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Abstract
In the recent years, the Internet of Things has been becoming a vulnerable target of intrusion attacks. As the academia and

industry move towards bringing the Internet of Things (IoT) to every sector of our lives, much attention needs to be given

to develop advanced Intrusion Detection Systems (IDS) to detect such attacks. In this work, we propose a novel network-

based intrusion detection method which learns patterns of benign flows in a temporal codebook. Based on the temporally

learnt codebook, we propose a feature representation method to transform the raw flow-based statistical features into more

discriminative representations, called TempoCode-IoT. We develop an ensemble of machine learning-based classifiers

optimized to discriminate the malicious flows from the benign ones, based on the proposed TempoCode-IoT. The

effectiveness of the proposed method is empirically evaluated on a state-of-the-art realistic intrusion detection dataset as

well as on a real botnet-infected IoT dataset, achieving high accuracies and low false positive rates across a variety of

intrusion attacks. Moreover, the proposed method outperforms several state-of-the-art works based on the used datasets,

proving the effectiveness of Tempo-Code-IoT over raw flow features, both in terms of accuracies and processing speeds.

Keywords Intrusion detection systems � Denial of service attacks � Botnet attacks detection � Network Management �
Internet of things security

1 Introduction

The unprecedented evolution of networks with a growing

plethora of connected devices and things are reshaping the

landscape of an Internet-of-Things (IoT). Ranging from

devices such as indoor or outdoor surveillance cameras,

electrical and mechanical appliances, mobile user-worn

devices such as smart watches or health monitors, to con-

nected vehicles and vehicular components, industrial sys-

tems, and connected smart cities, the IoT landscape is

continuously evolving (see Fig. 1).

Due to the increasing diversity of devices, networks and

services in an IoT ecosystem, the vulnerabilities of each

constituent technology could be agglomerated, giving rise

to novel threats and attack vectors [9, 15, 27, 36]. This

poses danger not only to the devices but also to life and

property. Consider these recent reports for example. A

large pool of internet-connected devices were compro-

mised to conduct distributed denial of service (DDoS)

attacks on critical networks [22]. Another serious example

is of the Mirai botnet-based attack which exploited IoT

devices to attack many popular web-based services and

platforms that became inaccessible [16].

The targets of such DDoS attacks could include critical

infrastructure, banks, healthcare institutions, smart cities

and internet of connected vehicles and things

[3, 10, 19, 32]. For example, connected vehicles have been

shown to be vulnerable to being controlled by a remote

malicious attacker who could shut down a moving car or

lock/unlock doors [28]. In another worrisome example,

smart (and connected) toys were found to have security and

privacy flaws that could be exploited by an adversary to

maliciously control the toys or cause serious privacy

infringements [35].
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In light of these incidents, researchers in academia and

industry are gearing efforts to develop novel solutions for

intrusion detection in IoT, to secure IoT from different

types of intrusions [8, 32, 37, 39]. The various IDSs could

be broadly classified in terms of their placement strategy

as: centralized, distributed, or hybrid. In the centralized

IDS placement strategy, the detection modules or agents

are hosted at the network edge devices or the border router

(e.g., mobile edge computing servers deployed at eNodeBs,

other base stations, or roadside units). On the other hand, in

the distributed strategy, the detection modules or agents are

hosted at the IoT devices. A mix between the two is the

hybrid strategy in which the detection agents or modules

are distributed in a hierarchical fashion and hosted at the

network edge as well as at the IoT devices. The main

advantages of a centralized IDS hosted at the network edge

are the availability of richer computing, communication

and storage resources, leveraging the advances in edge

computing, as well as the ability to efficiently detect

attacks originating externally (e.g., via the Internet).

In order to address the problem of intrusion attacks in IoT,

this work proposes a novel method to detect intrusions by

transforming flow-based features into more discriminative

representations and designs an ensemble of classifiers based on

these to differentiate between benign and malicious flows. The

proposed method is designed to serve in a centralized IDS,

leveraging the compute and storage resources therein. The

main contributions of this work are summarised as follows:

– We propose a novel flow feature representation, called

the TempoCode-IoT based on unsupervised learning of

a temporal codebook which captures the key patterns in

benign traffic over different time windows. The

TempoCode-IoT transformation method measures the

differences of flow samples from the key patterns in the

learnt codebook.

– We study the effect of varying design parameters of

TempoCode-IoT on classification scores and processing

time, to suggest the optimal set of parameters.

– We develop a machine learning-based ensemble of

classifiers and optimize its parameters to learn to

discriminate between benign TempoCode-IoT repre-

sentations and different types of malicious ones.

– We demonstrate the effectiveness of the proposed

method in distinguishing benign flows from different

types of intrusion attacks through empirical evaluations

on two realistic, real-world and recent datasets

(CICIDS2017 [34] and NBaIoT [21]).

The remainder of the paper is organised as follows. In

Sect. 2, we provide a brief discussion of recent related

works, followed by presenting the proposed meth-od in

Sect. 3. In Sect. 4, we describe the experimental setup,

details and specifications of the datasets used, different

attack scenarios considered in this work, impact of design

parameters, and the performance metrics to be used for

evaluation. After presenting the results and discussions in

Sect. 5, we discuss in Sect. 6 some open issues and chal-

lenges in the field of IoT security and IDS. The paper

finally concludes and outlines future work directions in

Sect. 7.

Fig. 1 An architectural overview of the evolving Internet of Things

landscape. The diverse range of IoT devices and networks connect to

the access points (such as base stations, eNodeBs, RSUs, etc.,

equipped with edge computing resources) which can communicate

amongst themselves and to the larger Internet
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2 Related works

The problem of intrusion detection has been a hot topic

over the years, with rising attention due to the evolution of

networks into an Internet of Things and the rising threats

[2, 5, 17, 40]. In this section, we provide a brief overview

of state-of-the-art methods in IDS which are close in

concept to our proposed method and highlight the

uniqueness in our method.

A multi-layer semi-supervised framework for IDS is

proposed in [40] based on pure cluster extraction, pattern

discovery, fine-grained classification and model updating.

They defined ‘‘pure’’ clusters as those in which a vast

majority of their samples belong to the same class. They

employed a hierarchical semi-supervised k-means algo-

rithm to learn the pure clusters. The samples which did not

fall into any pure cluster are then fed into the pattern dis-

covery module in which a clustering-based method is used

to find if the patterns are known (normal or intrusions) or

unknown patterns. The fine-grained classification module

then acts to classify the discovered unknown patterns.

However, this step may require manual inspection to

determine the class of the unknown patterns. The task of

re-training any modules due to changes in traffic distribu-

tion is handled by the model updating module. Their

experiments were based on the old KDDCUP99 dataset.

A lightweight and rule-based intrusion detection algo-

rithm was proposed in [33] for networks of vehicles. In

their method, vehicles aid in evaluation of behavior and

reputation of their neighboring vehicles. An ensemble

learning-based method is proposed by [24] who proposed

statistical flow features and an AdaBoost ensemble com-

prising of Decision Tree, Naive Bayes, and Artificial

Neural Network classifiers.

The authors of [30] proposed a clustered IDS based on

Restricted Boltzmann Machine (RBC-IDS) as a deep

learning-based solution to monitor critical infrastructures

and detect intrusions in wireless sensor networks. Designed

to work as a centralised IDS, RBC-IDS groups the sensors

into a number of clusters and selects a cluster head in each

cluster. The cluster heads are responsible of sending the

sensor data (possibly after aggregation) to the central IDS.

Their work is based on an old dataset which was not col-

lected from an IoT environment. Moreover, the authors

found the Restricted Boltzmann Machine to be slower than

traditional machine learning-based methods. We compare

(in Sect. 5.4.2) the performance of our method with that of

a method which is related (yet more advanced) to [30] and

uses deep auto-encoders on a realistic IoT dataset.

