#### **MMLAB Main Seminar**

# REVOCATION SPEEDRUN: HOW THE WEBPKI COPES WITH FRAUDULENT CERTIFICATES

JENS FRIESS<sup>1,2,3</sup>, HAYA SCHULMANN<sup>1,3,4</sup>, MICHAEL WAIDNER<sup>1,2,3</sup>

1 ATHENE, GERMANY 2 TU DARMSTADT, GERMANY

3 Fraunhofer SIT, Germany 4 Goethe-Universität Frankfurt, Germany



**CONEXT 2023** 

Hyunsoo Kim (hskim@mmlab.snu.ac.kr) 2024. 01. 25









## Why Do We Need to Speed Up Revocation?

- The security of the Public Key Infrastructure (PKI) relies on the trusted operations of Certificate Authorities (CAs)
- Unfortunately, real-world CA operations often fall short of ideal, perfectly-managed certificate issuance
  - Downgrade attacks on Let's Encrypt [CCS 2021]
  - CAs operational issue, bugs in automated software
- Revocation as Damage control → Time is critical
  - Mitigating Man-in-the-Middle attacks
  - Efforts in dismantling phishing sites
- Assessing the revocation system's efficacy begins with measuring reaction delays





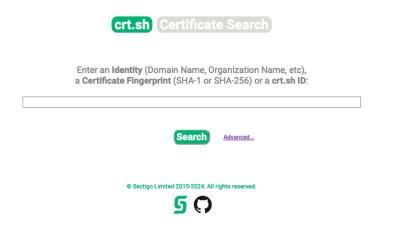
## In this paper

- Detection of Fraudulent Certificates
- Assess the detection speed for fraudulent certificates
- 2. Certificate Revocation by CAs
- → Evaluate CAs' response time to administrative revocation requests from domain owners
- 3. Client-Side Revocation Checks
- → Conduct initial real-world measurements of revocation checks and compare them to lab results

 First comprehensive end-to-end analysis of the revocation system's performance






### **Detection of Fraudulent Certificates**

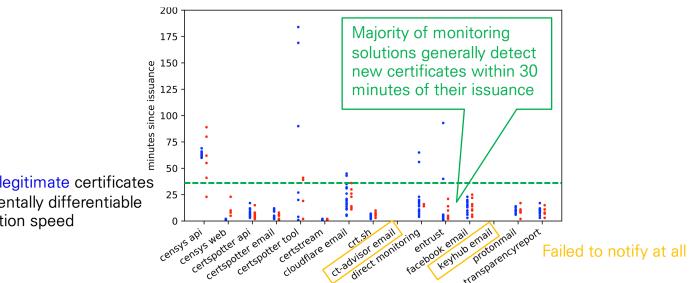
#### Certificate Transparency (CT) logs

- Domain owners monitor certificate issuances via public APIs
- However, CT logs lack domain name indexing, necessitating comprehensive scans, which demand significant storage and bandwidth

#### Third-party CT Monitors

- Index certificates by domain after scanning CT logs
- Offer search capabilities and email notifications










### **Detection of Fraudulent Certificates**

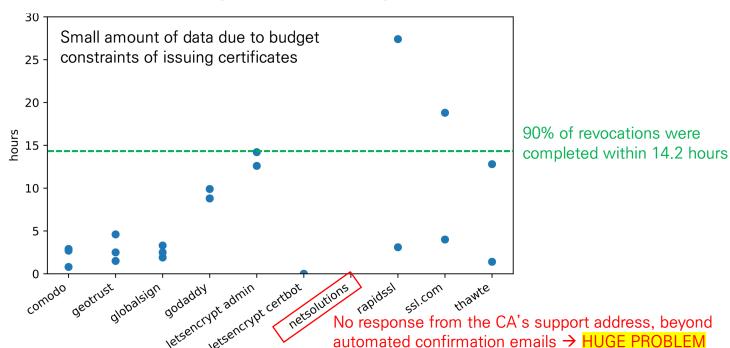
- 1. Issue various certificates from multiple CAs and track the notification speed of each monitor
  - Measure the interval from domain validation (DV) completion to each monitor's notification
- 2. Issue a rogue certificate for each domain using the same respective CA
  - Utilize distinct accounts to purchase certificates and complete DV from various IP addresses







## Certificate Revocation by CAs


- Domain owners must contact the CA to revoke detected fraudulent certificates
  - Without the account or private key of the fraudulent certificate,
    the domain owner needs to request an administrative revocation
- 1. Revocation is requested through email or an online portal
  - Emails from administrative addresses (e.g., admin, postmaster) typically influence the process. However, all CAs except GoDaddy were unaffected, allowing room for spoofed requests
- 2. CAs mandate a domain control challenge
  - DV certificates involve a DNS TXT-based challenge; successful verification leads to revocation
- → Track the time from the initial revocation request to the OCSP revocation timestamp





