
1 / 26

TCPLS: Modern Transport Services 
with TCP and TLS

Published in: CoNEXT `21

Summarized by

Sangwon Lim (sangwonlim@snu.ac.kr)

2022-08-31

mailto:sangwonlim@snu.ac.kr


2 / 26

Contents

• Introduction

• Background

• TCPLS Design

• TCPLS Prototype Implementation

• TCPLS Evaluation

• Conclusion



3 / 26

Introduction 

• The Transmission Control Protocol (TCP) is one of the most critical 
protocols in today’s Internet
✓TCP provides connection abstraction, reliability, and congestion control

• During the late nineties, and early 2000s, transport protocol researchers 
explored alternatives to TCP
✓DCCP: provides a way to gain access to congestion-control mechanisms at the 

application layer 

✓SCTP: provides multihoming support where one or both endpoints of a connection 
can consist of more than one IP address



4 / 26

Introduction

• Extending TCP today is not feasible anymore as middleboxes severely 
interfere with changes to the TCP header and options

• To overcome this problem, Google started QUIC combining functions 
usually found in TCP, TLS, and HTTP/2
✓QUIC leverages encryption to prevent middlebox interference and

✓proposes to revisit the layered model of the Internet to improve the transport services

✓QUIC runs atop UDP, it can be implemented and deployed as a user-space library



5 / 26

Introduction

• Does the standardization of QUIC mark the end of the TCP era?

• TCP remains a fallback because of its greater support in networks, and 
TCP also still serves many applications

• The authors revisit how transport services can be provided with TCP and 
TLS today
✓ (1) How can TCP and TLS be combined 

to improve extensibility and middlebox resilience?

✓ (2) What are the new transport services 
that this combination can offer?



6 / 26

Background

• Middleboxes interfere with TCP or its extensions 
✓Firewalls can discard packets containing TCP Options that were not known when the 

firewall was designed

✓Firewalls can replace unknown TCP Options with the NOP TCP Option

< TCP Segment Format >



7 / 26

Background

• TCP extensions are hard to extend
✓The amount of bytes for extensions in the TCP header is limited to 40 bytes

✓TCP is often implemented as a part of the OS kernel, which leads to complexity to 
implement and deploy any modification

< TCP Segment Format >



8 / 26

Background

• Modern applications rarely use TCP alone and they often combine TCP 
with Transport Layer Security (TLS)
✓ TCPLS extends the encrypted TLS records to convey control and application data



9 / 26

TCPLS Design

• (1) How can TCP and TLS be combined to improve extensibility and 
middlebox resilience ?

• Reliable exchange of TCP extension

✓ Transport level control data in TLS records

✓ TCPLS can provide a large range of new transport services

• More options during the handshake 

✓ TCPLS can leverage TLS Encrypted Extensions to negotiate 
during the handshake some of the new transport services



10 / 26

TCPLS Design

• (2) What are the new transport services that this combination can offer?
• Quick Resumption

✓ TCP’s Fast Open + TLS’s 0’RTT

• Stream Multiplexing

✓ The AEAD1) Nonce of TCPLS Streams 
is derived from TLS 1.3

1) Authenticated Encryption with Associated Data



11 / 26

TCPLS Design

• (2) What are the new transport services that this combination can offer?
• Joining TCP connections



12 / 26

TCPLS Design

• (2) What are the new transport services that this combination can offer?
• Fail over

< Failover resynchronizes and retransmits lost TCPLS records from a failed TCP connection to another >



13 / 26

TCPLS Design

• (2) What are the new transport services that this combination can offer?
• Application-triggered Connection Migration

✓ e.g., Migration from LTE to Wi-Fi



14 / 26

TCPLS Design

• (2) What are the new transport services that this combination can offer?
• Multipath Capabilities 

