MMLAB Main Seminar

SILENCE IS NOT GOLDEN: DISRUPTING THE LOAD BALANCING OF AUTHORITATIVE DNS SERVERS

FENGLU ZHANG (TSINGHUA UNIVERSITY), ET AL

DISTINGUISHED PAPER AWARD CCS'23 (NOVEMBER 26-30, 2023)

Hyunsoo Kim (hskim@mmlab.snu.ac.kr) 2024. 06. 13

Current Trends

- Domain hosting in cloud services
 - Cloud services provide the infrastructure to resolve the DNS query for hosted domains
 - They also provide user-friendly UI to help manage hosted domain
- As a result, numerous domains are sharing authoritative nameservers and load balancing is critical to the stability and security of domain hosting service

The user-friendly UI provided by a DNS hosting service

Built-in Load Balancing in DNS

- [RFC 1034] Domain Name Systems, 1987
 - By administrative fiat, we REQUIRE <u>every zone to be available on at least two servers</u>, and many zones have more redundancy than that
- [RFC 2182] Selection and Operation of Secondary DNS Servers, 1997
 - Secondary servers (Authoritative servers) MUST be <u>placed at both</u> topologically and geographically dispersed locations on the Internet

Security Impacts of Disrupting DNS Load Balancing

- Bypassing defense mechanisms and overloading nameservers
 - Redirecting legitimate DNS traffic to a specified target and no malicious traffic can be filtered
 - Bypassing defense mechanisms against traditional DoS attacks
- Lowering the bar of traffic hijacking and cache poisoning
 - Eliminating the possibility for clients to query diverse nameservers
 - DNS manipulation becomes less challenging since a unique path is dedicated to victims
- Let's Downgrade Let's Encrypt
 - Reducing the number of reachable NSs to one during domain validation
 - → The attacker can obtain fraudulent certificate by BGP hijacking

- "Silence is Golden" strategy
- Extensive authoritative servers are configured to not respond to DNS requests which are outside of their authority

- "Silence is Golden" strategy
- Extensive authoritative servers are configured to not respond to DNS requests which are outside of their authority

- "Silence is Golden" strategy
- Extensive authoritative servers are configured to not respond to DNS requests which are outside of their authority

- "Silence is Golden" strategy
- Extensive authoritative servers are configured to not respond to DNS requests which are outside of their authority

[RFC 8906] A Common Operational Problem in DNS Servers, 2020 "Failing to respond at all is always incorrect, regardless of the configuration of the server"

Flawed Recursive Resolvers Implementation

- Recursive DNS software
 - Prefers the nameserver with the best performance, i.e., RTT
 - Avoids the nameserver that fails to response
- The performance metric of nameservers are globally shared by the resolvers

Flawed Recursive Resolvers Implementation

- Recursive DNS software
 - Prefers the nameserver with the best performance, i.e., RTT
 - Avoids the nameserver that fails to response
- The performance metric of nameservers are globally shared by the resolvers

DNS Load Balancing Disabler - "Disablance"

- An adversary can manipulate the priority of authoritative servers from the view of a resolver by exploiting the response strategy
- Thus, forcing the resolver to only select a given authoritative server for future queries
- Adversaries have limited capabilities
 - 1. Off-path adversaries
 - → Cannot hijack or eavesdrop on network traffic
 - 2. Only generate simple DNS queries, i.e., A records
 - → Cannot craft unusual or malformed packets
 - 3. Expected to send packets at a low speed
 - → Do not trigger the rate limit of the DNS servers

Victim's configuration


```
$ dig hostedDomain.com NS
;; ANSWER SECTION:
hostedDomain.com. 3600
                        IN NS nsl.hostingService.com.
hostedDomain.com. 3600 IN NS ns2.hostingService.com.
;; ADDITIONAL SECTION
ns1.hostingService.com.
                                    IN A IP1
                              3600
ns1.hostingService.com.
                                    IN A
                                          IP2
ns2.hostingService.com.
                              3600
                                    IN A
                                         IP3
ns2.hostingService.com.
                              3600
                                    IN A IP4
```


Variant #1: Diverting legitimate traffic to a single NS


```
$ dig attack-1.com NS
...
;; ANSWER SECTION:
attack-1.com. 3600 IN NS ns2.hostingService.com.

;; ADDITIONAL SECTION
ns2.hostingService.com. 3600 IN A IP3
ns2.hostingService.com. 3600 IN A IP4
```


Variant #1: Diverting legitimate traffic to a single NS

Variant #1: Diverting legitimate traffic to a single NS

Variant #2: Diverting legitimate traffic to a single IP address


```
$ dig attack-2.com NS
...
;; ANSWER SECTION:
attack-2.com. 3600 IN NS ns.attacker.com.

;; ADDITIONAL SECTION
ns.attacker.com. 3600 IN A IP2
ns.attacker.com. 3600 IN A IP3
ns.attacker.com. 3600 IN A IP3
```


