to find v, making mining a proof-

of-work scheme [32]. A node or miner is incentivized by the

block reward, a set amount of currency given to whomever

extends the blockchain by recording the new transactions,

finding v, and then broadcasting the new block.

Because multiple miners may find v at different times,

the blockchain can fork, resulting in different versions of the

blockchain. Miners decide on which version to mine on by

Nakamoto consensus: each miner picks the chain with the

greatest length. Though multiple chains may be tied for the

longest, one of the chains will eventually become longer than

the others due to the probablistic nature of mining. Nakamoto

consensus also ensures that an adversary cannot fork from

a much earlier block, as the adversary would have to mine

enough blocks to outrun the current longest chain, which

becomes more difficult the earlier the desired block is.

The security of blockchain-based cryptocurrencies relies on

the fact that no entity controls a majority of the hashing power

of the network. Otherwise, that adversary can reverse previous

transactions (called a double-spending attack) or selectively

suppress transactions by outpacing the rest of the network’s

mining power in the long run. Controlling the network in

this way is commonly called a 51% attack in the blockchain

community, though recent work has shown that with patholog-

ically malicious behavior, controlling a smaller percentage of

the hashing power is sufficient to double-spend or to suppress

transactions [37, 40, 70, 79]. Blockchain proponents argue that

such an attack is unlikely to be sustained because doing so

would devalue the currency as the network loses trust in the

reliability of the currency.

B. Ethereum

Ethereum [87] generalizes the ideas behind blockchains

and Bitcoin Script, enabling the storage of arbitrary state and

Turing-complete computation in the blockchain. Transactions

in Ethereum represent computations in the Ethereum Virtual
Machine (EVM), and the language used for these computations

– in contrast to Bitcoin’s Script – is Turing-complete. To deter

malicious transactions that cause nodes to carry out expensive

or nonterminating computations, the sender of a transaction

must send gas, additional funds that compensate miners for

their computational and storage costs when executing the

transaction. Operations in the EVM are priced in units of gas

and each transaction specifies a gas price, offering a tuneable

incentive for miners to execute the transaction. Ethereum thus

offers a richer computational environment than Bitcoin does.

419

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

Detector

CA

Client

Domain

IKP Contract
• Global fund balance
• CA Registry
• DCP Registry
• RP Registry
• Misbehavior checker
• Payout enforcer

issue cert, RP

TLS handshake

Block Block Block… …

send payout transactions

Ethereum blockchain

report rogue cert

ClientClientDomainDomainCA
ClientDomainCACA

ClientClientMiner

can act as

register DCP

register RP

Fig. 5. IKP architecture in our Ethereum instantiation.

Code in Ethereum is stored in smart contracts, autonomous

accounts that run their code upon receiving a transaction. A

contract maintains its own data storage and balance, access

to both of which is governed completely by its code (though

all contract data and balances can be publicly read on the

blockchain). Contracts allow for the creation of autonomous

agents whose behavior is entirely dependent on their code

and the transactions sent to them, thus providing functionality

comparable to that of a centralized party in a transparent,

decentralized manner. This benefit has been utilized in such

ambitious efforts such as Decentralized Autonomous Organi-
zations (DAOs), which aim to automate governance of a central

entity using decentralized smart contracts [43]. Ethereum thus

offers the possibility of decentralized trusted entities, a feature

not possible in Bitcoin.

VIII. IKP IN ETHEREUM

We now describe our instantiation of IKP in Ethereum,

whose architecture is shown in Figure 5. We instantiated the

IKP authority as a smart contract called the IKP contract, thus

providing a decentralized authority that does not need to be

trusted. Ethereum also provides a natural computation platform

for checker and reaction programs, and its cryptocurrency

Ether can be used as the currency for financial payments made

in IKP.

However, Ethereum had two limitations that made instanti-

ating IKP difficult:

1) Necessary solvency: CAs need to pay enough into the

global fund to cover reaction payouts resulting from their

own misbehavior.

2) Report frontrunning: detector reports (and the corre-

sponding detection payouts) can be stolen if an entity

such as a miner submits a detector’s report as its own.

Both of these required slight modifications to the centralized

version of IKP.

In this section, we first describe the general changes we

made to IKP. We then describe the techniques we used to

ensure solvency and to prevent frontrunning.

A. Modifications for Ethereum

Because all payments in our instantiation of IKP will be

in Ether, the financial account information of CAs, domains,

and detectors are simply Ethereum addresses used to send

and receive Ether transactions. Since Ethereum addresses also

represent public keys, we also use addresses as update keys

for CAs registrations and DCPs. Using Ethereum addresses in

this way allows us to take advantage of the built-in signature

verification support for messages from addresses (i.e., transac-

tions). We note that CA public keys (described in Table I are

not Ethereum addresses, as they represent public keys used to

verify certificate signatures.

All messages to the IKP contract are sent as transactions

with the appropriate funds and parameters. This includes reg-

istration messages for CA information and for DCPs, messages

sent for RP issuance, detector reports, and messages sent to

terminate an RP. Because Ethereum requires each entity to

pay the gas costs of the computation that results from the

transaction, the incentives discussed in Section VI may not

exactly hold. However, we note that the current maximum that

an entity would pay for a transaction is around 4 million gas,

which is currently worth $3.14 USD at the standard price, and

thus with current certificate prices, the gas costs are unlikely

to make a significant difference in the incentives.

