lodine Fast Dynamic Taint Tracking Using
Rollback-free Optimistic Hybrid Analysis

Subarno Banerjee*, David Devecseryt, Peter M. Chen#* and Satish Narayanasamy
* University of Michigan ¥ Georgia Institute of Technology

|EEE S&p 2019

Minkyung Park

Contents

* Introduction
* Background
*lodine

* Evaluation

* Conclusion

Introduction

Dynamic information-flow tracking (DIFT)

* DIFT enforces a security or privacy policy
* Also called taint-tracking

* |t tags source data as tainted, propagates taints through data and

control flow, and checks if tainted data reaches sinks
DIFT motniros
C= ()

a= b+

network_send(a)

* DIFT can help detect security attacks or prevent sensitive information
from leaking through untrusted channels

Practicality

* Every instruction has to be monitored to propagate taints to the
destination operand based on the source operands’ taint

* Prohibitive performance overhead
e Slowdown up to 1-2 orders of magnitude

e How to reduce this cost

* Reducing tainted sources . .
* Coarsening the granularity of objects OMPTomIse atctracy

 Parallelizing

Throughput overhead

Optimistic hybrid analysis (OHA)

* Execution paths that violate an information-flow policy are almost either rare or
impossible
e DIFT fundamentally do more work than necessary

* OHA uses both static analysis and dynamic analysis to elide likely unnecessary
DIFT monitors

A static analysis can identify these instructions and elide DIFT monitors for that

* The soundness problem: the elided instructions may be necessary monitors

- the program execution is replayed from the beginning

lodine

* A novel OHA approach that enable efficient and sound DIFT for live
execution

* lodine eliminates the need for rollback and enables forward recovery

* Any monitor elided during a program execution has to be proven to
be unnecessary to ensure soundness = safe elision

Background

Conservative hybrid analysis

* A pure DIFT instruments all instructions to propagate taints

* Information-flow leaks are rare
* Not propagating taints or not reaching any sink

* The hybrid analysis optimizes its dynamic taint analysis
 Static analysis can be used to remove unnecessary monitors

* There are two ways in the hybrid analysis

* Forward taint analysis
* Backward taint analysis

Forward taint analysis

* |t determines if the source operands of an instruction may be tainted

* If none of the source operands may be tainted, then its track monitor
IS pruned

source:s sink:printf ()

main (.) { main () {

Ix=c + 3;]

XxX=c+ 3;

< Neither source operands are tainted

s printf(z);: }

(a) Full dynamic analysis

y = s;

if (p < 0){

zZ=c %y

out = z;

printf(z); }

(b) Conservative hybrid analysis

x Will not be tainted

Backward taint analysis

* It determines whether a destination operand of an instruction may

reach a sink

* If not, track monitor for that instruction is elided (even if it can be

tainted)

main (.) {
X =c+ 3;

s printf(z);: }

source:s sink:printf ()

main (.) {
X =c+ 3;

if (p < 0){

zZ=c %y

out = z;

printf (z) ;

}

< Cannot leverage this property soundly

(a) Full dynamic analysis (b) Conservative hybrid analysis

Optimistic hybrid analysis (OHA)

* Conservative hybrid analysis is still limited
* Many infeasible program states is included
* Most executions cover only a small subset of common execution states

* OHA consider the states that will be realized in the dynamic executions

* An OHA profiler observes representative executions to gather likely invariants
* e.g., unreachable code, callee sets, unrealized call contexts
* These are mostly true, but are hard to prove statically

* The likely invariants are used as predicates for forward & backward analysis

* Resulting in a predicated static taint analysis

Example of OHA

* The executions only have "p>=0"

source:s sink:printf ()
main () {
vitor: never reach sink

if (p < 0){
- “z=c*y” is never executed

- The variable z

does not tainted due to y

forward monitor: source operand never tainted
printf(z); }

(b) Conservative hybrid analysis

13/28

Problem: rollback recovery in OHA

 When a likely invariant fails, the predicated static analysis is rendered as unsound

 When it fails, the program execution is replayed from the beginning using the
conservative hybrid analysis

main () | main () {
x =c + 3; x =c + 3;
|
if (p < 04 if p <0t
Z =c *y Z=cC % ¥y R
] } ------------------------------------
out = z; out = z

printf(z); }

source:s sink:printf () () conservative hybrid analysis (c) Optimistic hybrid analysis

e A rollback to the beginning compromises availability of the system

14/28

lodine

Safe elisions

* lodine is a rollback-free OHA using safe elision
* The need for rollback on invariant failure is eliminated

* Rollbacks are cased by the dependence between the current monitor
being elided and potential future invariant failures

* lodine elides a monitor when it can prove that an invariant violation
would not affect any preceding elisions of that monitor

Noop monitor elisions

* A noop monitor is one that does not change the analysis metadata state

/ Taint set

\\\\\\\‘ y=pub“c { }

{metadatal} — ° T {secret}

invariant
violation

* Elisions of noop monitors are safe elisions

17/28

Noop monitor elisions

e We assume R is unreacahble

main { main (.) {
X =c¢c+ 3 . X =c + 3;
NOT noop monitor
Yy = s

printi(znoop monitor

(b) Conservative hybrid analysis

source:s sink:printf ()

printf(z); }

(c) Optimistic hybrid analysis

printf(z); }

{s. y}

{s. y}

{s. y}

(d) Rollback-free OHA

18/28

Noop monitor elisions

* Predicated forward optimizations are safe
* All elided monitors are noop monitors

