
TCPLS: Modern Transport Services with TCP and TLS
Florentin Rochet

University of Edinburgh
Scotland

frochet@ed.ac.uk

Emery Assogba
UCLouvain
Belgium

emery.assogba@uclouvain.be

Maxime Piraux
UCLouvain
Belgium

maxime.piraux@uclouvain.be

Korian Edeline
Université de Liège

Belgium
korian.edeline@gmail.com

Benoit Donnet
Université de Liège

Belgium
benoit.donnet@uliege.be

Olivier Bonaventure
UCLouvain
Belgium

olivier.bonaventure@uclouvain.be

ABSTRACT
TCP and TLS are among the essential protocols in today’s Internet.
TCP ensures reliable data delivery while TLS secures the data trans-
fer. Although they are very often used together, they have been
designed independently following the Internet layered model. This
paper demonstrates the various benefits that a closer integration
between TCP and TLS would bring.

By leveraging the extensible TLS 1.3 records, we combine TCP
and TLS into TCPLS to build modern transport services such as mul-
tiplexing, connection migration, stream steering, and bandwidth
aggregation. These services do not modify the TCP wire format and
are resistant to middleboxes. TCPLS offers a powerful API enabling
applications to precisely express the required transport services,
ranging from a single-path single-stream connection to a multi-
stream connection over several network paths, enabling choices
between aggregated bandwidth and head-of-line blocking avoid-
ance.

Compared to MPTCP, our TCPLS prototype offers more control
to the application and can be easily deployed as an extension to
user-space TLS libraries, while being implemented at a low cost.
Measurements demonstrate that it offers higher performance than
existing QUIC libraries with a super set of transport services.

CCS CONCEPTS
•Networks→Transport protocols;Network protocol design.

KEYWORDS
Transport protocols, TCP, TLS, Multipath TCP
ACM Reference Format:
Florentin Rochet, Emery Assogba, Maxime Piraux, Korian Edeline, Benoit
Donnet, and Olivier Bonaventure. 2021. TCPLS: Modern Transport Ser-
vices with TCP and TLS. In The 17th International Conference on emerg-

ing Networking EXperiments and Technologies (CoNEXT ’21), December 7–

10, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3485983.3494865

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3494865

1 INTRODUCTION
The Transmission Control Protocol (TCP) [80] is one of the most crit-
ical protocols in today’s Internet. It has been designed following a
layer approach and now serves a wide range of applications. During
the last four decades, TCP evolved under the pressure of competing
protocols. In the 1980s, software-based TCP implementations were
considered too slow. Researchers proposed new transport protocols
such as XTP [90] which could be implemented in hardware. Mean-
while, TCP implementations got a considerable speed boost [19] and
XTP disappeared. The TCP speed boost and usage triggered the devel-
opment of various important TCP extensions, including timestamps
and large windows [14] or Selective Acknowledgments [65].

In the mid-nineties, the Secure Socket Layer (SSL) protocol
was proposed as an additional layer to TCP to secure emerging
e-commerce websites [42]. SSL evolved in different versions of the
Transport Layer Security (TLS) protocol, the most recent one be-
ing version 1.3 [84]. Nowadays, TLS is almost ubiquitous on web
servers [45] and many non-web applications use it [5].

During the late nineties, early 2000s, transport protocol researchers
explored alternatives to TCP. The IETF standardized two new trans-
port protocols: DCCP [55] and SCTP [95]. We rarely use DCCP today.
Despite SCTP benefits (support for multihoming, better design, and
extensibility), only niche applications use it. This limited deploy-
ment is mainly due to the various middleboxes (NAT, firewalls, etc.)
deployed on the Internet often blocking packets that do not carry
TCP or UDP [46]. SCTP initially supported multihoming by switching
from one path to another. It was later extended to use different paths
continuously [49]. Multipath TCP [28, 82] brought similar capabili-
ties to TCP, and included a coupled congestion control scheme [109],
later brought to SCTP as well. This particular succession of events
shows how different designs compete and advance each other.