Checker programs and reaction programs are also imple-

mented and stored as smart contracts, which we call check
contracts and reaction contracts, respectively. Because each

contract is its own account, referencing a checker program or

reaction program in a DCP or RP respectively can be done

by simply storing the address to the relevant check contract

or reaction contract. Similarly, combining checker programs

or reaction programs can be done by calling check contracts

or reaction contracts by address.

B. Ensuring Solvency

To ensure solvency, we need to first show that CAs pay

enough into the global fund to cover any reaction payouts that

may occur if they misbehave. We can achieve this by having

the IKP contract maintain a balance for each CA, keeping track

of the payments that come in from the CA (most often from RP

issuance). Each CA must maintain a certain minimum balance

(called the solvency threshold) in order to issue new RPs.

We define the solvency threshold for a CA C as the sum of

the maximum affected-domain payout, the maximum detection

payout, and the sum of all termination payouts, computed over

all of C’s currently active RPs. This threshold ensures that for

any single instance of C misbehaving, all of C’s RP customers

and the detector will receive their appropriate payouts.

When C initially registers, it must pay a registration fee rC ,

which prevents frivolous CA registration. When C wants to

issue a new RP, it must provide sufficient funds to maintain

its solvency threshold. However, C can also add money to its

balance without issuing an RP or add more than is necessary

420

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 IKP contract handling a misbehavior report.

1: procedure PROCESS REPORT

Input: detector address d, certificate C
2: D ← get subject name from C
3: DCPD ← lookup D in DCP map
4: CC← get check contract address from DCPD

5: if !CC.check(C) then
6: RPLD ← lookup RP list for D
7: RP← get reaction contract address from RPLD[0]
8: RP.trigger(d)
9: delete RP from RPLD

10: end if
11: end procedure

when issuing an RP. Exceeding the solvency threshold may

attract potential customer domains by giving them greater con-

fidence that C will be held accountable in case of misbehavior.

If C issues multiple unauthorized certificates and drops below

its solvency threshold, it may not have enough funds for all

of its payouts. In this case, C’s registration fee rC is used

towards the payout amount until its balance is depleted. For the

remaining payout amount, the IKP contract records the debts

and the entities owed, and this record can be used as a basis

for legal action against C. Thus while IKP cannot provide full

protection in all cases, it improves upon the existing ecosystem

by providing some automatic reactions, and only requiring

manual intervention in extreme cases.

The IKP contract stores metrics for each registered CA,

namely, the total payout value of the CA’s current RPs, the

time of the CA’s last misbehavior, the total number of RPs

the CA has issued, and the total number of instances of

misbehavior for the CA. These metrics can help domains

evaluate whether or not a CA is trustworthy.

When choosing a CA from whom to purchase an RP or

certificate, we note that a domain can query the CA’s balance

and its outstanding liabilities (the sum of all payouts in all of

its payout reaction contracts). This provides the domain with

a measure of confidence of how solvent the CA is in case of

misbehavior. Moreover, the outstanding liability amount also

serves to provide the domain with a measure of the CA’s own

confidence in its security of issuing certificates.

C. Preventing Frontrunning

To report misbehavior, a detector needs to send an unautho-

rized certificate to the IKP contract. However, we must ensure

that misbehavior reports (each containing an unauthorized

certificate) cannot be stolen via frontrunning by blockchain

miners. We achieve this by using a protocol similar to the

domain registration protocol of Namecoin [69] to report mis-

behavior: a detector d first sends a “pre-report” containing

the reporting fee and a commitment hash H(C‖s) to the IKP

contract, where C is the certificate to report and s is a secret

known only to d. After waiting for a certain number of blocks,

d opens the commitment by sending C and s to the IKP

contract. A miner or other entity that sees a pre-report does not

know s and hence cannot determine what C is until d opens the

commitment. Because reporting misbehavior requires waiting

for a set number of blocks, frontrunning is not possible.

TABLE VI
COST OF VARIOUS IKP OPERATIONS.

Approximate Cost Approximate Cost

Operation Gas USD Operation Gas USD

Verif. cert. 31 012 $0.0238 Bootstrap proof 681 731 $0.5232
Register CA 91 400 $0.0701 Register DCP 152 579 $0.1171
Update CA 34 656 $0.0266 Update DCP 181 226 $0.1391
Order RP 49 024 $0.0376 Pre-report cert 63 951 $0.0491
Create RP 226 892 $0.1741 Report cert 149 284 $0.1146
Terminate RP 99 461 $0.0763 Send payouts 107 962 $0.0829
Expire RP 39 823 $0.0306 CA Balance 39 716 $0.0305

IKP Contract Creation 1 660 319 $1.2742

Upon receiving the detector’s report, the IKP contract

checks that the certificate and secret sent by d matches the

committed value sent earlier. The contract then carries out the

check shown in Algorithm 1. If the check contract returns

deems C unauthorized, the IKP contract triggers the reaction

contract for the oldest of the domain’s RPs. We note that in

addition to the reporting fee, a detector d must also pay the

gas costs for the work performed by the IKP contract.

