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Dynamic information-flow tracking (DIFT)
• DIFT enforces a security or privacy policy

• Also called taint-tracking

• It tags source data as tainted, propagates taints through data and 
control flow, and checks if tainted data reaches sinks

• DIFT can help detect security attacks or prevent sensitive information 
from leaking through untrusted channels

c = sensitive_source()

…

a = b+c

…

network_send(a)
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t(c) = true

t(a) = t(b)+t(c)

assert(!t(a))

DIFT motniros



Practicality
• Every instruction has to be monitored to propagate taints to the 

destination operand based on the source operands’ taint
• Prohibitive performance overhead

• Slowdown up to 1-2 orders of magnitude

• How to reduce this cost
• Reducing tainted sources

• Coarsening the granularity of objects

• Parallelizing 

• …

Compromise accuracy

Throughput overhead
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Optimistic hybrid analysis (OHA)
• Execution paths that violate an information-flow policy are almost either rare or 

impossible
• DIFT fundamentally do more work than necessary

• OHA uses both static analysis and dynamic analysis to elide likely unnecessary 
DIFT monitors

• A static analysis can identify these instructions and elide DIFT monitors for that

• The soundness problem: the elided instructions may be necessary monitors

 the program execution is replayed from the beginning
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Iodine
• A novel OHA approach that enable efficient and sound DIFT for live 

execution

• Iodine eliminates the need for rollback and enables forward recovery

• Any monitor elided during a program execution has to be proven to 
be unnecessary to ensure soundness  safe elision
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Conservative hybrid analysis
• A pure DIFT instruments all instructions to propagate taints

• Information-flow leaks are rare
• Not propagating taints or not reaching any sink

• The hybrid analysis optimizes its dynamic taint analysis 
• Static analysis can be used to remove unnecessary monitors

• There are two ways in the hybrid analysis
• Forward taint analysis

• Backward taint analysis
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Forward taint analysis
• It determines if the source operands of an instruction may be tainted

• If none of the source operands may be tainted, then its track monitor 
is pruned

 Neither source operands are tainted
x will not be tainted
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Backward taint analysis
• It determines whether a destination operand of an instruction may 

reach a sink

• If not, track monitor for that instruction is elided (even if it can be 
tainted)

 Cannot leverage this property soundly
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Optimistic hybrid analysis (OHA)
• Conservative hybrid analysis is still limited

• Many infeasible program states is included

• Most executions cover only a small subset of common execution states

• OHA consider the states that will be realized in the dynamic executions

• An OHA profiler observes representative executions to gather likely invariants 

• e.g., unreachable code, callee sets, unrealized call contexts 

• These are mostly true, but are hard to prove statically

• The likely invariants are used as predicates for forward & backward analysis

• Resulting in a predicated static taint analysis
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Example of OHA
• The executions only have ”p>=0”

 “z=c*y” is never executed

 The variable z 
does not tainted due to y

backward monitor: never reach sink
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forward monitor: source operand never tainted



Problem: rollback recovery in OHA
• When a likely invariant fails, the predicated static analysis is rendered as unsound

• When it fails, the program execution is replayed from the beginning using the 
conservative hybrid analysis

• A rollback to the beginning compromises availability of the system
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Iodine

15



Safe elisions
• Iodine is a rollback-free OHA using safe elision

• The need for rollback on invariant failure is eliminated

• Rollbacks are cased by the dependence between the current monitor 
being elided and potential future invariant failures

• Iodine elides a monitor when it can prove that an invariant violation 
would not affect any preceding elisions of that monitor
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Noop monitor elisions
• A noop monitor is one that does not change the analysis metadata state

• Elisions of noop monitors are safe elisions

noop monitor

{metadata1}

{metadata1}

t(y)=t(public)

y=public
{secret}

{secret}

Taint set

=

invariant 
violation
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Noop monitor elisions
• We assume R is unreacahble

noop monitor

NOT noop monitor

{s, y}

{s, y}

{s, y}

{s}

!=

=
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Noop monitor elisions
• Predicated forward optimizations are safe

• All elided monitors are noop monitors

• Predicated backward optimizations may not be safe

Forward

Backward
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Rollback-Free Optimistic Hybrid Taint Analysis
• Iodine uses predicated forward analysis and conservative backward analysis 

• How to treat invariant violation
• It instruments a conditional branch for every invariant check

• Optimized dynamic analysis (fast-path) is executed until an invariant fails

• The invariant check switches the control to a conservatively optimized analysis (slow-path)

Low practicality Rollback

Fast-pathSlow-path
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Forward recovery mechanism
• Each function implements both the fast-path and the slow-path code

• The control flow graph for a function is replicated

• A conditional jump to the slow-path is inserted to each invariant check
• When invariant fails, the execution is switched

• All functions in the call stack must switch to the slow-path upon a return from the 
slow-path domain
• After every call site, a conditional switch switches to the slow-path
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Experimental setup
• Implementation: LLVM compiler infrastructure supporting C language

• LLVM’s Data Flow Sanitizer as instrumentation backend

• Environment: a single core of an Intel Xeon E5-2620 processor with 16GB RAM

• Benchmark suit
• Postfix mail server test generators
• nginx/thttpd: serving webpages
• redis: database server
• vim: text processing
• gzip: (de-)compressing files

• Profiling executions to gather likely invariants
• Postfix stress tests
• ngnix, thttpd serving pydoc3 documentation and loading webpages
• redis benchmarking application and performing geo-search 
• vim challenge solutions 
• gzip with SPEC’s bzip2 and sphinx reference inputs

 A profile set of 400 executions, and a performance test set of 100 executions
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Iodine framework overhead
• Invariant check overhead

• Invariant checks have nearly no effect on runtime, incurring only 2% of overall 
execution time

• Invariant violation overhead
• During some-to-all analysis, only sendmail, redis and vim violates an invariant 

in 3, 2, and 5 (out of 100) executions respectively

• The amortized overhead of the slow path analysis resulting from the invariant 
violation is less than 0.5%
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IFT Security policies
• Security policy from Dytan (related work) and Google desktop’s privacy policy

• Email integrity and privacy: receiver addresses are entirely determined by user input and message dates 
are only determined by the time syscall, etc. 

• Overwrite attacks on web server: taints all network inputs, and asserts that tainted values are not used 
as function pointers, etc.

The effectiveness of Iodine using real taint policies
 4.4x reduction in runtime overhead
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Generic information-flow policies
• Two different variants of taint analysis is implemented to evaluate the 

effectiveness of Iodine in a forward-only analysis vs. a forward-backward analysis
• Some-to-some: propagates taint from a randomly sampled fraction of the taint sources to the set of all 

sink instructions  both forward and backward analyses are used

• Some-to-all: treats all instructions as potential sinks and propagates taints from the sampled taint 
sources  only forward analysis is used

 Iodine significantly reduces the runtime overhead
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Conclusions
• Optimistic hybrid analysis (OHA) to optimize dynamic information 

flow tracking (DIFT) suffers from rollback recovery problem

• Iodine presents a novel approach by eliminating the need for 
rollbacks 

• Iodine restricts predicated static analysis optimizations to noop safe 
elision

• Thereby, it improves the precision of static analysis and reduces 
runtime overhead
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