Another work addressing the problem of intrusions in a

critical infrastructure monitoring application using wireless

sensor networks is of [29] in which the authors investigated

the development of an IDS based on a Reinforcement

Learning (RL) algorithm called Q-Learning. However,

their use of Q-learning as the RL algorithm presents some

limitations. For example, the Q-tables could grow very

large with a large number of states and/or actions. This

would imply that with an increase in the number of states,

the memory size required to save and update the

Q-table would increase. Moreover, an extremely large

amount of time would be required to explore each state for

building the Q-table.

The work of [3] tackles the issues of intrusions in a

connected vehicle cloud environment. It built an IDS

comprising of a deep belief network for data reduction and

an ID3-based decision tree classifier for classification. In

Sect. 5.4 (Table 11) we show that the method proposed in

this paper outperforms DBN-based methods and an ID3-

based method.

In a more general traffic classification context, the work

of [41] introduced a Bag-of-flows model which groups

together correlated flows. For classification, they aggregate

the correlated predictions of Naive Bayes classifiers. Their

work differs from ours in various aspects, most important

one being that unlike our proposed method, they do not

transform the flow features but simply discretize them in an

objective to enhance classification accuracies.

In [2], the authors utilize feature quantization based on

clusters in a Self-Organised Map (SOM) network. The

SOM network is learnt first and then clusters of neurons are

constructed through hierarchical agglomerative clustering.

They assumed that the largest SOM cluster would represent

benign traffic. So, if a test sample falls into this cluster, it is

regarded as a benign one. However, unlike them, we don’t

consider the class of closest cluster to be the class of a

sample (benign or malicious), but rather we take into

account the similarities or distances to each cluster center

(codeword), collecting as features a set of deviations of

each training/testing flow from the cluster centers (code-

words) which are temporally learnt.

Another work leveraging clustering of flows is that of

[5]. However, their method is different from ours in the

following aspects. Their clustering is based on destination

IPv4 address prefixes, whereas we do not consider IP

addresses in our method in order to tackle the attackers’

ability to spoof and dynamically change IPs. Moreover,

their feature transformation is based on approximating

probability densities of individual flow-based statistical

features. For this, they use the estimated probability density

function of the respective feature in the closest cluster to

which a sample flow belongs. In contrast to their approach,

our feature transformation is based on capturing the flow

features’ distances from each of the different cluster

centers.
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Another clustering-based intrusion detection method

called CANN was proposed by [18]. In their work, they

transform a flow’s features into a sum of distances of the

flow features from the cluster centers and from their k-

nearest neighbors correspondingly, giving a one dimen-

sional feature to be used by a kNN classifier. Although

CANN results in a very low dimension feature space, its

performance in terms of classification scores was limited

compared to the performance of non-transformed flow

features with other classifiers such as Support Vector

Machines (SVM).

A recent study by [17] have tackled the problem of

botnet identification through a clustering-based technique.

In their method, they dynamically select subset of features

expected to be more discriminative for the respective type

of botnet. The clustering is performed on benign flows and

malicious flows yielding the cluster centers as fingerprints

of each application type (benign or botnet). They employ a

similarity function that computes a distance-score of a

sample flow from the cluster centers. Based on a closeness

threshold, the class of the nearest cluster center is decided

as a prediction of the sample’s class. Their method is very

similar to that of [42] who also employed a learnt

codebook.

Given a sample flow’s features, [42]’s method uses only

the deviation from the closest cluster center and classifies it

as anomalous if the deviation is greater than a threshold.

However, this threshold has to be experimentally deter-

mined and may not be applicable to all types of attacks.

Moreover, to evade detection, attackers could be mimick-

ing benign flows by dynamically changing their flow fea-

tures such that these may be within the threshold distance

to atleast one of the benign clusters. In these cases, meth-

ods such as those of [17, 42] would suffer from decreased

True Positive Rates. Hence, in our work, instead of

dynamic feature subset selection, we transform the flow-

based features into TempoCode-IoT representations which

capture the deviation of each flow’s features from benign

fingerprints’ or codewords’ features and then leverage a

machine learning-based algorithm to discriminate between

the benign and malicious TempoCode-IoT representations.

3 Proposed method

In a quest to overcome some of the limitations in prior

works discussed above, the focus of this paper is on

designing a novel method to transform flow-based features

into more discriminative representations. In this regard,

this paper proposes the TempoCode-IoT, a temporal code-

book-based encoding of flow features method which cap-

tures the key patterns of benign flow features in an

unsupervised, temporally learnt discriminative codebook.

The proposed method builds upon enhancing the Bag-of-

Features (BoF) model [13] in the context of network flow

features-based IDS (BoF is alternatively referred to as

Vector Quantization (VQ) in some works). The BoF model

has been proven effective in other domains such as image

classification, object recognition [26], etc.

Based on the temporally learnt codebook, the flow fea-

tures are transformed into TempoCode-IoT representations

which are then used to train an ensemble of SVM classi-

fiers. Since the next generation IoT will embrace a

heterogeneity of devices which will use a diversity of

protocols and standards [32], our goal in this work is to

build upon flow features that are not dependent on a

specific protocol. Moreover, devices in IoT may exhibit

time-varying behavior in terms of the traffic flows they

generate. For example, at certain times of the day, the

sensors or devices may be exchanging data at a higher rate

than at other times. Similarly, in certain situations such as

upon detection of a specific event, vision or acoustic sen-

sors may be triggered to exchange data at a higher rate.

Considering such characteristics of IoT flows, we design a

temporally learnt codebook which captures the key patterns

in benign traffic over different time windows. The fol-

lowing subsections describe the steps in more detail. An

overview of the proposed method’s pipeline is depicted in

Fig. 2. The symbols and notations used in this paper are

summarized in Table 1.

The main steps for intrusion detection based on the

proposed method are: (1) Flow-based features extraction,

(2) Codebook Learning, (3) TempoCode-IoT Generation,

and (4) Classifier Ensemble Training/Testing. The sub-

sections below shall elaborate on these steps.

3.1 Flow-based features extraction

As depicted in Fig. 2, the first step is to extract the flow-

based features from the packets. To evaluate the proposed

TempoCode-IoT feature transformation method, in this

work, we use different sets of features as collected in two

recent datasets: CICIDS2017 and NBaIoT. These features

include Flow Duration, Number of Packets in forward

direction, Flow Inter-arrival time, as well as their statistical

summaries such as mean and standard deviation (stdev)

over certain intervals of time.

To allow for a fair comparison of our method with

related works based on the selected datasets, our experi-

mental evaluations on each dataset utilize the flow features

contained in the respective dataset. The selected flow fea-

tures have been popularly used in intrusion detection

works. Using these as raw features, we demonstrate the

benefits of the proposed TempoCode-IoT transformed

feature representations over the raw features
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The motivation to choose the mentioned datasets with

different sets of features stems from the following reasons:

(i) recent related works on intrusion detection have utilized

these datasets, (ii) to establish the effectiveness of the

proposed TempoCode-IoT feature transformation method

with different sets of features, (iii) to demonstrate the

effectiveness of proposed TempoCode-IoT method for IoT

as well as other networking environments. Below, we

provide an overview of the features in both datasets, while

we give a deeper description of these datasets in Sect. 4.1.