IX. EVALUATION

In this section, we investigate the technical feasibility and

real-world challenges of IKP in today’s blockchains. In par-

ticular, we detail our prototype implementation in Ethereum,

and describe why the current limitations of Ethereum make a

full-fledged deployment of IKP challenging. We also analyze

real-world CA data to determine reasonable quantities for

systemwide parameters based on existing prices.

A. Prototype Implementation

We implemented IKP in 290 lines of Solidity, a high-level

Ethereum language that resembles JavaScript. Our code is

available at https://github.com/syclops/ikp. We

faced numerous challenges during our implementation. In the

current version of Ethereum, full X.509 certificate parsing is

prohibitively expensive, exceeding the current maximum limit

on gas allowed by a single transaction. Accordingly, for the

purpose of check contracts, we had to resort to leveraging

the DER-encoded format [2] of the certificates, recursively

extracting type-length-value encoded byte strings and finding

the desired object identifier (OID) such as the domain’s

common name (usually defined as its DNS name).

Additionally, the current version of Ethereum does not

support RSA signature verification, which hindered our effort

to determine the approximate cost of operations in IKP. We

overcame this obstacle by using a modified version of the

JavaScript-based Ethereum virtual machine [18]. The modifi-

cation adds RSA verification and sets its cost to be 200 gas; for

comparison, the cost of verifying an ECDSA signature using

the secp256k1 curve costs 3000 gas. We obtained a roughly

similar ratio of running times in comparing signature verifi-

cation between these two algorithms on our own machines.

While RSA verification is not officially part of Ethereum,

support for signature algorithms other than ECDSA has been

421

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

considered [19] and is currently planned for future versions of

Ethereum [23].

To measure the approximate costs of running various IKP

operations, we ran the functions of our prototype implementa-

tion in a test Ethereum network. We measured the approximate

computational steps (in Ethereum’s gas) and approximate

cost (in US dollars) for creating the IKP contract and for

each operation supported by the IKP contract. To convert the

cost in gas to USD, we used the current standard price of

1.8 × 10−8 Ether ≈ 7.67 × 10−7 USD per unit of gas. For

the purposes of testing, we assumed that all strings (used for

domain and CA names) were a maximum of 32 bytes, and

that the public keys for certificate verification were 2048-bit

RSA keys.

Table VI shows the costs of various operations in gas and

USD. We observe that by far the highest cost in the system

is for checking a bootstrap proof. Much of this cost comes

from simply handling data that is the size of a standard 2048-

bit certificate, since we can also see that the cost of verifying

an RSA-signed certificate is relatively low. However, since we

are dealing with amounts (under $1 USD) that are drastically

smaller than the cost of most certificates, we can conclude that

barring large fluctuations in the gas price, gas limit, or price of

Ether, it is both technically and financially feasible to deploy

IKP in the Ethereum blockchain.

B. CA Certificate Offerings

To get an estimate of sample RP payout values, we collected

data from the most popular CAs. In particular, we examined

each of the standard TLS certificate offerings of the 20 CAs

with a market share of at least 0.1%, representing 99.9% of

all TLS certificates on the Web [10]. For each certificate,

we noted the cost of a 1-year certificate (ignoring discounts

for purchasing multi-year certificates) and the relying party

warranty provided with the certificate. In total, we examined

70 certificate offerings across 18 CAs (Deutsche Telekom did

not specify a warranty amount, and Let’s Encrypt does not

offer a warranty because its certificates are free). For each

certificate available for purchase, we also calculated the risk

as the price divided by the warranty. We note that this is an

upper-bound for the actual risk that the CAs face.

Figure 6 shows the CDF for the cost, warranty, and cal-

culated risk of each of these certificates. Of the certificates

we examined, the prices ranged from $7 (Starfield’s Standard

SSL) to $1999 (Symantec’s Secure Site Wildcard), and the

warranty amounts ranged from $10k to $10M. Some of these

warranties, however, had caveats; for example, IdenTrust, who

offers a $10M warranty, stipulates that each transaction is

covered to a maximum of $100k and each relying party is

covered to a maximum of $250k. As shown in Table VII, the

risk for each certificate varied widely, ranging from around

0.001% up to almost 8.5%.

To set sample RP values, we can conservatively estimate

the risk of a CA to be 10%; thus the affected domain payout

could be 10 times the RP cost. Using the median cost of a

certificate as a reference, we can estimate that a standard RP

Cost (USD)
0 500 1000 1500 2000

C
D

F

0

0.2

0.4

0.6

0.8

1

(a) Distribution of 1-year certificate costs.

Warranty (USD)
104 105 106 107

C
D

F

0

0.2

0.4

0.6

0.8

1

(b) Distribution of certificate warranty amounts.

Risk
10-6 10-5 10-4 10-3 10-2 10-1

C
D

F

0

0.2

0.4

0.6

0.8

1

(c) Distribution of calculated risk amounts.

