TCPLS: Modern Transport Services
with TCP and TLS

Published in: CONEXT 21

Summarized by
Sangwon Lim (sangwonlim@snu.ac.kr)
2022-08-31

1/26

mailto:sangwonlim@snu.ac.kr

Contents

* Introduction

« Background

« TCPLS Design

* TCPLS Prototype Implementation
« TCPLS Evaluation

« Conclusion

2126

Introduction

* The Transmission Control Protocol (TCP) is one of the most critical
protocols in today’s Internet
v TCP provides connection abstraction, reliability, and congestion control

 During the late nineties, and early 2000s, transport protocol researchers
explored alternatives to TCP

v'DCCP: provides a way to gain access to congestion-control mechanisms at the
application layer

v'SCTP: provides multihoming support where one or both endpoints of a connection
can consist of more than one IP address

3/26

Introduction

« Extending TCP today is not feasible anymore as middleboxes severely
Interfere with changes to the TCP header and options

* To overcome this problem, Google started QUIC combining functions
usually found in TCP, TLS, and HTTP/2
v QUIC leverages encryption to prevent middlebox interference and
v’ proposes to revisit the layered model of the Internet to improve the transport services
v QUIC runs atop UDP, it can be implemented and deployed as a user-space library

Application [Application]
(Quic \

TLS Crypto handshake]

Z TCP-like congestion
[Kcontrol, loss recovery)
TCP

UDP J

426

Introduction

* Does the standardization of QUIC mark the end of the TCP era?

 TCP remains a fallback because of its greater support in networks, and
TCP also still serves many applications

« The authors revisit how transport services can be prowded with TCP and
TLS today \ :

v (1) How can TCP and TLS be combined
to improve extensibility and middlebox resilience?

v’ (2) What are the new transport services
that this combination can offer?

5/26

Background

 Middleboxes interfere with TCP or Its extensions

v Firewalls can discard packets containing TCP Options that were not known when the

firewall was designed

v’ Firewalls can replace unknown TCP Options with the NOP TCP Option

bt o 1 2 3 4 § 5 4 8 8 10 1 12 13 14

1§ 18 7 1B 1 2 21 22 28 24 28 2 ¥ 8B B 0

Source Port

Destination Port

Sequence Number

Acknowledgement Number

HLEMN Reserved

Window

Checksum

Urgent Pointer

m

Padding

< TCP Segment Format >

6/26

Background

« TCP extensions are hard to extend
v' The amount of bytes for extensions in the TCP header is limited to 40 bytes

v' TCP is often implemented as a part of the OS kernel, which leads to complexity to
implement and deploy any modification

bt o 1 2 3 4 § 5 4 8 8 10 1 12 13 14 15 18 7 1B 1 2 21 22 28 24 28 2 ¥ 8B B 0

Source Port Destination Port

Sequence Number

Acknowledgement Number

’I I I
ufla ([P |RrR]|S F ;
I HLEN Reserved Rlc|s s |¥ |1 Window
l G K H 3 N N
_—— e e
Checksum Urgent Pointer
’I]]]] I] L]]]] —]]]] L] “
l Options (if any) ' Padding

Data

< TCP Segment Format >

7126

Background

* Modern applications rarely use TCP alone and they often combine TCP

with Transport Layer Security (TLS)

v TCPLS extends the encrypted TLS records to convey control and application data g

Always 23 App Data TLS1.3

i

Encrypted
and
authenticated

Type Version | Length

TrueType
A

Encrypted and thus invisible to middleboxes

8/26

TCPLS Design

* (1) How can TCP and TLS be combined to improve extensibility and

middlebox reSiIience ? Always 23 App Data TL5'1-3
* Reliable exchange of TCP extension
v Transport level control data in TLS records T

authenticated

v TCPLS can provide a large range of new transport services

TrueType
i

Encrypted and thus invisible to middleboxes

 More options during the handshake Client Server
ClientHello I

v TCPLS can leverage TLS Encrypted Extensions to negotiate o N

during the handshake some of the new transport services Encryptedentensions
Cerctzzz::\l/teerify

Finished

| Finished I
[pplationvats 8 . mpplcationvata |

9/26

TCPLS Design

* (2) What are the new transport services that this combination can offer?