## Certificate Revocation by CAs

- Median: 3.18 hours / Average: 6.5 hours
- Possible reasons for high variability of these delays
  - Propagation of the DNS TXT records created to complete the domain control challenges
  - Workload of the employee at the time of each measurement and the CA's prioritization of incoming revocation requests







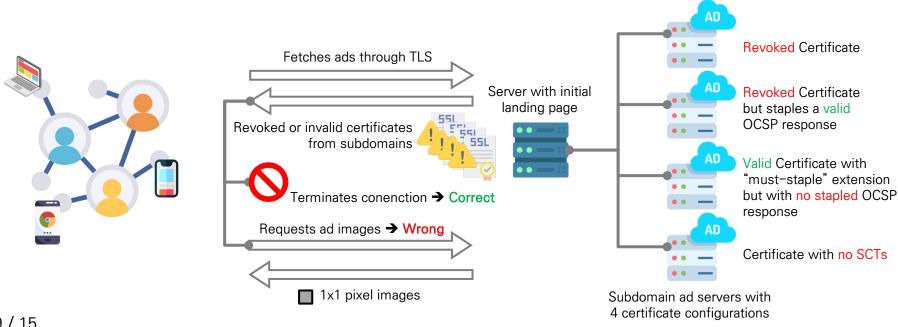
### Client-Side Revocation Checks in the Lab

- Assess how popular OS and browser combinations respond to revoked certificates
- Discovered OS-level caching of revocation information
  - 1. Accessed a revoked-certificate site on Windows via Edge or Internet Explorer, using OCSP/CRL
  - 2. Accessed the site for the first time on Firefox and Chrome without OCSP/CRL access
  - 3. Firefox and Chrome displayed a warning sign
- Used a VM to isolate browsers and reset the state to prevent OS-level interaction
- Browsers consistently soft-fail if OCSP and CRLs are inaccessible
- Furthermore, this soft-fail caching results in certificates being accepted even after revocation endpoints become available again





## Client-Side Revocation Checks in the Lab


| OS           | Browser         | OCSP/CRL endpoints<br>Available | OCSP/CRL endpoints<br>Blocked |   | OCSP/CRL endpoints<br>Blocked -> clear cache -> Available |
|--------------|-----------------|---------------------------------|-------------------------------|---|-----------------------------------------------------------|
| Ubuntu 20.04 | Chromium 90     | X                               | X                             | X | X                                                         |
|              | Firefox 88      | 0                               | X                             | X | 0                                                         |
|              | Brave 1.24      | X                               | X                             | X | X                                                         |
|              | Opera 76        | X                               | X                             | X | X                                                         |
| Windows 10   | Chrome 90       | X                               | X                             | X | X                                                         |
|              | Firefox 88      | 0                               | X                             | X | 0                                                         |
|              | Brave 1.24      | X                               | X                             | X | X                                                         |
|              | Opera 76        | X                               | X                             | X | X                                                         |
|              | Edge 90         | 0                               | X                             | 0 | О                                                         |
|              | IE 11           | 0                               | X                             | 0 | 0                                                         |
| Mac OS 11.3  | Safari 14       | 0                               | X                             | X | 0                                                         |
|              | Chrome 90       | 0                               | X                             | X | 0                                                         |
|              | Firefox 88      | 0                               | X                             | X | X                                                         |
|              | Brave 1.24      | 0                               | X                             | X | X                                                         |
|              | Opera 76        | 0                               | X                             | X | X                                                         |
| Android 11   | Chrome 90       | X                               | X                             | X | X                                                         |
|              | Firefox 88      | X                               | X                             | X | X                                                         |
|              | DuckDuckGo 5.80 | X                               | X                             | X | X                                                         |
| iOS 14.5     | Safari 14       | 0                               | X                             | X | 0                                                         |



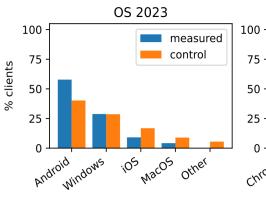


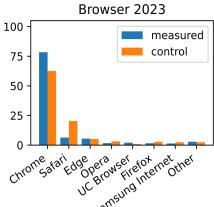
## Revocation Checking in the Wild – Methodology

- Live measurements using an advertising network to determine which actual end-users are vulnerable to revoked certificates
  - Minimal network/storage load by using 1x1 image
  - Collect only client IP address and user agent info
- Problematic certificates are sent during TLS handshakes for requesting ad images → percentage of successful TLS handshakes