Variant #2: Diverting legitimate traffic to a single IP address

Analysis and Evaluation – Methodology

- Authoritative Nameserver
 "Finding domains with misconfigured Authoritative NSs"
 - Top 1M SecRank FQDNs, Top 1M Tranco SLDs
 - Exploitable targets
 - Provides responses for its hosted domain
 - ✓ Ignores queries for a domain that is not hosted → "Silence is Golden"

Results

- 22.24% of the top 1M FQDNs and 3.94% of the top 1M SLDs are vulnerable
 - Top 100 FQDNs consists of mobile application (SNS, mobile OS) APIs,
 e-commerce which are likely cloud hosted domains

Тор	10	100	1K	10K	100K	1M
# FQDN	20%	29%	34.7%	26.9%	25.3%	22.2%
# SLD	10%	11%	6.8%	5.5%	4.6%	3.9%

- Looking at individual nameservers,
 - Top 1M FQDNs → 47,925 nameservers: 11.73% were vulnerable
 - Top 1M SLDs → 317,222 nameservers: 4.40% were vulnerable
 - Tencent Cloud hosted 6.26% of the top 1M FQDNs and 0.81% of the top 1 M SLDs

Analysis and Evaluation – Methodology

- Authoritative Nameserver
 "Finding domains with misconfigured Authoritative NSs"
 - Top 1M SecRank FQDNs, Top 1M Tranco SLDs
 - Exploitable targets
 - ✓ Provides responses for its hosted domain
 - ✓ Ignores queries for a domain that is not hosted → "Silence is Golden"

Resolvers

"Analyzing DNS resolver softwares"

 DNS resolver software: BIND9 (60.2% market share in 2015), Unbound, PowerDNS, Microsoft DNS, Knot Resolver

"Analyzing open resolvers & public DNS resolvers"

Google, CloudFlare, Quad9, Baidu, …

Results

- 3 out of 5 analyzed software are vulnerable
- NS selection with the lowest statistical latency when resolving a domain: BIND9 (NS record and IP address), PowerDNS (NS record)
- Unlike BIND9 and PowerDNS, Knot Resolver tries other candidates with a certain probability and restores its priority immediately when it responds successfully (known as *e*−Greedy algorithm)

Software	Sensitive Variant	Market Share [46]
BIND9	DisablanceNS/Address	60.2+%
Unbound	-	4.8+%
PowerDNS Recursor	DisablanceNS	3.2+%
Microsoft DNS	DisablanceNS/Address	2.5+%
Knot Resolver	-	(no mention)

Results

- Out of 37,843 stable open resolvers 14,372 (37.88%) of the tested open resolvers were vulnerable
 - Distributed in 130 countries, 2,821 cities, and 1,778 ASes
- 10 out of 14 public resolvers were found vulnerable
 - 45 out of 100 IP address operated by public DNS service providers
 - Vendors include Cloudflare, OneDNS, and Quad9

Vendor	Affected	* 1/*
Ver	Alt	* 12
Google DNS [32]	NO	0/4
CloudFlare [22]	YES	4/14
OpenDNS [20]	NO	0/12
OneDNS [83]	YES	4/6
Quad9 [75]	YES	11/14
DNS.WATCH [27]	NO	0/4
FreeDNS [29]	YES	5/5
TWNIC Quad 101 [84]	YES	4/4
CleanBrowsing [21]	YES	6/12
Baidu DNS [15]	YES	1/1
UncensoredDNS [85]	YES	1/4
AliDNS [5]	NO	0/4
Alternate DNS [8]	YES	2/4
OpenNIC [69]	YES	7/12
Total		45/100

Mitigation

- Authoritative NS should take responsibility since their strategy violates the DNS specification
- Recommendation
 - w/ EDNS: Return REFUSED with an EDNS error code
 - w/o EDNS: Return REFUSED instead of other misleading error
 - Answering REFUSED does not introduce other DDoS attack vectors
- Patching recursive resolver implementation is more efficient for fixing the issue
- Recommendation (e.g., Knot Resolver)
 - Try other NS candidates with a predetermined probability
 - Restore the status once the nameserver responds successfully

Summary

- Authoritative server aims to protect against DNS amplification attacks, by dropping DNS queries for non-authoritative domains
- Recursive resolver aims to improve efficiency, by decreasing the priority of a nameserver when the query is timed-out
- → Both are not compliant to the DNS standards
- Feedback from the industry
 - Tencent Cloud, Amazon, and TSSNS have taken action to fix this issue
 - DNS resolver vendors of vulnerable software acknowledged the findings, but insisted that authoritative servers should fix the issue

Thank your!