* Quick Resumption
v TCP’s Fast Open + TLS’s O'RTT

« Stream Multiplexing

v The AEADY Nonce of TCPLS Streams
Is derived from TLS 1.3

N N-32 64 0
TLS 1.3 AEAD Initial Vector
+ D
TCPLS Stream ID Stream record sequ.

1) Authenticated Encryption with Associated Data 10/26

TCP

* (2) What are the new transport services that this combination can offer?

LS Design

« Joining TCP connections

[Pv4

Client

IPy6
CrLiENTHELLO+TCPLS HELLO

Server
IPv4 IPvé6

N

SERVERHELLO+TCPLS HELLO
+ADDR(v6)+SESSID(a)+ COOKIE(f1, f2)

CLIENTHELLO+TCPLS JoiNn

l (SESSID(r), COOKIE(f,))

Application

.

LS l'(‘\‘ul'«l\

Application

a4

IPV4 TPV6

user space

kernel space

11/26

TCPLS Design

* (2) What are the new transport services that this combination can offer?

* Fail over

Failover

<l TCP connection A

2.

< TCP connection B

>

< Failover resynchronizes and retransmits lost TCPLS records from a failed TCP connection to another >

12726

TCPLS Design

* (2) What are the new transport services that this combination can offer?

« Application-triggered Connection Migration
v e.g., Migration from LTE to Wi-Fi

Application Application
-

API
Crypto

user space

.......
(TCPK:
T 9

IPV4 TPV6

kernel space

13/26

TCPLS Design

* (2) What are the new transport services that this combination can offer?

« Multipath Capabilities
v’ Stream Steering
v The application has full control in exchange of a bit of work
v"No head-of-line blocking

v Coupling streams for aggregated bandwidth
v TCPLS exposes the sender side TCPLS record scheduler to the application
v This enables the application to actively decide the TCP connection

v Securing Multipath TCP
v' Security concern on MPTCP: Token is exchanged inside SYN/SYN+ACK
v With TCPLS: Derive token from TLS secrets

14/ 26

TCPLS Prototype Implementation

* The prototype is a fork of the picotls TLS 1.3 implementation
« The authors added only 9k lines of C code to implement TCPLS

« eBPFY) Code Remote Attachment

v'eBPF can run sandboxed programs in an operating system kernel

v'Since Linux kernel version 5.6, an application can attach congestion control schemes
entirely implemented in eBPF

v TCPLS prototype enables the server to attach a new eBPF congestion controller to
the client over the TCPLS session

1) extended Berkeley Packet Filter 15/26

TCPLS Evaluation

» Performance Measurements Setup
* |Intel Xeon CPU E5-2630 2.40GHz, 16 GB RAM
» Debian with Linux 5.9 and 5.7 kernels
 Intel XL710 2x40 Gbps NIC (MTU: 9000 bytes, 1500 bytes)

| FEFFEE @
(70817 o
C R S

(C = Client. R = Router/Middlebox. S = Server.)

16/ 26

TCPLS Evaluation

 TCPLS offers better raw performance than several QUIC implementations

mvist pacing ou - | 94194 pps
5 { acing on - 128584 pps 1

:E:E; ﬁ:: ::;;,;z“::lp 5 - 132587 :]:].‘\' Why QUlC IS slower?
Msquic - 161518 pps 1) GSOY is often not

Ascinic mtu ¢ = 169048 pps
o — supported by the NIC
élli('{i&' gso on mtu 9000 - 261499 pps 2) UserSpace paCIng

uicly gso on - 366256 pps .
TLS/TCP | m— 3) Ack in userspace |
TLS/TCP mtu o000 - ATTI200pS 4) packets are smaller units

TCPLS 2-paths aggregation T
T'CPLS failover on T
TCPLS mtu 9000 failover on L
TCPLS T
TCPLS mtu 9000 T

