MMLAB MAIN SEMINAR

DECENTRALIZED PUBLIC-KEY INFRASTRUCTURE WITH BLOCKCHAIN IN V2X COMMUNICATIONS

EDY KRISTIANTO, VAN-LINH NGUYEN, AND PO-CHING LIN NATIONAL CHUNG CHENG UNIVERSITY

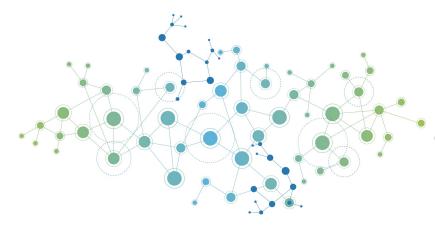
IEEE SECURITY & PRIVACY, JULY-AUGUST 2022

Hyunsoo Kim (hskim@mmlab.snu.ac.kr) 2022. 08. 24

CONTENTS

VEHICLE-TO-EVERYTHING (V2X) COMMUNICATIONS

OVERVIEW

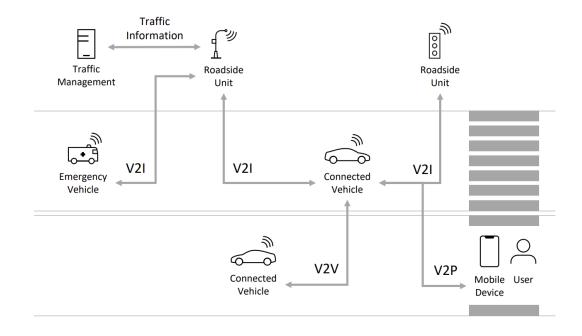

SECURITY AND PSEUDONYM CERTIFICATES

C-PKI / B-PKI FOR V2X AUTHENTICATION

WORKFLOW COMPARISON

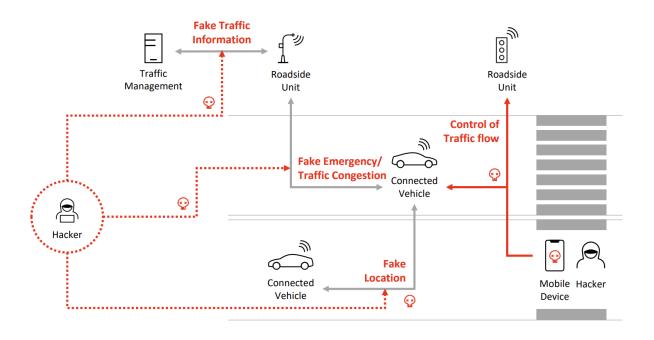
ADVANTAGES AND DISADVANTAGES

CONCLUSION & CRITIQUE



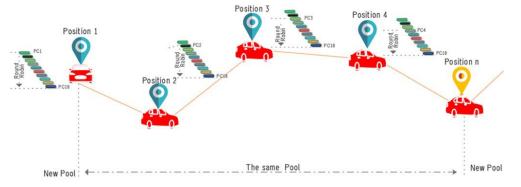
V2X COMMUNICATIONS

- Enables vehicles and roadside equipment to send and receive messages
- Data associated with vehicle, road or traffic status
 - Real-time traffic updates, vehicle collision alerts, pedestrian alerts
- Vehicle ⇔ Vehicle (V2V), Vehicle ⇔ Infrastructure (V2I), ...



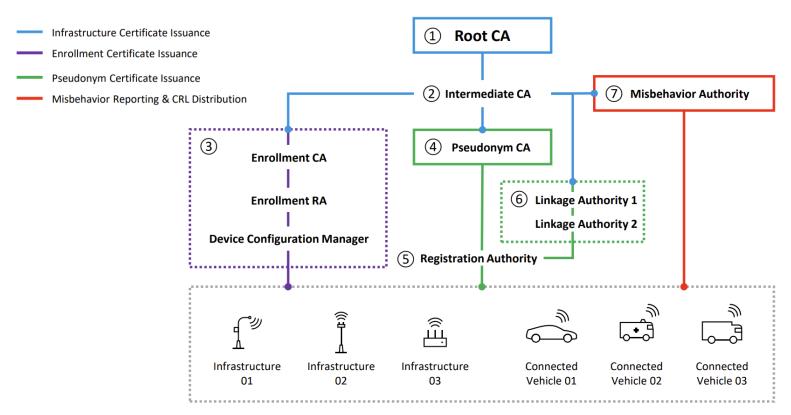
V2X COMMUNICATIONS SECURITY

- Without security, a malicious actor may gain access to critical functionality and manipulate information transferred between entities
 - Vehicle accidents/pedestrian accidents due to false signals, traffic congestions
- → Vehicles must be <u>authenticated</u> before joining V2X communications