Features in CICIDS2017 Datasets: The following flow-

based features of CICIDS2017 datasets were selected and

extracted (over every time interval of 1 s) using the CIC-

FlowMeter tool [14], based on the findings of [34]:

– Flow Duration

– Packet Length (min, mean, stdev in forward and

backward direction)

– Subflow Bytes (in forward direction)

– Flow Inter-Arrival Time (min, mean, stdev in forward

and backward direction)

– Active_min, Active_mean

Fig. 2 An overview of the TempoCode-IoT-based intrusion detection pipeline

Table 1 Symbols and notations
Symbol Description

Fj Set of features for j-th sample in dataset

NF Total number of features, i.e. dimensionality of Fj

fnj The n-th feature if Fj

tdur Size of time window for temporal codebook learning

NT Total number of time-windows

ti Time window i, where i ¼ 0; . . .;NT�1

Nct Number of benign key patterns to learn from ti

CT The temporal codebook

cwti ;k k-th key pattern (codeword) in CT corresponding to time window ti

CSize Temporal codebook size ¼ NT � Nct

TCj TempoCode-IoT representation of Fj

qti;k Distance between cwti ;k and Fj

Cluster Computing (2021) 24:17–35 21
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– Init-Win-Bytes (forward and backward),

– Flag Counts (ACK, PSH, SYN)

– Number of packets and bytes per second (forward and

backward direction)

Features in NBaIoT Datasets The NBaIoT data-sets

[21, 23] contain similar features based on packets and flows

(further details can be found in [21]). The below set of

features are extracted over different damped time-window

sizes, yielding a set of 115 features in total:

– Packet Size (mean and variance; outbound direction)

– Packet Count

– Packet Jitter (mean, variance and count of packet inter-

arrival times)

– Packet Size (magnitude, radius, covariance, correlation

coefficient; inbound and outbound

From each j-th record in a dataset, the set of features Fj, is

represented as in Eq. 1 below (where n ¼ NF represents

number of features). For example, f1j could represent flow

duration of j-th flow sample over a time window.

Fj ¼ ff1j; f2j; . . .; fnjg ð1Þ

3.2 Temporal codebook learning

The proposed method of transforming flow features into

TempoCode-IoT representations first involves capturing

key patterns of benign flows over different time windows

in a temporal codebook which is learnt in an unsupervised

manner. Below, we first describe the temporal codebook

learning procedure, followed by the TempoCode-IoT

transformation method.

The benign flow features are grouped according to

successive (non-overlapping) time windows determined by

tdur (e.g., if tdur ¼ 1, its an hourly window). The total

number of time windows is given by NT which would

depend on the training dataset and tdur. For example, in the

case of hourly windows, tdur ¼ 1:0, and a training dataset

of 10 h, then NT ¼ 10=1:0 ¼ 10. The time windows are

denoted by indices ti (where i ¼ 0; . . .;NT�1).

In each time window ti, a clustering method such as K-

Means is applied to learn Nct key patterns as codewords to

represent the benign traffic in ti. In the K-Means clustering

method, the initial set of cluster centres is chosen ran-

domly. Nearest neighbours for each cluster centre are

found from the data points. In cases where a data point is

found to be close to more than one cluster centre, it gets

assigned to the closest one only. In each cluster, an average

of its member data points is calculated and set as a new

cluster centre. With the new cluster centres, each data point

is re-grouped to the (new) centre closest to it. This process

of updating cluster centres followed by re-grouping of data

points based on the updated centres is repeated a number of

times to ensure stability of the clusters. The cluster centres

(from each time window) are stored as codewords cwti;k. In

this way, we obtain the temporal codebook CT, as

expressed below, where CT 2 RNF

CT ¼ fcwti;kji ¼ 0; . . .;NT ; k ¼ 1; . . .;Nctg ð2Þ

The temporal codebook size CSize can then be given by

NT � Nct, considering that we use a fixed Nct in all time

windows. The procedure to learn CT is given in

Algorithm 1.

3.3 TempoCode-IoT generation: temporal code-
book-based encoding of flow features

Leveraging the temporal codebook CT learnt above, the

flow features are transformed into TempoCode-IoT repre-

sentations based on their distances from the learnt benign

patterns across different time windows. The procedure to

generate TempoCode-IoT representations for training and

testing dataset samples is shown in Algorithm 2. The raw

features of a flow, Fj are compared to all the codewords of

CT, where the deviations are captured to form the Tem-

poCode-IoT representation, summarised in the equation

below:

TCj ¼ fqti;kji ¼ 0; . . .;NT ; k ¼ 1; . . .;Nctg ð3Þ

where a bin (qti;k) holds the distance of Fj from cwti;k. In

this manner, a TempoCode-IoT representation is a set of

distances of a raw feature vector to each of the codewords

22 Cluster Computing (2021) 24:17–35
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in CT, organised in a time-ordered fashion. The Tem-

poCode-IoT representation is computed as follows, where

dist(., .) is a distance metric such as euclidean distance:

qti;k ¼ distðcwti;k;FjÞ ð4Þ

3.4 Classifier ensemble training

The TempoCode-IoT representations obtained from previ-

ous steps are then used to train an ensemble of machine

learning-based classifiers (see Fig. 2) such as Support

Vector Machines (SVM) [12, 38] using the scikit-learn

machine learning library [31]. The codebook, and the

respectively generated TempoCode-IoT representations are

expected to be discriminative enough in the feature space

to aid the classifier in learning the differences.

The SVM is originally a binary classifier that has proved

its effectiveness in many classification problems. It learns

the support vectors by leveraging kernel functions such as

Radial Basis Functions (RBF). The support vectors are

basically a subset of the training Tempo-Code-IoT samples

that represent the best separation between two classes. A

test TempoCode-IoT sample is classified based on its dis-

tance from these support vectors. A single multi-class SVM

classifier is built by collecting many such binary classifiers,

depending on the number of classes in the dataset. We

determine the optimal parameters for SVM through

extensive cross-validation experiments, owing to the

imbalanced nature of the dataset used.

In this work, we designed an ensemble of multi-class

SVM classifiers, a method based on Bagging [11]. Each

classifier in this ensemble is trained on a random subset of

the training dataset. The prediction of each constituent

classifier is then combined through voting to produce the

overall classification output.

We choose SVMs as the base classifiers motivated by

their proven generalization ability, robustness, and success

in achieving globally optimal solutions [6]. As such, they

have found popular use in diverse applications such as

multimedia analysis, object detection and recognition,

medical image analysis, etc.

The motivation to adopt ensemble learning stems from

the following reasons: (i) Training an ensemble of multiple

classifiers on smaller subsets of training data could be done

in parallel and faster, (ii) An ensemble has better gener-

alization ability when compared to that of the individual

learners (classifiers) [43].

In the testing phase, the TempoCode-IoT representations

for test samples (which include both benign and malicious

ones) are generated using the codebook CT learnt above

and passed on to the ensemble of classifiers. Then, each of

the classifiers adds a vote to its predicted class. The class

with the highest votes is assigned as the predicted class

(benign, malicious, or a specific attack class) of the test

flow sample.

3.5 Computational complexity

The complexity of the proposed methods can be analysed

by looking at the complexity of the main steps involved.

The Temporal Codebook Learning step is only carried out

in training phase. In this work, the clustering process

involved in codebook learning employs the K-Means

method which has an average complexity of OðCSize � n �
Niter � NFÞ and worst case complexity of OðnCSizeþ2=NF Þ [4],
where n is the number of (training) samples, CSize is the

codebook size (i.e., total number of cluster centres) and

Niter is the number of iterations of the K-Means method.

The TempoCode-IoT Generation step involves using the

learnt temporal codebook to transform raw features into

their TempoCode-IoT representations mainly by comput-

ing the deviations of raw features from the codewords of

the codebook. If the complexity of computing the distance

of a NF-dimensional sample from CSize codewords (each

of dimensionality NF) of the codebook CT is given by

O(CSize), then the complexity of TempoCode-IoT gener-

ation step for n (training or testing) samples would be

Oðn � CSizeÞ.
As for the complexity of Classifier Ensemble Training

and Testing step, we look at the complexity of SVM

classifiers which we employ as base classifiers in this work.

