RoCC: Robust Congestion Control for RDMA

Parvin Taheri et. Al. Cisco Systems and Purdue University

ACM CONEXT 2020

Outline

- Introduction
- Design
- Evaluation
- Conclusion

Introduction

 Remote Direct Memory Access (RDMA) provides ultra-low latency (~1µs) and high throughput (40/100Gbps) with little CPU overhead

 Recently, RDMA has been deployed in datacenters at scale with RDMA over Converged Ethernet (RoCE) v2

Congestion control's goal

- Congestion control has clear goal
 - : Reducing Flow Completion Time (FCT)
 - Low latency for small flows (mice)
 - High throughput for large flows (elephants)
- Datacenter congestion control has more goal
 - : Minimizing Priority Flow Control (PFC) activation
 - PFC increases FCT
 - PFC causes routing deadlocks

Requirements of RoCC

- Fairness
 - Flows on a congested link must equally share the link bandwidth or max-min fairness

- Rapid convergence
 - React quickly to increasing and decreasing congestion levels

Requirements of RoCC

- Stability
 - Congestion control has to be stable regardless of the number of flows creating congestion
- Efficiency
 - Congestion control should not be performed at the expense of link under-utilization resulting in low throughput

Design

Design consideration

- Categorization of congestion controls (based on entity)
- : Source-driven or switch-driven

- Source-driven
 - Source paces packets based on congestion signals

Switch-driven

• Switch computes pacing information and sends it to the source

RoCC overview

RoCC is switch-driven congestion control

Receive signals from switch Pace rate of packets

Compute rate for flows Send signals to sources Packet sink

Key components

- 1. Congestion Point, **CP**
 - Rate calculator
 - Feedback message generator
 - Flow table

- 2. Reaction Point, **RP**
 - Rate controller

Components on CP

- Rate calculator
 - Periodically reads current queue size
 - Calculates fair rate (FAIR)
- Feedback message generator
 - Creates the control message
 - Sends it to sources
- Flow table
 - Keeps track of flows

Rate calculation

- Multiplicative decrease
 - Reduce rate exponentially based on queue growth threshold
 - Reduce rate to minimum based on queue size threshold
- Proportional integral
 - Rate control with queue size (Q) as input
 - Stable queue → arrival rate = drain rate → fair rate

$$F \leftarrow F - \alpha \times (Q_{\text{cur}} - Q_{\text{ref}}) - \beta \times (Q_{\text{cur}} - Q_{\text{old}})$$

Feedback and flow table

- Feedback message includes
 - Fair rate value
 - Flow information (identifier)
- Flow table keeps track of the recipients of the feedback messages
 - Maintaining a table of the flows currently in the queue

Components on RP S

- Fast recovery
 - Exponential rate self-rise in the absence of rate messages
- Multi-feedback handler
 - Use minimum available rate along path of flow

Implementation

- RoCC can be implemented by P4
 - Programmable switch
- They use "v1model" for simulation
 - P4 simulation model

• It seems that RoCC is hard to be deployed without P4

Evaluation

Experiment environments

• 1. Small scale **simulations**

 2. Evaluation with **DPDK** to confirm the properties of RoCC on a real network and validate our simulations

- 3. Larger scale evaluation using a simulation
 - Setup resembling a real datacenter network in terms of topology, number of nodes, and traffic patterns

Simulation results

- Simulation results show fairness, stability, and convergence
 - n flows share bandwidth of congested link (fair)
 - Queue size and rate are not fluctuated (stable)
 - Queue size and rate quickly enter to stable state (conv)

Comparison results

- (a) shows RoCC has the best fairness performance
 - Due to fair rate computation on switch
- (b) and (c) show RoCC is more stable and converges quickly

Conclusion

 Authors have proposed RoCC, a new switch-driven congestion control solution for RDMA

 RoCC employs rate control system that uses the egress queue size as input

The authors show that RoCC is fair and efficient through evaluation