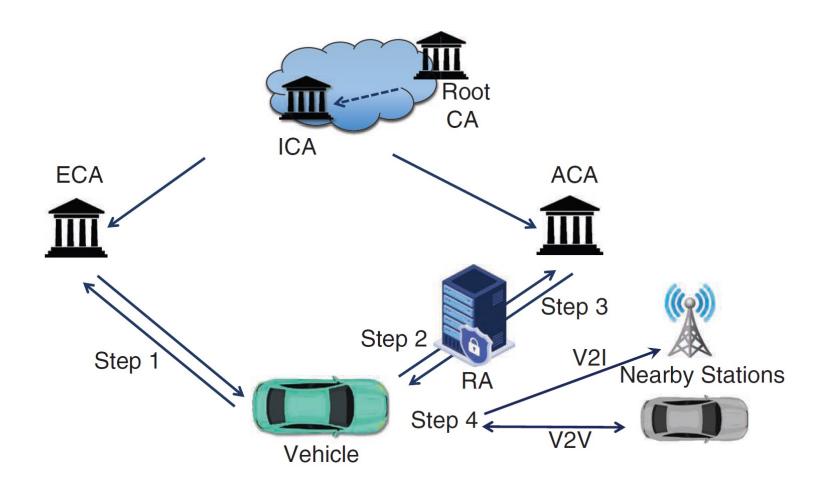


PSEUDONYM CERTIFICATES IN V2X

- V2X security systems implement large scale PKI for authentication
- Digital certificates are privacy-intrusive
 - Owners/vehicles can be linked and traced (current location, trip history, etc.)
- Pseudonym certificate
 - Used in authenticating V2X messages
 - Preserves privacy by hiding vehicle/module identity, reducing user linkage
 - Short-term (up to 3 months), multiple concurrent certificates per vehicle
 - ✓ 20 per week → hundreds of billions of pseudonyms required



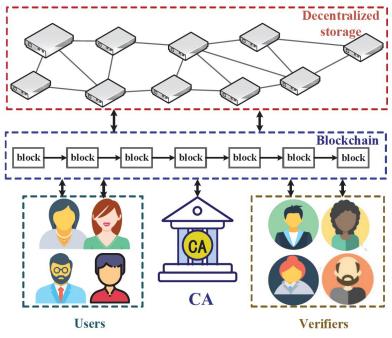
CURRENT DEVELOPMENTS


- C-PKI based V2X authentication architecture
 - US Security Credentials Management System (SCMS)
 - EU Cooperative ITS Credentials Management System (CCMS)

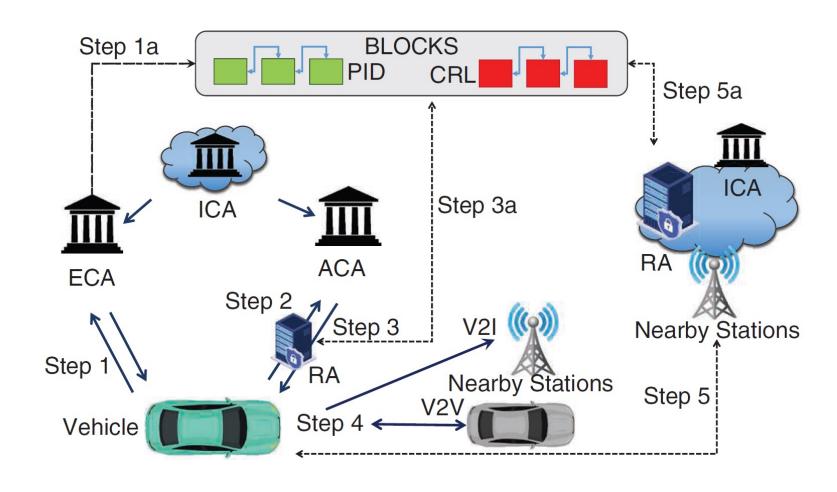
C-PKI WORKFLOW

PROBLEMS OF C-PKI FOR V2X AUTHENTICATION

 Bottleneck issues from the heavy authorization, registration, verification requests traffic


- Short comings
- 1. Trust maintenance among the PKI entities
 - Misbehaving CAs, rogue CAs
- 2. Scalability to serve a massive number of vehicles
 - Issuance/distribution/verification of hundreds of billions of pseudonym keys
- 3. An efficient mechanism for certificate revocation in terms of time, cost, and security
 - Renewing CRLs or revoking certificates in a timely manner

B-PKI FOR V2X AUTHENTICATION


- B-PKI with CA (Semi-centralized)
 - Blockchain acts as the communication layer + public log to record certificate operations to support public and verifiable search
 - CA operations are identical as that in C-PKI
 - Decentralized storage = off-chain storage of certificates

B-PKI WORKFLOW

ADVANTAGES OF B-PKI

- Public and transparent log eliminates the trust problem on CA's actions
 - Reduce dependency on a centralized CA (single point of failure)
- Certificate transparency and revocation transparency are already provided by the chain
- Distributed architecture + fast consesnsus algorithm ensures scalability

Table 2.	The B-PKI	performance.
----------	-----------	--------------

Reference	Performance	B-PKI	C-PKI/ D-PKI*
Lu et al. ⁷	Authentication of 120 certificates	80 ms	1,000 ms
Zheng et al. ⁸	Authentication of 50 vehicles	1.8 s	4.4 s
Ikram et al. ⁹	Verification of 60 signatures	100 ms	300 ms

^{*}D-PKI: decentralized PKI without blockchain technology.

- Security Advantages
 - Resistance against DDoS attacks
 - Resistance against impersonation, MitM attacks
 - Resistance against replay attacks
 - Resistance against tampering attacks

WEAKNESS AND CHALLENGES OF B-PKI

- Communication security among CAs and participating blockchain nodes
- Real time processing for massive requests
- Vulnerability of the underlying blockchain technology
 - Smart contract vulnerabilities
 - Attack on the blockchain

 Public, transparent logs may allow big data analysis and AI to undermine user privacy

CONCLUSION

- Proposed blockchain technology as the key enabler of V2X PKI
 - Scalable, secure, and efficient authentication
 - Partial integration (B-PKI with CA) supporting interoperability
 - Strong resistance against DDoS attacks and misbehaving CAs

Critique

- Storing and maintaining pseudonym certifiactes and CRL require large amount of storage on participating nodes
- Unclear on some operation and usage of smart contracts
- No implementation and evaluation (results from other literatures)

Thank your!