The computational complexity of training SVM depends

mainly upon the number of support vectors. It involves a

quadratic term and a cubic term because the asymptotic

number of support vectors (nsv) grows linearly with the

number of samples (n). When the parameter C is small, nsv
grows atleast like n2 and when C becomes large, it grows

atleast like n3 [7]. In testing (prediction), the complexity of
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executing each SVM classifier is around Oðnsv � CSizeÞ
(each support vector has dimensionality ¼ CSize).

Thus, the overall complexity of training by the proposed

method is non-linear whereas testing (i.e., execution) is

linear with respect to the number of (training or testing)

samples n.

4 Experimental setup

The diversity of devices in IoT adds to the challenges of

developing security solutions. The mix of low-, moderate-

and high-traffic generating devices, possibly running on

different operating systems and protocols, and the fact that

these devices could change their behaviors of exchanging

data depending on various conditions, makes it difficult to

discriminate between malicious flows from the benign

ones.

Moreover, to the best of our knowledge, there is a lack

of publicly available datasets for intrusion detection in IoT

containing and comprehensively representing real-world

traces from a diversity of devices, operating systems,

underlying protocols, and diverse attack types [32]. A

recent work towards filling this gap is by [21, 23] who

collected the NBaIoT datasets out of real IoT devices

infected with popular botnets such as Mirai and BASH-

LITE. Hence, in this work, we use the NBaIoT datasets to

evaluate the proposed method. In addition, for further

evaluation of our method on a diversity of intrusion

attacks, and to compare against state-of-the-art IDS, we

have also used the recently published CICIDS2017 realistic

intrusion detection data-sets [34].

In what follows, we provide descriptions of the data-sets

to elaborate on the reasons of choosing these (Sect. 4.1).

Then, we describe the optimal parameters selection for the

codebook learning and TempoCode-IoT classification

(Sect. 4.2). The performance of the proposed method is

evaluated based on the metrics described in Sect. 4.3. The

computing platform utilized to evaluate our proposed

method is equipped with an Intel i7 CPU, 4 cores, 16 GB

RAM, CPU clock rate 1.8 GHz.

4.1 Datasets description

4.1.1 CICIDS2017 datasets

The CICIDS2017 is a recently published collection of

realistic intrusion detection datasets that has been collected

to overcome the challenges and limitations of other popu-

larly used IDS datasets that have been proposed prior to it.

Since our objective is to detect various kinds of intrusion

attacks, we were interested in this dataset for having real-

istic traces representing a variety of attacks. The

CICIDS2017 dataset built by researchers from the Cana-

dian Institute of Cybersecurity (University of New Bruns-

wick), has several advantages (over other datasets used in

the literature) besides the attack diversity, operating system

variety, local and internet communications, etc., as dis-

cussed in detail in [34].

The dataset comprises of malicious traffic arising from

six diverse attacks types: (i) Brute-force, (ii) Heartbleed,

(iii) Botnet, (iv) DoS and DDoS, (vi) Web Attack, and (vii)

Infiltration attacks. In Table 2, we provide a brief

description of these attacks. As for the benign traffic

recorded in the dataset, it is based on a realistic benign

profiling system, covering a mix of protocols such as email,

SSH, FTP, HTTP, HTTPS over TCP/UDP.

The Table 3 shows the composition of the dataset which

was collected over a period of five days (Monday–Friday)

during (nine) working hours each day. Different attacks

were run on each day, leaving Monday with benign traffic

only. As we can see, there is huge imbalance in the dataset

due to the low ratio of malicious samples for many attack

types. For example, the Friday morning dataset for Bot

attacks has only about 0:01% of malicious samples. Hence,

to avoid overfitting in training our classifiers, we randomly

downsample the benign data so as to retain 50% benign

flows and 50% malicious flows in each dataset. Despite

downsampling the benign data for training, the results of

the proposed methods are encouragingly good in detecting

the benign flows (see Sect. 5). In our experiments, we

partition the respective datasets into 60% training, 20%

validation, and 20% testing sets (represented by #Tr, #Val,

and #Te in Table 3, respectively), following a popular

approach in classification works [1] We use the traces from

Monday (containing benign flows alone) only to learn the

codebook CT.

4.1.2 NBaIoT datasets

The NBaIoT datasets of [21, 23] are the best IoT-related

intrusion detection datasets publicly available, to best of

our knowledge. The datasets were collected from a real

testbed of nine wireless-ly connected IoT devices, setup in

a way to resemble an enterprise setting. These devices were

infected with two families of real-world IoT-based botnets

(Mirai and BASHLITE/Gafgyt). The dataset contains the

packet- and flow-based features representing the benign

and malicious traffic.

Table 4 provides a summary of the different attacks

covered in the NBaIoT dataset under the Mirai and

BASHLITE botnet families. The composition of the dataset

is given in Table 5. Following the approach of [21], we

split the datasets (benign and malicious samples) into

equal-sized partitions for training, validation and testing.
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Table 2 Attack types in CICIDS2017 datasets

Attack type Description

Bruteforce Based on the FTP- and SSH-Patator tools. The attacker tries to gain access to content or documents via a hit and try method

Heartbleed Targeted against OpenSSL-based Transport Layer Security (TLS) protocol

Botnet A number of devices are compromised and exploited to carry out different attacks/operations. Ares-based Botnet

DoS/DDoS Targeted against a network resource or service to make it unavailable for benign users. When many different devices are

exploited (e.g. by a botnet), it is called DDoS. Tools used: GoldenEye, Slowloris, Hulk, Slowhttptest, Heartleech, LOIC

Web attack Attacks like SQL Injection or Cross-Site Scripting (XSS), over the web, exploiting vulnerabilities in code

Infiltration

attack

Internally originated attacks. Attacker exploits software vulnerabilities to setup a backdoor on victim devices to carry out

various attacks such as portscan or IP sweep, etc. Tool: Metasploit, Nmap, portscan

Table 3 Composition of

CICIDS2017 datasets, and our

training, validation and testing

splits

Dataset Class #Samples Ratio #Tr #Val #Te

Monday Benign 529919 1.0 529919 – –

Tuesday Benign 431813 0.969 259088 86362 86363

FTP-patator 7935 0.018 4761 1587 1587

SSH-patator 5897 0.013 3539 1179 1179

Wednesday Benign 439683 0.636 263810 87937 87936

DoS GoldenEye 10293 0.015 6176 2059 2058

DoS Hulk 230124 0.333 138074 46025 46025

DoS Slowhhtptest 5499 0.008 3299 1100 1100

DoS Slowloris 5796 0.008 3478 1159 1159

Heartbleed 11 0.000016 7 2 2

Thursday morning Benign 168051 0.988 100831 33610 33610

Brute force 1507 0.009 905 301 301

SQL Injection 21 0.0001 13 4 4

XSS 652 0.004 391 131 130

Thursday afternoon Benign 288359 0.9999 173015 57672 57672

Infiltration 36 0.0001 22 7 7

Friday morning Benign 188955 0.99 113372 37791 37792

Bot 1956 0.01 1174 391 391

Friday afternoon 1 Benign 127292 0.445 7676 2558 2558

PortScan 158804 0.555 95283 31761 31760

Friday afternoon 2 Benign 97686 0.433 58612 19537 19537

DDoS 128025 0.567 76815 25605 25605

Table 4 Attack types in NBaIoT dataset

Attack type Botnet family Description

Scan Mirai and BASHLITE (Gafgyt) Looks for vulnerable devices in the network

Junk BASHLITE (Gafgyt) Sends junk/spam data

COMBO BASHLITE (Gafgyt) Sends spam data; Opens connection to a given IP address and port

Flooding Mirai ACK, SYN, UDP, UDPplain (higher PPS, enabled by fewer options)

BASHLITE (Gafgyt) UDP, TCP
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The benign traffic data for each IoT device consists of

frequent and infrequent actions as well.