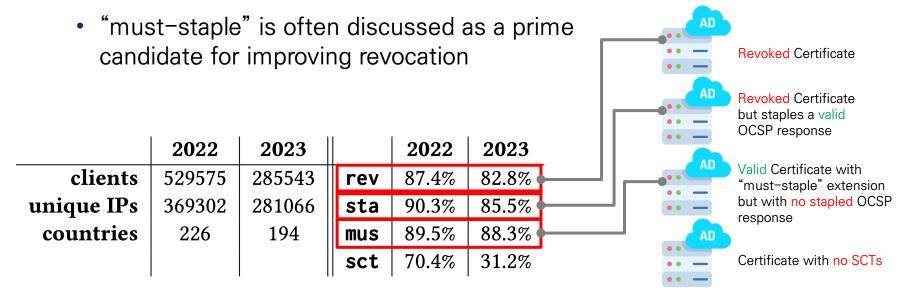


## Revocation Checking in the Wild – Methodology

- Three separate campaigns based on continents with equal budget
- "Pop-under" ads
  - Open in the background
  - More likely to remain open long enough to trigger all ad requests
- "Untargeted" ads to achieve random sampling of clients
  - Published sites were chosen by the adnet → possible bias
  - Measured data was close to known OSes and browsers market share














## Revocation Checking in the Wild – Results

- Majority of clients do not check revocation at all
- Stapling cached valid OCSP response increases the chance of accepting a revoked certificate
  - Still, some clients ignores OCSP stapling and performs realtime revocation checking + older clients with no OCSP stapling support
- Most clients disregard the "must-staple" extension







2022

87.4%

90.3%

89.5%

70.4%

rev

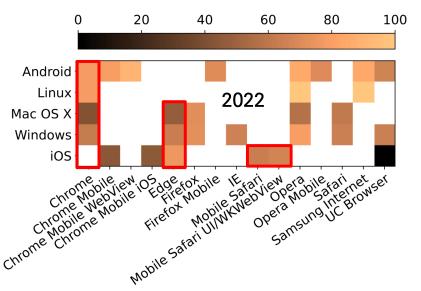
sta

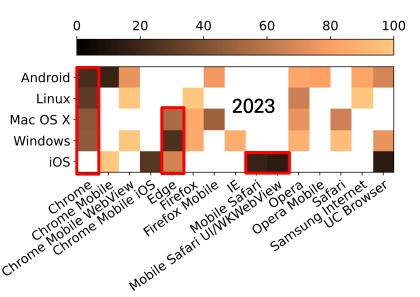
mus

sct

2023

82.8%


85.5%

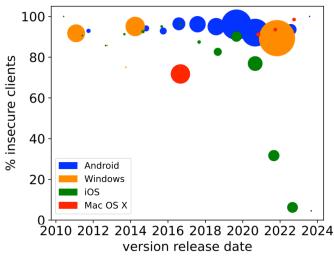

88.3%

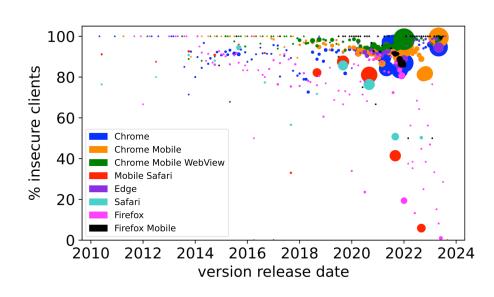
31.2%

## Revocation Checking in the Wild – Results

- Clients ignoring the absence of SCTs 70.4% → 31.2%
  - Increased enforcement by Chrome across all platforms
  - Similarly Mobile Safari, Edge
- Due to browsers declining certificates with no SCTs
  - → CAs are incentivized to log all their certificates to the CT








## Revocation Checking in the Wild – Results

- Difference between lab and wild results
  - For example, iOS should decline all revoked certificates
  - However a significant fraction of iOS clients accepted revoked certificates
- → Comparison of client versions showed increase enforcement trend starting from 2020
- We still see both the presence and absence of revocation checks







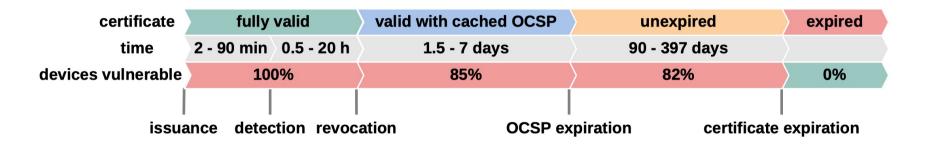


### **Discussions**

- Advocates for shortening the validity period of stapled OCSP response
  - Reliable and fast delivery of revocation information
    Availability of robust, performant, DDoS-resilient OCSP responders
  - CAs need to balance responder load with the shortest viable OCSP response validity
- Revocation checks via DNS-based delivery
  - OCSP over DNS (ODIN): An IETF draft expired in May 2018
  - "An up-to-date certificate status is as important to a TLS-based Internet as an up-to-date IP address"

Network Working Group Internet-Draft Intended status: Experimental

Expires: May 17, 2018


M. Pala CableLabs November 13, 2017

OCSP over DNS (ODIN) draft-pala-odin-03





## **Conclusion and Critiques**



- Certificate revocation by CAs are already too slow; fully automated solutions are necessary
  - Ideal goal is to make detection time equal to revocation time
- CAs lack incentives for quick and reliable revocation information delivery. Domain owners must proactively disseminate revocation details via alternative channels

Thank your!