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Introduction

* The Transmission Control Protocol (TCP) is one of the most critical
protocols in today’s Internet
v TCP provides connection abstraction, reliability, and congestion control

 During the late nineties, and early 2000s, transport protocol researchers
explored alternatives to TCP

v'DCCP: provides a way to gain access to congestion-control mechanisms at the
application layer

v'SCTP: provides multihoming support where one or both endpoints of a connection
can consist of more than one IP address
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Introduction

« Extending TCP today is not feasible anymore as middleboxes severely
Interfere with changes to the TCP header and options

* To overcome this problem, Google started QUIC combining functions
usually found in TCP, TLS, and HTTP/2
v QUIC leverages encryption to prevent middlebox interference and
v’ proposes to revisit the layered model of the Internet to improve the transport services
v QUIC runs atop UDP, it can be implemented and deployed as a user-space library
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Introduction

* Does the standardization of QUIC mark the end of the TCP era?

 TCP remains a fallback because of its greater support in networks, and
TCP also still serves many applications

« The authors revisit how transport services can be prowded with TCP and
TLS today \ :

v (1) How can TCP and TLS be combined
to improve extensibility and middlebox resilience?

v’ (2) What are the new transport services
that this combination can offer?
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Background

 Middleboxes interfere with TCP or Its extensions

v Firewalls can discard packets containing TCP Options that were not known when the

firewall was designed

v’ Firewalls can replace unknown TCP Options with the NOP TCP Option
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Background

« TCP extensions are hard to extend
v' The amount of bytes for extensions in the TCP header is limited to 40 bytes

v' TCP is often implemented as a part of the OS kernel, which leads to complexity to
implement and deploy any modification
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Background

* Modern applications rarely use TCP alone and they often combine TCP

with Transport Layer Security (TLS)

v TCPLS extends the encrypted TLS records to convey control and application data g
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TCPLS Design

* (1) How can TCP and TLS be combined to improve extensibility and

middlebox reSiIience ? Always 23 App Data TL5'1-3
* Reliable exchange of TCP extension
v Transport level control data in TLS records T

authenticated

v TCPLS can provide a large range of new transport services

TrueType
i

Encrypted and thus invisible to middleboxes

 More options during the handshake Client Server
ClientHello I

v TCPLS can leverage TLS Encrypted Extensions to negotiate o N

during the handshake some of the new transport services Encryptedentensions
Cerctzzz::\l/teerify
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TCPLS Design

* (2) What are the new transport services that this combination can offer?

* Quick Resumption
v TCP’s Fast Open + TLS’s O'RTT

« Stream Multiplexing

v The AEADY Nonce of TCPLS Streams
Is derived from TLS 1.3

N N-32 64 0
TLS 1.3 AEAD Initial Vector
+ D
TCPLS Stream ID Stream record sequ.
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TCP

* (2) What are the new transport services that this combination can offer?

LS Design

« Joining TCP connections
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TCPLS Design

* (2) What are the new transport services that this combination can offer?

* Fail over

Failover

<l TCP connection A

2.

< TCP connection B

>

< Failover resynchronizes and retransmits lost TCPLS records from a failed TCP connection to another >
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TCPLS Design

* (2) What are the new transport services that this combination can offer?

« Application-triggered Connection Migration
v  e.g., Migration from LTE to Wi-Fi
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TCPLS Design

* (2) What are the new transport services that this combination can offer?

« Multipath Capabilities
v’ Stream Steering
v The application has full control in exchange of a bit of work
v"No head-of-line blocking

v Coupling streams for aggregated bandwidth
v TCPLS exposes the sender side TCPLS record scheduler to the application
v This enables the application to actively decide the TCP connection

v Securing Multipath TCP
v' Security concern on MPTCP: Token is exchanged inside SYN/SYN+ACK
v With TCPLS: Derive token from TLS secrets
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TCPLS Prototype Implementation

* The prototype is a fork of the picotls TLS 1.3 implementation
« The authors added only 9k lines of C code to implement TCPLS

« eBPFY) Code Remote Attachment

v'eBPF can run sandboxed programs in an operating system kernel

v'Since Linux kernel version 5.6, an application can attach congestion control schemes
entirely implemented in eBPF

v TCPLS prototype enables the server to attach a new eBPF congestion controller to
the client over the TCPLS session

1) extended Berkeley Packet Filter 15/26



TCPLS Evaluation

» Performance Measurements Setup
* |Intel Xeon CPU E5-2630 2.40GHz, 16 GB RAM
» Debian with Linux 5.9 and 5.7 kernels
 Intel XL710 2x40 Gbps NIC (MTU: 9000 bytes, 1500 bytes)

| FEFFEE @
(70817 o
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(C = Client. R = Router/Middlebox. S = Server.)
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TCPLS Evaluation

 TCPLS offers better raw performance than several QUIC implementations
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TCPLS Evaluation

* The authors tested TCPLS against different opensource and commercial
stateful firewalls and proxy implementations (i.e., pfSense, IPFire, Cisco
ASAv, mitmproxy)

v They found no unexpected interference

* When faced with middleboxes that modify TLS 1.3, some TCPLS
messages can be impacted
v TCPLS Hello, TCPLS Join, SESSID, and COOKIE
v Then, the client can implicitly fall back to TLS and continue with the handshake
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TCPLS Evaluation

* Mininet comparison of MPTCPY and TCPLS

25 Mbps
_-_’ e 50 Mbps L
N 25 Mbps —
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TCPLS Evaluation

« TCPLS offers a bandwidth aggregation service similar to the one offered
by state-of-the-art MPTCP

MPTCP 0.94.7

JM 1) for MPTCP, there is a delay before

It becomes fully utilized
" Linux Kernel requires the time to
configure the new network interface
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< Bandwidth aggregation comparison between MPTCP (top plot) and TCPLS (bottom plot) with a record payload size of 16,384 bytes >
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TCPLS Evaluation

 Failover recovery speed analysis

« MPTCP has difficulties reacting to successive network outages during a 60MB file download
TCPLS reacts quickly to such outages and completes the file transfer faster

MPTCP 0.94.7
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TCPLS Evaluation

 Mininet
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TCPLS Evaluation

« Application-level Migration

v The application can trigger a connection
migration and sustain its bandwidth

during the process

v TCPLS temporarily aggregates
the two network paths
during such a migration
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TCPLS Evaluation

« TCPLS hosts can exchange eBPF congestion controllers and enable them

during a TCPLS session

* The bandwidth distribution becomes fair after the server sends an eBPF bytecode

Implementing the CUBIC congestion controller
* Mininet network with a 100 Mbps link
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Conclusion

* There are benefits to a cross-layer approach for TLS/TCP
« For capabilities, performance, extensibility, and security & privacy

« TCPLS can be implemented simply with existing TLS libraries
» Without any kernel change in contrast to MPTCP

« TCPLS can be a powerful contender to QUIC for modern services

 Over TCP vs. UDP
 Bigger unit size
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Critigue

* QUIC offers a quick first response

‘(:Hentl lServerl ‘(:Hentl ‘Server\
handshake

handshake

TLS i Data transfer \;
\)

handshake
Data transfer

TCP+TLS!.3 QUIC
WRTT IRTT

* QUIC is optimized for web content delivery
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