4.2 TempoCode-IoT configurations

The main parameters to configure TempoCode-IoT -based

intrusion detection are the tdur (length of time windows)

and Nct (number of codewords to learn from each time

window). In this work, we utilise the CICIDS2017 datasets

(due to the wide diversity of attack types it contains) in a

binary classification setting (i.e., binary vs malicious) to

study the effect of TempoCode-IoT parameters on the

intrusion detection performance.

4.2.1 Effect of tdur

We evaluated TempoCode-IoT-based intrusion detection

under varying tdur from 0.25 to 1.0, in steps of 0.25. This

respectively corresponds to taking time windows of 15

mins., 30 mins., 45 mins., and 1 h, in the codebook learning

phase. Figure 3a shows how correct classification rate (or

ACCi) varies with tdur, while Fig. 3b shows the average

processing time (ms) per TempoCode-IoT vector during

testing phase.

We note that the best ACCi is obtained when tdur is 0.25.

However, this comes at a cost of higher processing time per

TempoCode-IoT vector (around 15.57ms) in comparison to

the lower processing times at higher tdur. This is expected

because with lower tdur, the codebook size increases (given

a fixed Nct), and hence the dimensionality of TempoCode-

IoT vectors increases.

An interesting observation is when tdur ¼ 0:75, the ACCi

is lower than at tdur ¼ 1:0, although we expected it to be

higher. This indicates that with a time window of 45 mins.,

for the CICIDS2017 dataset, the learnt temporal codebook

doesn’t capture the benign patterns as effectively as with a

time window of 1 h.

The specific choice of tdur would depend on an appli-

cation’s or system’s requirements and constraints, taking

into consideration a trade-off between accuracy and pro-

cessing time. In this work, we choose tdur ¼ 1 which

yielded the lowest processing time (2.94ms) and a rea-

sonably good ACCi of around 98:79%.

4.2.2 Effect of Nct and CSize

The number of patterns Nct learnt per time window in the

codebook CT plays a role in determining the performance

of TempoCode-IoT in terms of accuracy as well as pro-

cessing time. It is expected that at a higher Nct, since the

codebook is more comprehensive than at a lower Nct, a

higher accuracy could be achieved.

In Table 6, we present the classification scores of

TempoCode-IoT with varying Nct values (i.e., 5, 10, 15, 20,

25). As it can be observed, the precision, recall and F1

scores for both benign and malicious classes increased with

increase in Nct. The CSize column shows the overall

codebook size for each Nct

The best F1 scores for the benign and malicious classes

were achieved at Nct ¼ 15. Looking at the precision of

benign class (Prec_Ben), F1 scores of benign and malicious

classes, as well as the recall of malicious class, the scores

were better at Nct ¼ 15 than at Nct ¼ 20.

From Table 6, we also note that a larger codebook

(higher CSize, as a consequence of a higher Nct) results in

higher classification scores. These results are obtained by

setting tdur ¼ 1:0, which makes NT ¼ 9 non-overlapping

Fig. 3 a Effect of tdur on accuracy (correct classification rate of

benign and malicious samples) and b processing time (per Tem-

poCode-IoT vector)

Table 5 Composition of

NBaIoT datasets: IoT devices,

and number of benign and

malicious samples

ID Device #Benign #Mirai #Gafgyt

1 Danmini (doorbell) 40395 652100 316650

2 Ecobee (thermostat) 13111 512133 310630

3 Ennio (doorbell) 34692 N/A 316400

4 Philips B120N10 (baby monitor) 160137 610714 312723

5 Provision PT737E (security camera) 55169 436010 330096

6 Provision PT838 (security camera) 91555 429337 309040

7 Samsung SNH1011N (Webcam) 46817 N/A 323072

8 SimpleHome XC57-1002-WHT (security camera) 42784 513248 303223

9 SimpleHome XC57-1003-WHT (security camera) 17936 514860 316438
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time windows (on Monday’s benign flows dataset of

CICIDS2017), where the CSize ¼ NT � Nct. However, at

Nct ¼ 20, the F1 scores are lower than those at Nct ¼ 15. A

reason could be because the codebook becomes redun-

dantly large at Nct ¼ 20 for the used dataset, leading to

TempoCode-IoT representations which cause classifier

confusion or to classifier overfitting, deduced from the

observation that at Nct ¼ 20, Ben-Ben (TP) and Mal-Ben

(FP) counts are higher than at Nct ¼ 15.

4.2.3 Codebook learning time

The time consumed in learning the codebook is an important

factor in assessing the adaptability of the proposed method.

Application scenarios in which the benign network traffic

behavior may evolve or change could require re-training the

codebook. Hence, having lower codebook learning times are

beneficial for such cases. However, as we have shown above,

smaller codebooks could fall short of capturing the benign flow

patterns thereby reducing accuracies. In Fig. 4, we show the

codebook learning times of TempoCode-IoT for increasing

CSize. The TempoCode-IoT’s codebook size depends onNct. In

this figure, we observed the codebook learning times for Nct ¼
1; 4; 8; 10; 15; 20 corresponding to CSize ¼ 9; 36; 72; 90;

135, 180, respectively (Note that the time-window tdur ¼ 1 h

and the CICIDS2017 dataset has NT ¼ 9 h of data).

In learning the temporal codebook, for each time-win-

dow, the clustering process is applied only on the benign

samples from that time-window, and not on the entire set of

samples over the whole duration of the dataset. This allows

for parallel codebook learning, where each time-window’s

codebook could be learnt in parallel.

4.2.4 Classifier configurations

In this work, for TempoCode-IoT-based intrusion detec-

tion, we used the following parameters for the ensemble of

SVM classifiers. The ensemble size was 10, using a

majority voting-based classification output. Based on

empirical evaluations, we found that the constituent SVM

classifiers performed best with C ¼ 2000, c ¼ 500, for the

CICIDS2017 datasets.

4.3 Performance metrics

We assess the performance of the proposed TempoCode-

IoT-based intrusion detection based on the following

metrics: Precision, Recall, F1-score, and Class-wise accu-

racy. In addition, we utilise the confusion matrices as a tool

to interpret and understand the performance in terms of

these scores.

– Precision: For a class i, its Precision score Pi is:

Pi ¼
TPi

TPi þ FPi
ð5Þ

– Recall: For a class i, its Recall score Ri is:

Ri ¼
TPi

TPi þ FNi
ð6Þ

– F1-Score: a harmonic average of Precision and Recall

scores

F1� Scorei ¼
2 � Pi � Ri

Pi þ Ri
ð7Þ

– Class-wise Accuracy (or Correct Classification Rate): A

measure of how many samples were correctly classified

(TPi) as benign or corresponding attack class respec-

tively, with respect to the total number of test samples

of the class.

Fig. 4 Codebook learning time for TempoCode-IoT, with varying

CSize

Table 6 Effect of Nct and CSize (codebook size) on TempoCode-IoT classification scores

Nct CSize Ben-Ben Ben-Mal Mal-Ben Mal-Mal Prec-Ben Recall-Ben F1-Ben Prec-Mal Recall-Mal F1-Mal

5 45 345555 2813 2917 108394 0.9916 0.9920 0.9918 0.9747 0.9738 0.9743

10 90 346495 1873 2577 108734 0.9926 0.9946 0.9936 0.9831 0.9769 0.9800

15 135 346618 1750 2534 108777 0.9927 0.9950 0.9939 0.9842 0.9772 0.9807

20 180 346762 1606 2794 108517 0.9920 0.9954 0.9937 0.9854 0.9749 0.9801

The bold values indicate the highest values in the respective columns
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ACCi ¼
TPi

#TestSamplesi
ð8Þ

– Confusion Matrix: Depicts the percentage of test

samples of each ground-truth class (represented by

rows) classified to each class (represented by columns).