Fig. 6. Empirical CDFs of certificate costs, warranties, and assessed risks
from the most popular CAs [10].

TABLE VII
RISK UPPER-BOUNDS INFERRED FROM CA CERTIFICATE AND WARRANTY

AMOUNTS (IN US DOLLARS) FROM CA WEBSITES.

CA Certificate Cost Warranty Risk

Highest-Risk

GlobalSign [5] Wildcard $849 $10, 000 8.49e−2
GlobalSign DomainSSL $249 $10, 000 2.49e−2
StartCom [9, 71] Ext. Validation $199 $10, 000 1.99e−2
StartCom Org. Validation $119 $10, 000 1.19e−2
Entrust [7] Wildcard $699 $100, 000 6.99e−3
.
Certum [3] Commercial SSL $25 $222, 000 1.13e−4
Starfield [8] Standard SSL $7 $100, 000 7.00e−5
Comodo [4] EV SSL $99 $1, 750, 000 5.66e−5
IdenTrust [6] Multi Domain SSL $299 $10, 000, 000 2.99e−5
IdenTrust Standard SSL $99 $10, 000, 000 9.90e−6

Lowest-Risk

will cost ρ = $299, and thus a = $2990. Similarly, we can use

the risk to estimate that 10% of RPs may be terminated early,

and thus set the minimum termination payout as τ = $29.90.

We can estimate the reporting fee to be a small but non-trivial

amount, such as m = $5. Given these values, we can see

that the constraints from Section VI are easily satisfiable, for

422

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

example, ρ = $299, a = $2990, t = $150, and δ = $100.

X. DISCUSSION

In this section, we discuss the insights, various limitations

and proposed future work of IKP.

Blockchain Weaknesses. Blockchains have several weak-

nesses which have been demonstrated in practice. For example,

mining pools controlled a majority of hashing power in the

network before [22], allowing double-spending attacks and

suppression of selected transactions. Section XI describes

attacks that can be mounted with less than half of the network’s

hashrate. Moreover, there may be bugs in the IKP contract

which could result in exploits such as the one that plagued

the DAO in Ethereum [24], and check and reaction contracts

may have bugs as well. Learning to write secure contracts is

difficult [29], but we can build on existing work such as smart

contract formalization [45] to make IKP more robust.

Compelled Certificates. In this work, we did not explicitly

attempt to defend against nation-states who can compel CAs

to issue unauthorized certificates, as they are irrational adver-

saries with an effectively unlimited budget. However, client-

side extensions (described below) can prevent MitM attacks

even by such adversaries and record the certificate for out-of-

band responses.

Deployment Benefits. While detectors and miners can ben-

efit financially in IKP, domains, CAs, and clients can also

benefit from deploying IKP. Beyond RP payouts, domains

can be quickly alerted to CA misbehavior because of detec-

tor payouts. IKP also protects against misbehavior by both

internal and external CAs, and thus allows domains to have

greater confidence in their CAs, particularly those with good

proven reputations. CAs in IKP profit from good behavior,

and selling RPs provides a value-added service by which

CAs can compete with free certificate services such as Let’s

Encrypt [34]. Moreover, CAs can use IKP to prove a history

of good behavior, attracting more business.

Protecting Clients. In this paper, we described ways to

compensate domains affected by potential MitM attacks, but

even with RP-based payouts, clients have no protection from

the use of unauthorized certificates. To protect clients, we

can extend the IKP authority to record each unauthorized

certificate. A browser extension can then check this data during

the TLS handshake or maintain a local copy of unauthorized

certificates and reject any certificate that IKP has confirmed to

be unauthorized. A browser extension could even contribute

to this certificate blacklist, checking certificates the client sees

against the relevant domain’s DCP and reporting the certificate

if the it violates the DCP.
In our Ethereum instantiation, the first browser extension

could be implemented using events, which leverage the logging

functionality of the Ethereum virtual machine. Events cause

a logging opcode to execute in the Ethereum VM, storing

information in the receipt of the transaction that generated the

event [87]. Event information is not accessible to contracts,

but rather is designed for use in applications that can access

the blockchain history. A third-party service or the clients

themselves could then store the blockchain history to maintain

the certificate blacklist.

The second browser extension could be implemented by

sending certificates to the relevant domain’s check contract.

Because these checks do not modify any state, they do not cost

any gas to execute, and can even be run locally. The certificates

also do not need to be checked synchronously. If an unau-

thorized certificate is discovered, the browser extension could

automatically carry out the pre-report and reporting steps.

This automated reporting mechanism provides an incentive for

clients to deploy IKP and further deters CA misbehavior by

increasing the chance that an unauthorized certificate will be

quickly detected.

Future Work. We next plan to explore the following improve-

ments to IKP. First, we plan to further investigate possible

designs for check and reaction contracts, such as how a system

such as Town Crier [88] could be used to allow these contracts

to interface with real-world data. We also plan to implement

our browser extensions described above. Finally, we plan to

leverage work in mechanism design [16, 73] to formally verify

the incentive structure of IKP.