* Predicated backward optimizations may not be safe

main () { main (.) {
X =c+ 3; X =c+ 3;
_ v = 8;
!E:;j Backward
— it p< O .
z=c*y IR z=c*y R
} ---------------------------------- } "1-
out = z; out = =z
Forward _
printf (z); } | printf(z); }

(c) Optimistic hybrid analysis (d) Rollback-free OHA 19/28

Rollback-Free Optimistic Hybrid Taint Analysis

* lodine uses predicated forward analysis and conservative backward analysis

* How to treat invariant violation
* |t instruments a conditional branch for every invariant check
* Optimized dynamic analysis (fast-path) is executed until an invariant fails
* The invariant check switches the control to a conservatively optimized analysis (slow-path)

source:s sink:printf () Region R is likely unreachable

main () { main () { main (.) {
X AAc + 3;

main () {
x =¢c + 3;

N 2= ¢

Lo\qupractida"ty - f (p. <01 ...
iz =c*y; IR

e p pe(e) = e(e) 4D

}:‘V v }

out = z; ocut = z

printf(z); } printf(z); } printf(z); } ‘ printf(z); }

Slow-path Fast-path

(a) Full dynamic analysis (b) Conservative hybrid analysis (c) Optimistic hybrid analysis (d) Rollback-free OHA

Forward recovery mechanism

* Each function implements both the fast-path and the slow-path code
e The control flow graph for a function is replicated

* A conditional jump to the slow-path is inserted to each invariant check
* When invariant fails, the execution is switched

* All functions in the call stack must switch to the slow-path upon a return from the

slow-path domain
* After every call site, a conditional switch switches to the slow-path

fast-path slow-path 21/28

Evaluation

Experimental setup

* Implementation: LLVM compiler infrastructure supporting C language

LLVM'’s Data Flow Sanitizer as instrumentation backend

* Environment: a single core of an Intel Xeon E5-2620 processor with 16GB RAM

e Benchmark suit

Postfix mail server test generators
nginx/thttpd: serving webpages
redis: database server

vim: text processing

gzip: (de-)compressing files

* Profiling executions to gather likely invariants

Postfix stress tests

ngnix, thttpd serving pydoc3 documentation and loading webpages
redis benchmarking application and performing geo-search

vim challenge solutions

gzip with SPEC’s bzip2 and sphinx reference inputs

- A profile set of 400 executions, and a performance test set of 100 executions

lodine framework overhead

* Invariant check overhead

* Invariant checks have nearly no effect on runtime, incurring only 2% of overall
execution time

* Invariant violation overhead

* During some-to-all analysis, only sendmail, redis and vim violates an invariant
in 3, 2, and 5 (out of 100) executions respectively

* The amortized overhead of the slow path analysis resulting from the invariant
violation is less than 0.5%

IFT Security policies

» Security policy from Dytan (related work) and Google desktop’s privacy policy

* Email integrity and privacy: receiver addresses are entirely determined by user input and message dates
are only determined by the time syscall, etc.

* Overwrite attacks on web server: taints all network inputs, and asserts that tainted values are not used
as function pointers, etc.

@ Full Dynamic & Conservative Hybrid M lodine

Normalized dynamic analysis time

8.14

8.0 e

7.23 e
70 | [
o | i s | The effectiveness of lodine using real taint policies
0 | > 4.4x reduction in runtime overhead
4.0 o e .
so | [
N B - R
Lo Rl g o e

smtp integrity gmgp integrity nginx security

Fig. 5: Dynamic information-flow tracking applications

25/28

Generic information-flow policies

* Two different variants of taint analysis is implemented to evaluate the
effectiveness of lodine in a forward-only analysis vs. a forward-backward analysis

* Some-to-some: propagates taint from a randomly sampled fraction of the taint sources to the set of all
sink instructions = both forward and backward analyses are used

* Some-to-all: treats all instructions as potential sinks and propagates taints from the sampled taint
sources = only forward analysis is used

O Baseline execution B Invariant checks # Monitors O Baseline execution M Invariant checks # Monitors
:3;59.93
3]

=1] -~

LEETTEN
8 4.80

PRRITETEITIEL
R

g 3 B4
384

LU0 O A0
4

LY

R
&m B ey

—lN
1_\.,

R e 5., 7.4
PR e e 5. 74

PR A A 5,13

S 2.53

1,45

'. e 3.03

P 3.2 3
R 3.7

EE Cons, [Wem 149
5§ lodine [111

PR 7 .64
e 1,82

ons.
lodine .37

PR 2 46

e 1,63
T

= Cons. :
3 odine | S

(=] = L] s = w o =l

Normalized dynamic analysis time
Normalized dynamic analysis time

=1 L [w = i

lodine | 8127

Il
Full

Full
Full

i
C
Cons.,
i
i

Full
Full

Cons,
g lodine
k-]
= Full

£

Ful

|:_E
] k-
w 9o

tre

-
u
-—i‘*
,_
Z
k: -r‘_‘
m gip | Mean gmap- | gmgp- | s
sin source | sink | source sink | sourge

k-1
o
3
@

=

thitpd | redis

B~y
i
=TT

.T_
v'f
mtp-

sink

(a) some-to-some (aint analysis (b) some-to-all taint analysis

- lodine significantly reduces the runtime overhead s

Conclusion

Conclusions

e Optimistic hybrid analysis (OHA) to optimize dynamic information
flow tracking (DIFT) suffers from rollback recovery problem

* lodine presents a novel approach by eliminating the need for
rollbacks

* lodine restricts predicated static analysis optimizations to noop safe
elision

* Thereby, it improves the precision of static analysis and reduces
runtime overhead