So, the main diagonal values are the ACCi and Ri, while

the other values indicate the False Positives or False

Negatives. In a row i, the value at (i, i) is the ACCi and

Ri; the values in (i, j), where j 6¼ i, show the False

Negatives (FNi), i.e., the percentage of samples of

class-i that were mis-classified to class-j.

The definitions of TP, FP, FN are based on the class being

considered and the granularity of classification (binary or

multi-class). While TPi refers to the True Positives, FPi

refers to the False Positives, and FNi refers to the False

Negatives with respect to class-i. In a binary classification

setting (Sect. 5.2), the two classes are ’Benign’ (i ¼ 0) and

’Malicious’ (i ¼ 1). The TPs with respect to benign class

(TP0) are the benign samples which were classified as

benign, while the FPs with respect to benign class (FP0)

are the malicious samples which were classified as benign.

Similarly, TP1 and FP1 refer to the TPs and FPs with

respect to the malicious class. In multi-class classification

(Sect. 5.1), we consider TP, FP, FN with respect to each

class. So, TPi would be the samples of class-i classified as

class-i while TPj would be samples of class-j classified as

class-j. In calculating the ACCi, Pi, Ri, F1-Score i for a

class-i, we consider the TP, FP, FN defined with respect to

class-i.

5 Results and discussions

To evaluate the performance of the proposed TempoCode-

IoT representations for intrusion detection, we use the

CICIDS2017 and NBaIoT datasets (described in Sect. 4.1).

With the CICIDS2017 datasets, we conduct two sets of

experiments. First, in Sect. 5.1, we evaluate TempoCode-

IoT representations for detection of individual attack types

in the different datasets of CICIDS2017 (as listed in

Table 3). Second, in Sect. 5.2, we investigate the effec-

tiveness of TempoCode-IoT representations in a binary

classification setting (to differentiate between benign and

malicious flows). On the NBaIoT datasets, we evaluate the

performance of Tempo-Code-IoT representations in dif-

ferentiating the benign flows from the malicious flows

arising from the compromised IoT devices. Finally, in

Sect. 5.4, we compare the performance of our proposed

method with results of prior works on the CICIDS2017 and

NBaIoT datasets, demonstrating the superiority of our

method over state-of-the-art.

5.1 On the CICIDS2017 datasets: attack type
classification

In these set of experiments, we evaluate the performance of

TempoCode-IoT-based IDS on each dataset of

CICIDS2017 [34], i.e., each attack type’s dataset. Fig-

ures 5, 6, 7, 8 show the confusion matrices for each attack

type. The results are summarised in Table 7 which presents

the average scores along with the respective 95% confi-

dence intervals from 10 test runs (i.e., ten randomly split

test subsets). The temporal codebook CT is learnt using

Monday’s benign training data samples, with size Nct ¼ 15,

Tdur ¼ 1, NT ¼ 9, i.e., CSize ¼ 135 used in these experi-

ments, based on the findings in Sect. 4.2.

In the case of DoS attacks dataset, looking at Fig. 5 and

Table 7, we observe the following. On average, 99:34% of

benign samples were correctly classified as benign, with

the benign class achieving an average f1-score of

0:9989� 0:0005. The four variants of DoS attacks, namely

the GoldenEye, Hulk, Slowhttptest, and Slowloris also

achieved high ACCi and recall scores. However, the

Heartbleed samples were mis-classified as benign, and

hence the poor performance scores. The total number of

samples in the dataset for the Heartbleed class were only

11, out of which 60% (i.e., 7) were taken for training, 20%

(i.e., 2) for validation, and 20% (i.e., 2) for testing. Due to

the large imbalance between the number of samples of

benign, other DoS variants, and Heartbleed classes, the

classifier wasn’t able to perform well on the Heartbleed

samples. Another observation to make here are the con-

fusions between the DoS variants. For example, 0:91% of

Slowhttptest samples were confused to be of Slowloris.

This indicates some degree of similarity in the feature

space, between the samples from DoS attack variants.

Fig. 5 TempoCode-IoT: Benign vs DoS (GoldenEye, Hulk,

Slowhttptest, Slowloris, Heartbleed)
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On the web attacks dataset, we note that the benign and

bruteforce web attack samples were very accurately clas-

sified, at average recall scores of 0:9911� 0:0010 and

0:9928� 0:0109, respectively (see Table 7). However, the

SQL injection and XSS variants of web attacks suffered

from very low classification scores. Observing the confu-

sion matrix (Fig. 6 (Left)) gives an insight to the cause. As

one can see, 75% of the SQL injection attack samples were

mis-classified as bruteforce web attack, and 57:14% of XSS

attack samples were also mis-classified as bruteforce web

attacks. Although these samples were not classified to the

correct attack variant, they were correctly identified as non-

benign, thereby maintaining a high intrusion detection

performance.

Looking at the results on Bruteforce attacks dataset

based on the FTP- and SSH-Patator tools, the average f1-

scores achieved for the benign, FTP-Patator, and SSH-

Patator classes were 0:9989� 0:0005, 0:9127� 0:0134,

and 0:7574� 0:0184, respectively (see Table 7). The

confusions between these classes were also very low (see

Fig. 6 [Right])

In the case of Infiltration attacks, TempoCode-IoT’s

performance was not as high as expected (see Fig. 7 [Left]

and Table 7). Although the benign samples were correctly

classified at an average recall of 0:9994� 0:0002, a high

percentage of infiltration attack samples were mis-classi-

fied as benign. This could be attributed to the insufficient

number of training samples for the Infiltration classes, as

mentioned in Table 3.

On the Portscan attacks dataset, the achieved average f1-

scores were 0:9992� 0:0003 and 0:9993� 0:0002 for the

Benign and Port-scan classes, respectively. Moreover, the

false positives count (i.e., malicious samples mis-classified

as benign samples) were very low, around 0:08% (see

Fig. 7 [Right]) Similarly encouraging results were obtained

on the Botnet and DDoS attacks dataset (see Fig. 8), where

the Botnet attacks were detected at an average recall of

0:9600� 0:0192, and the DDoS attacks at an average

recall of 0:9928� 0:0013.

5.2 On the CICIDS2017 datasets: binary
classification (Benign vs Malicious)

In these set of experiments, we investigate how well can

TempoCode-IoT representations discriminate between

benign samples and the diversity of malicious samples

wherein the samples from various attack types from the

individual datasets were combined together and labelled as

‘‘malicious’’.

We utilise the codebook CT (which was learnt from

Monday’s benign training data, with parameters described

in Sect. 4.2) to generate TempoCode-IoT representations

respectively. The samples from rest of the days were

combined together in one dataset and subsequently parti-

tioned into training, validation and testing splits following

the 60–20–20% ratio. The best performing CSize ¼ 135 is

taken for the codebook (see Sect. 4.2). Consequently, the

proposed scheme is referred to as TempoCode-IoT-135. In

binary classification, the objective is to detect anomalous

(malicious) samples which may belong to different attack

types and hence different characteristics.

Figure 9 shows the confusion matrix between benign

and malicious classes for the Tempo-Code-IoT-based

scheme. On average, around 99:50% of benign samples and

97:72% of malicious samples were correctly classified. The

mean False Positive Rate was 2:28% while the mean False

Negative Rate was 0:5%. The precision, recall and f1

scores are provided in Table 8, along with the 95% confi-

dence intervals obtained from tests on 10 randomly parti-

tioned subsets of the test data.