XI. RELATED WORK

In this section, we discuss work related to IKP. In particular,

we cover four main areas: log-based PKIs enhancements,

alternatives to CA-based PKIs, incentives on blockchains, and

insurance schemes.

A. Log-Based PKI Enhancements

Log-based PKI enhancements provide an alternate approach

to deterring CA misbehavior. They leverage high-availability

servers called public logs that maintain append-only databases

of certificates issued by CAs. Logs maintain Merkle hash

trees [63], which allow a log to provide efficient proofs that a

certificate is present in the log and that no previously recorded

certificates have been tampered with or deleted [28, 54]. These

proofs are sent to a client along with a domain’s certificate

to show that a log has recorded the certificate, ensuring that

an adversary attempting to use an unauthorized certificate has

exposed it to the public. Monitors can then watch logs for

suspicious certificates and report any instances of suspected

misbehavior.

The core idea of log-based PKI enhancements is that by en-

suring certificates are publicized, misbehavior can be quickly

detected, thus deterring CAs from issuing unauthorized cer-

tificates. Such exposure can also help detect unauthorized

certificates issued by accident [80]. Most log-based PKI en-

hancements rely on the domain to take action against unautho-

rized certificates [54], since only the domains themselves know

which certificates are authorized. Other approaches require the

domain to publicize policies used to determine which of its

certificates are authorized [44, 84].

Certificate Transparency (CT) [54] was the first to propose

the use of public logs in their current form, though earlier

proposals such as Sovereign Keys [33] used similar entities.

However, CT provides no support for revocation, nor does it

423

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

provide any information as to whether the logged certificates

are authorized. Revocation Transparency [53] and CIRT [78]

both provide mechanisms to enable revocation checking in

public logs. AKI [44] embeds policies into certificates that

enable recovery from private key loss or compromise, and

uses a checks-and-balances system among clients, domains,

CAs, logs, and validators (who monitor logs) to detect and

report misbehavior. ARPKI [17] presents a formally-verified

extension of AKI that provides stronger security guarantees.

PoliCert [84] separates policies from certificates and supports

multiple certificates per domain, hierarchical policies that

apply to all subdomain certificates, and domain-specified error

handling. While the idea of policies inspired DCPs in IKP,

no log-based PKI enhancement offers incentives for correct

behavior or automatic responses to misbehavior.

B. Alternatives to CA-based PKIs

Some previous approaches have also sought to diminish or

eliminate the role of CAs by providing authenticity through

other sources. For example, DANE [41] allows domains to

place public keys or certificates in DNSSEC [13], but does

not preclude CAs. Additionally, the security of DNSSEC

inherently relies on a PKI of its own roots at ICANN,

which is a single point of failure for the system and has not

been widely deployed. Public key pinning schemes such as

Chrome’s HTTPS pin [48], HPKP [35], or TACK [58] store

information about a domain’s public key at the client browser.

Perspectives [86] and Convergence [57] leverage the public

keys observed by notary servers throughout the Internet to

detect MitM attacks. However, in both of these approaches,

it is difficult to determine whether a domain has legitimately

changed its key or if a MitM attack is taking place, since the

domain does not provide any other information such as a DCP

to characterize its certificates.

Other work has sought to move PKI functionality onto

the blockchain. For example, Blockstack [11] (formerly One-

Name) leverages the Bitcoin blockchain to provide a name

registration service that also allows entities to bind public keys

to their names. However, Blockstack uses its own namespace

and a pricing rule based on the name length and the presence

of nonalphabetic characters, and does not attempt to secure

names that exist in today’s DNS. Certcoin [38] leverages

Namecoin [68] to implement a blockchain-based PKI, stor-

ing identity information in a Merkle hash tree and using

the Kademlia DHT [61] for fast lookup. However, Certcoin

does not protect existing names, and does not provide any

recoverability for identities that are falsely claimed on the

blockchain. EthIKS [20] does not implement a PKI on its own,

but rather uses the Ethereum blockchain to audit a centralized

key server for CONIKS [62]. However, neither EthIKS nor

CONIKS provides any means for responding to equivocation

or other misbehavior by key servers.

C. Blockchain-based Incentives

Most previous studies of incentives in blockchains have

been concerned with the incentives of mining. The miner’s

dilemma [36], for example, analyzes the mining pools’ game-

theoretic incentives to infiltrate and attack one another. The

selfish mining attack [37] shows that mining in the Bitcoin

network is not incentive compatible. Subsequent work further

improves on the strategy [79] and demonstrates that composing

with network attacks such as the eclipse attack [40] can

increase the revenue of selfish mining with less than half of

the network hashing power [70]. These works are orthogonal

to IKP, focusing on the incentives of blockchain consensus

rather than of applications built on the blockchain.

Other work has examined incentives that can be built on

top of the blockchain. For example, Andrychowicz et al.

examined incentives to ensure the security of multi-party

computation in the Bitcoin blockchain [12]. They showcase the

feasibility of timed commitments in Bitcoin as well as a lottery

protocol. Kumaresan and Bentov examined incentivization for

verifiable computation and proposed a mechanism to non-

interactively reward bounties for solving hard problems [46].