Throughput (Gbps)
< Throughput comparison between TCPLS, TCP/TLS, and three QUIC implementations >

1) Generic Segmentation Offload 17126

TCPLS Evaluation

* The authors tested TCPLS against different opensource and commercial
stateful firewalls and proxy implementations (i.e., pfSense, IPFire, Cisco
ASAv, mitmproxy)

v They found no unexpected interference

* When faced with middleboxes that modify TLS 1.3, some TCPLS
messages can be impacted
v TCPLS Hello, TCPLS Join, SESSID, and COOKIE
v Then, the client can implicitly fall back to TLS and continue with the handshake

18/ 26

TCPLS Evaluation

* Mininet comparison of MPTCPY and TCPLS

25 Mbps
-’ e 50 Mbps L
N 25 Mbps —

1) MultiPath TCP 19/26

TCPLS Evaluation

« TCPLS offers a bandwidth aggregation service similar to the one offered
by state-of-the-art MPTCP

MPTCP 0.94.7

JM 1) for MPTCP, there is a delay before

It becomes fully utilized
" Linux Kernel requires the time to
configure the new network interface

Bandwidth (Mbpsz

ol » 2) TCPLS’s aggregated goodput
M i WWWW seems less stable than MPTCP
é\}r\ \ F | . Bigger payload size
A | APP degiion to use ey path o

i 2 i —_ 10 !

< Bandwidth aggregation comparison between MPTCP (top plot) and TCPLS (bottom plot) with a record payload size of 16,384 bytes >

20/ 26

TCPLS Evaluation

 Failover recovery speed analysis

« MPTCP has difficulties reacting to successive network outages during a 60MB file download
TCPLS reacts quickly to such outages and completes the file transfer faster

MPTCP 0.94.7

B e Why TCPLS faster?
? | e e 1) Exchange the TCP User Timeout
o M—} /\ s \ A A A ol option through TCPLS records
eod oA An

Time (s)

—— Throughput Path 1 Goodpnt

= Throughput Path 0 = Throughput Path L!

—— Throughput Path 2

| |

IIEIEINIRIE

3"‘1'! ’ {ﬁ | ’_l

Bandwidth (Mbps)

10 20 30 {0 50
Time (s)

21/26

TCPLS Evaluation

 Mininet

22126

TCPLS Evaluation

« Application-level Migration

v The application can trigger a connection
migration and sustain its bandwidth

during the process

v TCPLS temporarily aggregates
the two network paths
during such a migration

200 -

Bandwidth (Mbps)

50 =

= Goodput
- Throughput TCP Conn 0

== Throughput TCP Conn 1

= Throughput TCP Conn 2

Stream closed and Path 0 Closed

th

j

Neéw Stream on Path 1

/

00 25 50 75 100
Time (s)

1.

5 15.0

N o

23 /26

TCPLS Evaluation

« TCPLS hosts can exchange eBPF congestion controllers and enable them

during a TCPLS session

* The bandwidth distribution becomes fair after the server sends an eBPF bytecode

Implementing the CUBIC congestion controller
* Mininet network with a 100 Mbps link

100 -

80+

o
i

Goodput (Mbps)

20—

— CUBIC
Vegas then eBPF CUBIC

TV WO W

L s injection of eBPF CUBIC

50 100 150 200 250 300

Time (s)

24 [26

Conclusion

* There are benefits to a cross-layer approach for TLS/TCP
« For capabilities, performance, extensibility, and security & privacy

« TCPLS can be implemented simply with existing TLS libraries
» Without any kernel change in contrast to MPTCP

« TCPLS can be a powerful contender to QUIC for modern services

 Over TCP vs. UDP
 Bigger unit size

25/ 26

Critigue

* QUIC offers a quick first response

‘(:Hentl lServerl ‘(:Hentl ‘Server\
handshake

handshake

TLS i Data transfer \;
\)

handshake
Data transfer

TCP+TLS!.3 QUIC
WRTT IRTT

* QUIC is optimized for web content delivery

26 /26