Fig. 6 TempoCode-IoT: [Left] Benign vs Web Attacks (BruteForce,

SQL Injection, XSS); [Right] Benign vs Patator-based Bruteforce

attacks over FTP/SSH

Fig. 7 TempoCode-IoT: Benign vs Infiltration, and Benign vs

PortScan

Fig. 8 TempoCode-IoT: Benign vs Bot, and Benign vs DDoS
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5.3 On the NBaIoT datasets: botnet attacks
detection

In our empirical evaluations of TempoCode-IoT on the

NBaIoT datasets, we adopt the following approach. Con-

sidering the diversity of device types, we propose to learn a

temporal codebook for each device, capturing its key

benign flow patterns. Each device’s dataset is split into

three equal-sized partitions for training, validation and

testing (similar to the approach of [21]). The features (as

described in Sect. 3.1) in each device’s dataset were nor-

malized to be in the range [0, 1], and only the benign

traffic’s features from the training dataset were used in

codebook learning for the device.

Due to the lack of timestamp data in the datasets, we

adaptively set the size of time-window (tdur) depending

upon the number of benign training samples available for a

device. For each device, tdur is taken as a number of

samples given by Ntr�ben

ðCSize=NctÞ, where Ntr�ben is the number of

benign samples in training dataset of this device, CSize ¼
140 (codebook size), and Nct ¼ 10 (number of codewords

to be learnt from each time-window). For example, the first

tdur number of samples could have arrived in say 1 h while

the next tdur number of samples could have arrived in 0.5 h.

Our empirical evaluations have proven the strength of

TempoCode-IoT representations even with such an adap-

tive tdur. The values of CSize and Nct have been chosen

Fig. 9 Confusion matrix for TempoCode-IoT-based binary

classification

Table 8 Binary classification scores with TempoCode-IoT on

CICIDS2017 datasets

Class Precision Recall F1-Score

Benign 0.9927±0.0004 0.9950±0.0003 0.9939±0.0003

Malicious 0.9842±0.0010 0.9772±0.0014 0.9807±0.0011

Table 7 Performance

evaluation of TempoCode-IoT-

based intrusion detection on

CICIDS2017 datasets

Dataset Class Precision Recall F1-Score

Tuesday Benign 0.9996±0.0001 0.9989±0.001 0.9989±0.0005

FTP-Patator 0.8427±0.0220 0.9961±0.0034 0.9127±0.0134

SSH-Patator 0.6194±0.0246 0.9763±0.0094 0.7574±0.0184

Wednesday Benign 0.9866±0.0007 0.9934±0.0007 0.9900±0.0006

DoS GoldenEye 0.978±0.0064 0.866±0.0104 0.9184±0.0060

DoS Hulk 0.9884±0.001 0.9823±0.001 0.9853±0.001

DoS Slowhhtptest 0.9717±0.012 0.9429±0.018 0.9567±0.008

DoS Slowloris 0.9832±0.012 0.9374±0.009 0.9596±0.005

Heartbleed 0.0 0.0 0.0

Thursday morning Benign 0.9996±0.0002 0.9911±0.0010 0.9953±0.0005

Brute force 0.4174±0.0184 0.9928±0.0109 0.5873±0.0109

SQL injection 0.0 0.0 0.0

XSS 0.0 0.0 0.0

Thursday afternoon Benign 0.9999±0.0001 0.9994±0.0002 0.9997±0.0001

Infiltration 0.0333±0.0533 0.0667±0.0107 0.0444±0.0711

Friday morning Benign 0.9585±0.0197 0.9742±0.0191 0.9659±0.0129

Bot 0.9736±0.0205 0.9600±0.0192 0.9663±0.0124

Friday afternoon 1 Benign 0.9985±0.0005 0.9998±0.0002 0.9992±0.0003

PortScan 0.9999±0.0001 0.9988±0.0005 0.9993±0.0002

Friday afternoon 2 Benign 0.9907±0.0017 0.9983±0.0005 0.9945±0.0008

DDoS 0.9987±0.0004 0.9928±0.0013 0.9958±0.0007
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such that the learnt codebook is of CSize ¼ 140 for all

devices, to be close to the best codebook size found in

TempoCode-IoT evaluations on CICIDS2017 datasets (as

described in Sect. 4.2).

Consequently, the TempoCode-IoT representations of

the benign and malicious flows from each device are

generated using the respective device’s temporal codebook.

Based on these TempoCode-IoT representations, the

ensemble of SVM classifiers is trained using the training

dataset and optimized using the validation dataset, in a

supervised manner. Because each device has different

behaviors and actions resulting in different traffic behav-

iors, a separate ensemble of SVM classifiers is learnt for

each device (see Table 9). The testing datasets which

contain a mix of benign and malicious samples that have

not been seen in the training phase are used to evaluate the

performance of TempoCode-IoT representations through

the ensemble of SVMs. Each test set is further split into 10

random partitions to run 10 tests for each device and obtain

average scores with 95% confidence intervals.

The experimental evaluations of the proposed Tempo-

Code-IoT-based intrusion detection yielded very encour-

aging results for all the devices (see Fig. 10). The proposed

method was able to differentiate between benign and

malicious traffic from each compromised IoT device with

very high recall scores (0.9940–0.9991), and very low false

positive rates (0.02–0.71%), as observed from Table 10

which presents the scores averaged over ten test runs along

with the respective 95% confidence intervals.

These results indicate the effectiveness of the proposed

temporal codebook in learning key benign traffic patterns

of each device and the high discriminative capability

exhibited by the TempoCode-IoT representations through

the ensemble of SVM classifiers. Moreover, since our

approach builds a temporal codebook and ensemble of

classifiers for each device (using the flows from the

respective device only), the addition of new IoT devices

would only require learning of a codebook and classifier

ensembles for those specific devices alone. In this way, re-

training costs are avoided as the system doesn’t require re-

training the codebooks and classifiers previously learnt for

other devices. Furthermore, such an approach yields tol-

erance to a growing heterogeneity of IoT devices.

5.4 Comparison with related works

In this section, we present a comparison of TempoCode-

IoT’s performance against other methods proposed recently

on the CICIDS2017 and NBaIoT datasets. Table 11 pro-

vides the precision, recall and f1 scores (for detection of

malicious flows) of our work and those reported by the

respective related works on the CICIDS2017 datasets.

Additionally, Table 12 compares our results with those

reported in [21] on the NBaIoT datasets.

5.4.1 On the CICIDS2017 dataset

Marir et al. [20] proposed a deep belief network (DBN) and

a multi-layer ensemble of SVMs (MLE-SVM) for detection

of malicious flows. They studied the performance of DBN

and MLE-SVM individually, as well as in a coupled

fashion. The proposed TempoCode-IoT method of this

paper outperforms the three methods of [20].

To evaluate the performance of the proposed Tempo-

Code-IoT method against the raw statistical flow features

(such as those mentioned in Sect. 3.1), we compare with

the top three scores reported in [34]’s study. In their work,

they found the following three machine learning algorithms

performed best in detecting the malicious flows: k-Nearest

Neighbors (kNN), Random Forest, and ID3, based on the

raw statistical flow features. From Table 11, we can see

that TempoCode-IoT performed better than their kNN and

RF methods and slightly better than the ID3-based method.

The results of [34] were after a feature selection process by

which only the most important features were retained. If a

similar procedure is applied to TempoCode-IoT features, it

could result in even better performance. However, we

dedicate this to be investigated in a future work.