The presented approach, however, is impractical as it suffers

from the limitations of Bitcoin’s language script and from

the hybrid model that relies on ideal functionalities, which

are implemented through costly garbled circuits and zero-

knowledge proofs. While support for zero-knowledge proofs is

planned for Ethereum [25], we instead focus on the incentives

of a TLS-like PKI built on the blockchain.

D. Insurance Schemes

Even before cryptocurrencies, the idea of electronic insur-

ance policies were used to evaluate services in distributed

systems [47]. The idea of insurance was also proposed as

an example of an authentication metric that followed good

design principles [76]. However, both of these proposals offer

little accountability and cannot be effectively realized without

cryptocurrencies. Certificates-as-an-Insurance (CaaI) was the

first to propose the idea of integrating insurance into TLS

certificates as a means of balancing CA control and liability,

but only presented challenges and principles for desgning

such a system [59]. Our work on IKP adds a cryptocurrency-

based instantiation of the CaaI model as well as proofs of

incentivization compared to log-based PKIs.

XII. CONCLUSIONS

In this paper, we proposed IKP, a platform for reporting

unauthorized certificates and responding to CA misbehavior in

an automated and incentivized fashion. We described the full

process from registering a CA to claiming reaction payouts.

We developed a model describing reaction payouts, which

helped us discover the constraints to guide the negotiation

of reasonable reaction policies. Finally, we discussed the

deployability incentives in today’s Internet and created an

decentralized instantiation of IKP based on Ethereum. Our

work does not stop all misbehaving CAs, nor does it always

enforce accountability on CAs that are misbehaving. We

observe, however, an urgent need to incentivize good CA

behavior in this way in order to make TLS more secure, and

we argue that IKP is a first concrete step towards that goal.

424

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers,

Virgil Gligor, Maverick Woo, and Bryan Parno for their

comments on drafts of this paper. This work was supported in

part by NSF Grant DGS1252522.

REFERENCES

[1] “Script,” Bitcoin Wiki, https://en.bitcoin.it/wiki/Script, October 2014.
[2] “Information technology – ASN.1 encoding rules: Specification of

Basic encoding rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER),” ITU-T X.690, August 2015.

[3] “Certum by Asseco,” https://en.sklep.certum.pl/data-safety/ssl-
certificates.html, July 2016.

[4] “Comodo,” https://ssl.comodo.com/ssl-certificate.php, July 2016.
[5] “GlobalSign SSL,” https://www.globalsign.com/en/ssl/, July 2016.
[6] “IdenTrust SSL,” https://www.identrustssl.com/buy.html, July 2016.
[7] “SSL certificate comparison,” https://www.entrust.com/ssl-certificate-

comparison/, July 2016.
[8] “Starfield technologies,” https://www.starfieldtech.com/, July 2016.
[9] “StartCom,” https://www.startssl.com/, July 2016.

[10] “Usage of SSL certificate authorities for websites,” https://w3techs.com/
technologies/overview/ssl certificate/all, July 2016.

[11] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A global
naming and storage system secured by blockchains,” in USENIX Annual
Technical Conference (ATC), June 2016.

[12] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on Bitcoin,” in IEEE Symposium on
Security and Privacy (S&P), May 2014, pp. 443–458.

[13] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS
security introduction and requirements,” RFC 4033, March 2005.

[14] H. Asghari, M. J. G. van Eeten, A. M. Arnbak, and N. A. N. M. van
Eijk, “Security economics in the HTTPS value chain,” in Workshop on
the Economics of Information Security (WEIS), November 2013.

[15] A. Back, “Hashcash: A denial of service counter-measure,” http://www.
cypherspace.org/adam/hashcash/, August 2002.

[16] G. Barthe, M. Gaboardi, E. J. Gallego Arias, J. Hsu, A. Roth,
and P.-Y. Strub, “Computer-aided verification in mechanism design,”
arXiv:1502.04052v4 [cs.GT], October 2016.

[17] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig, R. Sasse, and P. Szala-
chowski, “ARPKI: Attack resilient public-key infrastructure,” in ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2014, pp. 382–393.

[18] A. Beregszaszi, “RSA signature verification in Ethereum,” https://github.
com/axic/ethereum-rsa, April 2016.

[19] ——, “Support RSA signature verification,” https://github.com/
ethereum/EIPs/issues/74, March 2016.

[20] J. Bonneau, “EthIKS: Using Ethereum to audit a CONIKS key trans-
parency log,” in 3rd Workshop on Bitcoin and Blockchain Research
(BITCOIN), February 2016.

[21] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “SoK: Research perspectives and challenges for Bitcoin and
cryptocurrencies,” in IEEE Symposium on Security and Privacy (S&P),
May 2015.

[22] V. Buterin, “On mining,” Ethereum Blog, June 2014.
[23] ——, “Understanding Serenity, part I: Abstraction,” https://blog.

ethereum.org/2015/12/24/understanding-serenity-part-i-abstraction/,
December 2015.

[24] ——, “Critical update re: DAO vulnerability,” Ethereum Blog, June
2016.

[25] ——, “Privacy on the blockchain,” https://blog.ethereum.org/2016/01/
15/privacy-on-the-blockchain/, January 2016.