✓ Stream Steering

✓ The application has full control in exchange of a bit of work

✓No head-of-line blocking

✓Coupling streams for aggregated bandwidth

✓ TCPLS exposes the sender side TCPLS record scheduler to the application

✓ This enables the application to actively decide the TCP connection 

✓Securing Multipath TCP

✓ Security concern on MPTCP: Token is exchanged inside SYN/SYN+ACK 

✓With TCPLS: Derive token from TLS secrets



15 / 26

TCPLS Prototype Implementation

• The prototype is a fork of the picotls TLS 1.3 implementation
• The authors added only 9k lines of C code to implement TCPLS

• eBPF1) Code Remote Attachment
✓eBPF can run sandboxed programs in an operating system kernel

✓Since Linux kernel version 5.6, an application can attach congestion control schemes 
entirely implemented in eBPF

✓TCPLS prototype enables the server to attach a new eBPF congestion controller to 
the client over the TCPLS session

1) extended Berkeley Packet Filter



16 / 26

TCPLS Evaluation

• Performance Measurements Setup 
• Intel Xeon CPU E5-2630 2.40GHz, 16 GB RAM

• Debian with Linux 5.9 and 5.7 kernels

• Intel XL710 2x40 Gbps NIC (MTU: 9000 bytes, 1500 bytes)

(C = Client. R = Router/Middlebox. S = Server.)



17 / 26

TCPLS Evaluation

• TCPLS offers better raw performance than several QUIC implementations

< Throughput comparison between TCPLS, TCP/TLS, and three QUIC implementations >

Why QUIC is slower?

1) GSO1) is often not 

supported by the NIC

2) Userspace pacing 

3) Ack in userspace

4) packets are smaller units

1) Generic Segmentation Offload



18 / 26

TCPLS Evaluation

• The authors tested TCPLS against different opensource and commercial 
stateful firewalls and proxy implementations (i.e., pfSense, IPFire, Cisco 
ASAv, mitmproxy)
✓They found no unexpected interference

• When faced with middleboxes that modify TLS 1.3, some TCPLS 
messages can be impacted
✓TCPLS Hello, TCPLS Join, SESSID, and COOKIE 

✓Then, the client can implicitly fall back to TLS and continue with the handshake



19 / 26

TCPLS Evaluation

• Mininet comparison of MPTCP1) and TCPLS

.

.

.

1) MultiPath TCP



20 / 26

TCPLS Evaluation

• TCPLS offers a bandwidth aggregation service similar to the one offered 
by state-of-the-art MPTCP

< Bandwidth aggregation comparison between MPTCP (top plot) and TCPLS (bottom plot) with a record payload size of 16,384 bytes >

1) for MPTCP, there is a delay before 

it becomes fully utilized

∵ Linux Kernel requires the time to 

configure the new network interface

2) TCPLS’s aggregated goodput 

seems less stable than MPTCP

∵ Bigger payload size



21 / 26

TCPLS Evaluation

• Failover recovery speed analysis
• MPTCP has difficulties reacting to successive network outages during a 60MB file download 

TCPLS reacts quickly to such outages and completes the file transfer faster

Why TCPLS faster?

1) Exchange the TCP User Timeout 

option through TCPLS records 



22 / 26

TCPLS Evaluation

• Mininet



23 / 26

TCPLS Evaluation

• Application-level Migration
✓The application can trigger a connection 

migration and sustain its bandwidth 
during the process

✓TCPLS temporarily aggregates 
the two network paths 
during such a migration



24 / 26

TCPLS Evaluation

• TCPLS hosts can exchange eBPF congestion controllers and enable them 
during a TCPLS session

• The bandwidth distribution becomes fair after the server sends an eBPF bytecode 
implementing the CUBIC congestion controller

• Mininet network with a 100 Mbps link



25 / 26

Conclusion

• There are benefits to a cross-layer approach for TLS/TCP
• For capabilities, performance, extensibility, and security & privacy

• TCPLS can be implemented simply with existing TLS libraries
• Without any kernel change in contrast to MPTCP

• TCPLS can be a powerful contender to QUIC for modern services
• Over TCP vs. UDP

• Bigger unit size



26 / 26

Critique

• QUIC offers a quick first response

• QUIC is optimized for web content delivery