Table 9 TempoCode-IoT

evaluations on the NBaIoT

datasets: SVM parameters,

number of training/testing

samples (Ntr;Ntr�ben;Nte),

codebook learning time (CLT),

time consumed in training/

testing (Ttr ;Tte)

Dev SVM params Ntr�ben CLT (s) Ntr Ttr (s) Nte Tte (s)

1 C1000, G0.001 13465 4.24 26930 2.31 336389 14.1

2 C1000, G0.001 4370 2.15 8740 5.29 278619 10.5s

3 C1000, G0.001 11564 2.21 23128 1.5 117034 4.4

4 C0.1, G0.001 53379 9.03 106758 10.5 361198 114

5 C1, G0.001 18389 2.34 36778 2.67 273769 35.8

6 C10, G0.001 30518 3.38 61036 3.1 276652 19.5

7 C10, G0.001 15605 3.21 31210 2.08 123301 5.7

8 C10, G0.001 14261 4.81 28522 2.34 286423 27.6

9 C100, G0.01 5978 1.32 11956 1.4 283086 10.7
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Fig. 10 Evaluating TempoCode-IoT on NBaIoT datasets: confusion matrices for each of the nine devices (the values are averaged across test test

runs)

Table 10 TempoCode-IoT results on the NBaIoT datasets: precision, recall, F1 scores for benign and malicious classes, and false positive rate

(FPR)

Device Prec_Ben Rec_Ben F1_Ben Prec_Mal Rec_Mal F1_Mal FPR (%)

1 0.9845±0.0016 0.9948±0.0011 0.9896±0.0010 0.9998±0.0 0.9993±0.0001 .9996±0.0001 0.07±0.01

2 0.9829±0.0027 0.9973±0.0010 0.9900±0.0013 1.0±0.0 0.9997±0.0001 0.9998±0.0 0.03±0.0

3 0.9983±0.0009 0.9940±0.0019 0.9961±0.0011 0.9993±0.0002 0.9998±0.0001 0.9996±0.0001 0.02±0.01

4 0.9919±0.0007 0.9984±0.0004 0.9951±0.0004 0.9997±0.0001 0.9986±0.0001 0.9992±0.0001 0.14±0.01

5 0.9754±0.0025 0.9963±0.0015 0.9858±0.0015 0.9997±0.0001 0.9982±0.0002 0.9990±0.0001 0.18±0.02

6 0.9455±0.0027 0.9972±0.0006 0.9706±0.0013 0.9997±0.0001 0.9929±0.0003 0.9963±0.0001 0.71±0.03

7 0.9903±0.0021 0.9987±0.0006 0.9945±0.0010 0.9998±0.0001 0.9986±0.0003 0.9992±0.0002 0.14±0.03

8 0.9800±0.0026 0.9973±0.0010 0.9886±0.0013 0.9999±0.0001 0.9989±0.0001 0.9994±0.0001 0.11±0.01

9 0.9779±0.0036 0.9991±0.0009 0.9889±0.0019 1.0±0.0 0.9995±0.0001 0.9997±0.0001 0.05±0.01
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5.4.2 On the NBaIoT datasets

We compare the performance of TempoCode-IoT

against the results of two recently published works on

NBaIoT data-sets: [25] and [21]. In comparison to the

results of deep auto-encoders-based intrusion detection of

[21] who ach-ieved a mean FPR of 0.7%, the proposed

Tempo-Code-IoT yielded a slightly higher mean FPR of

0.16% (still below 1%). In addition, their work tested other

methods such as Isolation Forest and Local Outlier Factor

(LOF) which also yielded higher mean FPRs of 2.7% and

8.6% respectively, as summarized in Table 13. Moreover,

the mean detection time reported by [21] of 174ms is

significantly slower than that of the proposed Tempo-Code-

IoT-based method which required an average of 0.110ms

per Tempo-Code-IoT vector.

Another work based on the NBaIoT dataset is of [25]

who investigated SVMs and Isolation Forests trained over a

subset of the statistical features provided by the datasets.

The features were selected based on metrics such as

entropy, variance and Hopkins statistic. As shown in

Table 12, the proposed TempoCode-IoT-based method

outperforms the best models of [25] for all devices. Their

paper did not report results for devices 3 and 7.

The works of [21, 25] are unsupervised learning-based

approaches where the malicious traffic samples are detec-

ted as anomalies from the learnt benign traffic patterns.

And although this paper proposed unsupervised learning of

the temporal codebook to capture benign traffic patterns,

the ensemble of classifiers is trained in a supervised fash-

ion. The higher FPRs and lower precisions of [21, 25] in

comparison to our work indicate the benefits of supervised

learning. However, considering the envisioned dynamic

IoT ecosystem of tomorrow and evolving techniques of

malicious attackers, we believe that unsupervised or pos-

sibly hybrid approaches may be a better choice. Hence, as

part of our future work, we shall investigate TempoCode-

IoT-based unsupervised anomaly detection approaches to

identify intrusion attacks.

6 Open issues and challenges

Although considerable efforts have been made in the field

of IoT security, achieving fully robust, secure and resilient

heterogeneous IoT environments is an ongoing pursuit. In

this section, we briefly discuss some open issues and

challenges associated with securing the evolving IoT

landscape against intrusions.

Although IDSs may be very accurate, there may be

certain situations in which an IDS or the device hosting an

IDS may itself become a target of attacks. The vulnera-

bility increases if the IDS is hosted on the edge or on the

end device. Hence, further studies are needed to investigate

defense mechanisms that are resilient to such attacks.

In order to foster research in developing IDSs for

heterogeneous IoT, efforts are needed to build publicly

available large-scale datasets using real devices and real-

istic scenarios. Currently, most works use simulations or

small-scale datasets.

Despite the success of IDSs based on supervised learn-

ing, the problem of detecting unknown, advanced attacks in

realistic heterogeneous IoT environments remains an open

Table 11 Performance comparison of TempoCode-IoT with related

works on CICIDS2017 datasets

Method Precision Recall F1-Score

DBN [20] 0.9006 0.9540 0.9265

MLE-SVM [20] 0.9056 0.9494 0.9269

DBN with LE-SVM [20] 0.9040 0.9565 0.9295

kNN [34] 0.9600 0.9600 0.9600

RF [34] 0.9800 0.9700 0.9700

ID3 [34] 0.9800 0.9800 0.9800

TempoCode-IoT (Our) 0.9842 0.9772 0.9807

The bold values indicate the highest values in the respective columns

Table 12 Performance

comparison of TempoCode-IoT

with results reported by [25] on

NBaIoT datasets, in terms of

precision scores (malicious

class)

Work Device

1 2 3 4 5 6 7 8 9

[25] 0.9952 0.9981 N/A 0.9474 0.9914 0.9860 N/A 0.9938 0.9976

TempoCode-IoT (Our) 0.9998 1.0 0.9993 0.9997 0.9997 0.9997 0.9998 0.9999 1.0

Table 13 Performance comparison of TempoCode-IoT with results

reported by [21] on NBaIoT datasets, in terms of mean false positive

rates (FPR)

Method Mean FPR (%)

Deep-autoencoders 0.7

Isolation forest 2.7

LOF 8.6

TempoCode-IoT (Our) 0.16
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issue. The latest advances in unsupervised learning could

be promising in this regard.

7 Conclusions and future work

In this work, we proposed TempoCode-IoT, a temporal

codebook-based encoding of flow features, as a novel

feature transformation of network flow features based on

capturing the key patterns of benign traffic in a learnt

temporal codebook. Using the codebook, distances of

(benign and malicious) traffic flows from those key patterns

are measured and recorded as the transformed features to

train an ensemble of SVM classifiers. The experimental

evaluations on recent realistic datasets (CICIDS2017 and

NBaIoT) proved the effectiveness of TempoCode-IoT

representations in detecting intrusions of various types and

for different devices used in the datasets. On the NBaIoT

datasets, TempoCode-IoT achieved high mean precision

scores (0.9993–1.0), low mean False Positive Rates

(0.02–0.71%), and low average detection time of 0.110ms

per TempoCode-IoT sample. Similarly, on the

CICIDS2017 datasets, TempoCode-IoT achieved high

precision and F1-scores of 0.9842 and 0.9807 respectively.

For future work, we plan to investigate the performance

of TempoCode-IoT representations over larger and com-

bined datasets of different attack types, in an unsupervised

fashion, which effectively turns into a more challenging

multi-class anomaly detection problem.
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