[26] Comodo, “Comodo fraud incident 2011-03-23,” https://www.comodo.
com/Comodo-Fraud-Incident-2011-03-23.html, March 2011.

[27] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and T. Polk,
“Internet X.509 public key infrastructure certificate and certificate revo-
cation list (CRL) profile,” RFC 5280, May 2008.

[28] S. A. Crosby and D. S. Wallach, “Efficient data structures for tamper-
evident logging,” in USENIX Security Symposium, August 2009, pp.
317–334.

[29] K. Delmolino, A. Mitchell, A. Kosba, A. Miller, and E. Shi, “Step by
step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab,” in Financial Cryptography and Data Security (FC),
February 2016.

[30] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS) protocol
version 1.2,” RFC 5246, August 2008.

[31] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman, “A
search engine backed by Internet-wide scanning,” in 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2015,
pp. 542–553.

[32] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Advances in Cryptology (CRYPTO ’91), August 1992, pp. 139–
147.

[33] P. Eckersley, “Sovereign Key cryptography for Internet domains,”
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-
design.txt;hb=master, June 2012.

[34] L. Encrypt, “Let’s encrypt,” https://letsencrypt.org.

[35] C. Evans, C. Palmer, and R. Sleevi, “Public key pinning extension for
HTTP,” RFC 7469, April 2015.

[36] I. Eyal, “The miner’s dilemma,” in IEEE Symposium on Security and
Privacy (S&P), May 2015, pp. 89–103.

[37] I. Eyal and E. G. Sirer, “Majority mining is not enough: Bitcoin mining
is vulnerable,” in Financial Cryptography and Data Security (FC), 2014.

[38] C. Fromknecht, D. Velicanu, and S. Yakoubov, “A decentralized public
key infrastructure with identity retention,” Cryptology ePrint Archive,
Report 2014/803, November 2014.

[39] Google, “HTTPS usage,” https://www.google.com/transparencyreport/
https/metrics/, 2016.

[40] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse attacks on
Bitcoin’s peer-to-peer network,” in 24th USENIX Security Symposium
(USENIX Security), 2015, pp. 129–144.

[41] P. Hoffman and J. Schlyter, “The DNS-based authentication of named
entities (DANE) transport layer security (TLS) protocol: TLSA,” RFC
6698, August 2012.

[42] H. Hoogstraaten, R. Prins, D. Niggebrugge, D. Heppener,
F. Groenewegen, J. Wettink, K. Strooy, P. Arends, P. Pols, R. Kouprie,
S. Moorrees, X. van Pelt, and Y. Z. Hu, “Black Tulip: Report of
the investigation into the DigiNotar certificate authority breach,”
www.rijksoverheid.nl/bestanden/documenten-en-publicaties/rapporten/
2012/08/13/black-tulip-update/black-tulip-update.pdf, August 2012.

[43] C. Jentzsch, “Decentralized autonomous organization to automate gov-
ernance,” White paper, November 2016.

[44] T. H.-J. Kim, L.-S. Huang, A. Perrig, C. Jackson, and V. Gligor,
“Accountable Key Infrastructure (AKI): A proposal for a public-key
validation infrastructure,” in International World Wide Web Conference
(WWW), May 2013, pp. 679–690.

[45] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Symposium on Security and Privacy (S&P), May
2015.

[46] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize
correct computations,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2014.

[47] C. Lai, G. Medvinsky, and B. C. Neuman, “Endorsements, licensing,
and insurance for distributed system services,” in Proc. of the 2nd ACM
Conference on Computer and Communications Security, 1994.

[48] A. Langley, “Public key pinning,” https://www.imperialviolet.org/2011/
05/04/pinning.html, May 2011.

[49] ——, “Revocation checking and Chrome’s CRL,” https://www.
imperialviolet.org/2012/02/05/crlsets.html, February 2012.

[50] ——, “Enhancing digital certificate security,” http://
googleonlinesecurity.blogspot.com/2013/01/enhancing-digital-
certificate-security.html, January 2013.

[51] ——, “Further improving digital certificate security,”
http://googleonlinesecurity.blogspot.com/2013/12/further-improving-
digital-certificate.html, December 2013.

[52] ——, “Maintaining digital certificate security,” http:
//googleonlinesecurity.blogspot.com/2015/03/maintaining-digital-
certificate-security.html, March 2015.

[53] B. Laurie and E. Kasper, “Revocation transparency,” http://www.links.
org/?p=1272, September 2012.

[54] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” RFC
6962, June 2013.

[55] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mis-
love, A. Schulman, and C. Wilson, “An end-to-end measurement of
certificate revocation in the web’s PKI,” in ACM Internet Measurement
Conference (IMC). ACM, 2015, pp. 183–196.

425

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

[56] G. Markham, “WoSign and StartCom,” https://docs.google.com/
document/d/1C6BlmbeQfn4a9zydVi2UvjBGv6szuSB4sMYUcVrR8vQ,
September 2016.

[57] M. Marlinspike, “SSL and the future of authenticity,” http://www.
youtube.com/watch?v=Z7Wl2FW2TcA, BlackHat 2011, August 2011.

[58] M. Marlinspike and T. Perrin, “Trust assertions for certificate keys,”
https://tools.ietf.org/html/draft-perrin-tls-tack-02, January 2013.

[59] S. Matsumoto and R. M. Reischuk, “Certificates-as-an-Insurance: In-
centivizing accountability in SSL/TLS,” NDSS Workshop on Security of
Emerging Network Technologies (SENT), 2015.

[60] ——, “IKP: Turning a PKI Around with Blockchains,” Cryptology
ePrint Archive, http://eprint.iacr.org/2016/1018, 2017.

[61] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer informa-
tion system based on the XOR metric,” in International Workshop on
Peer-to-Peer Systems. Springer, 2002, pp. 53–65.

[62] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman, “Coniks: Bringing key transparency to end users,” in 24th
USENIX Security Symposium (USENIX Security 15), August 2015, pp.
383–398.

[63] R. C. Merkle, “A digital signature based on a conventional encryption
function,” Advances in Cryptology (CRYPTO ’87), pp. 369–378, 1988.

[64] Microsoft, “Erroneous VeriSign-issued digital certificates pose spoofing
hazard,” https://technet.microsoft.com/library/security/ms01-017, Mar.
2001.

[65] ——, “Improperly issued digital certificates could allow spoofing,”
Microsoft Security Advisory 3046310, March 2015.

[66] E. Mills and D. McCullagh, “Google, Yahoo, Skype targeted in at-
tack linked to Iran,” http://www.cnet.com/news/google-yahoo-skype-
targeted-in-attack-linked-to-iran/, Mar. 2011.

[67] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Whitepa-
per, October 2008.

[68] Namecoin, “Namecoin,” http://namecoin.info.
[69] ——, “Register and configure .bit domains,” https://wiki.namecoin.info/

index.php?title=Register and Configure .bit Domains, May 2015.
[70] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-

alizing selfish mining and combining with an eclipse attack,” in IEEE
European Symposium on Security and Privacy (EuroS&P), 2016.

[71] E. Nigg, “StartCom certificate policy and practice statements,” https:
//www.startssl.com/policy.pdf, May 2016.

[72] J. Nightingale, “DigiNotar removal follow up,” https://blog.mozilla.org/
security/2011/09/02/diginotar-removal-follow-up/, September 2011.

[73] N. Nisan and A. Ronen, “Algorithmic mechanism design,” in ACM
Symposium on Theory of Computing, 1999, pp. 129–140.

[74] N. Percoco, “Clarifying the Trustwave CA policy update,”
http://blog.spiderlabs.com/2012/02/clarifying-the-trustwave-ca-policy-
update.html, February 2012.

[75] H. Perl, S. Fahl, and M. Smith, “You won’t be needing these any
more: On removing unused certificates from trust stores,” in Financial
Cryptography and Data Security. Springer, 2014, pp. 307–315.

[76] M. K. Reiter and S. G. Stubblebine, “Authentication metric analysis and
design,” ACM Transactions on Information and System Security, vol. 2,
no. 2, pp. 138–158, May 1999.

[77] E. Rescorla, “HTTP over TLS,” RFC 2818, May 2000.
[78] M. D. Ryan, “Enhanced certificate transparency and end-to-end en-

crypted mail,” in Network and Distributed Security Symposium (NDSS).
NDSS, February 2014.

[79] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in Bitcoin,” arXiv:1507.06183v2 [cs.CR], July 2015.

[80] R. Sleevi, “Sustaining digital certificate security,” https:
//googleonlinesecurity.blogspot.com/2015/10/sustaining-digital-
certificate-security.html, October 2015.

[81] S. Somogyi and A. Eijdenberg, “Improved digital certificate
security,” https://googleonlinesecurity.blogspot.com/2015/09/improved-
digital-certificate-security.html, September 2015.

[82] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, L. Gasser, N. Gailly,
and B. Ford, “Keeping authorities “honest or bust” with decentralized
witness cosigning,” in IEEE Symposium on Security and Privacy (SP),
May 2016.

[83] P. Szalachowski, L. Chuat, and A. Perrig, “PKI safety net (PKISN):
Addressing the too-big-to-be-revoked problem of the TLS ecosystem,”
in IEEE European Symposium on Security and Privacy (EuroS&P), Mar.
2016.

[84] P. Szalachowski, S. Matsumoto, and A. Perrig, “PoliCert: Secure and
flexible TLS certificate management,” in ACM SIGSAC Conference on
Computer and Communications Security, 2014.

[85] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh,
“Towards short-lived certificates,” Web 2.0 Security and Privacy, 2012.

[86] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving
SSH-style host authentication with multi-path probing,” in USENIX
Annual Technical Conference, June 2008, pp. 321–334.

[87] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” White Paper, 2015.

[88] F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
Crier: An authenticated data feed for smart contracts,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), October
2016, pp. 270–282.

426

Authorized licensed use limited to: Seoul National University. Downloaded on May 11,2022 at 05:21:21 UTC from IEEE Xplore. Restrictions apply.