Extending TCP today is not feasible anymore as middleboxes
severely interfere with changes to the TCP header and options [24,
46, 67]. To overcome this problem, Google started QUIC as an ex-
perimental protocol [56, 89] combining functions usually found
in TCP, TLS, and HTTP/2. During the last years, it evolved into
a complete transport protocol [50]. QUIC leverages encryption to
prevent middlebox interference and propose to revisit the layered
model of the Internet to improve the transport services. As QUIC
runs atop UDP, it can be implemented and deployed as a user-space
library.

Does the standardization of QUIC mark the end of the TCP era,
moving all applications and transport research to QUIC? We do not

45

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

think so. Today, QUIC is mainly used for HTTP/3 [101] and TCP re-
mains a fallback because of its greater support in networks. TCP also
still serves many applications [27, 103]. In the light of those recent
advances, we revisit how transport services can be provided with
TCP and TLS today. The QUIC design integrates services that were
found in the security and application layers, e.g., encryption and
multiplexing. TCP and TLS have been both designed in strict layers
separating the two. This paper revisits this separation through the
lens of the following research questions:
RQ1 - How can TCP and TLS be combined to improve extensibility

and middlebox resilience ?
RQ2 - What are the new transport services that this combination

can offer?
To answer these questions, we design and implement an ap-

proach that combines TCP and TLS 1.3 into a fast, flexible, and secure
transport protocol called TCPLS 1. At the heart of our approach, we
illustrate how TLS records (i.e., messages exchanged through TLS)
can be leveraged to build new transport services. When TLS is used
over TCP, TLS AppData records are solely used to securely convey
the TCP bytestream. In TCPLS, we extend their use to convey both
application and control data including encrypted TCP options.

We demonstrate that this combination allows secure extensibil-
ity that can also be used together with techniques such as TCP Fast
Open [18] to lower the handshake latency. We leverage this new
extensibility to implement modern transport services such as mul-
tiplexing, connection migration, and stream steering capabilities
without risking middlebox interference. Our TCPLS prototype is
implemented as a user-space library exposing a powerful API to
applications while leveraging the high-performance Linux kernel
TCP stack. Our lab measurements indicate that TCPLS can be imple-
mented at a low cost while providing higher bulk throughput and
features than the QUIC implementations we tested.

The rest of this paper is organized as follows: Sec. 2 provides the
required technical background; Sec. 3 discusses how we designed
TCPLS, while Sec. 4 focuses on how we implemented TCPLS. Sec. 5
evaluates the performance and behavior of TCPLS. Sec. 6 discusses
the related work. Finally, Sec. 7 concludes this paper by summariz-
ing its main achievements and discussing further directions.

2 BACKGROUND
TCP was designed as an end-to-end protocol that is only used on
end-hosts. TCP includes flow-control, supports various retransmis-
sion techniques to cope with packet losses, and congestion control
mechanisms. TCP stacks have evolved a lot during the last decades.
Most extensions to TCP leverage the TCP Options space, which is
limited to 40 bytes. Unfortunately, the TCP designers did not foresee
that many TCP extensions would be standardized. Today, the TCP
header size is a constraint. The IETF has discussed this problem for
several years, but the latest attempt to solve it [98] has not yet been
implemented by major TCP stacks.

Modern applications rarely use TCP alone. They often combine
TCPwith Transport Layer Security (TLS). TLS 1.3 [84] brings several
essential features compared to the previous versions. It includes a
secure handshake that allows negotiating the security parameters
and keys within one round-trip time. Thanks to TCP Fast Open [81],
1A preliminary version of this work has been presented in a workshop paper [87].

TCP MPTCP TLS/TCP QUIC TCPLS

Reliability & cong. control ✓ ✓ ✓ ✓ ✓
Message conf. and auth. ✗ ✗ ✓ ✓ ✓
Failover ✗ ✓ ✗ (✓) ✓
HoL blocking avoidance ✗ ✗ ✗ ✓ (✓)
Streams ✗ ✗ ✗ ✓ ✓
Connection migration ✗ (✓) ✗ (✓) ✓
Concurrent paths ✗ ✓ ✗ ✗ ✓

Table 1: Comparison of ✗ the services not offered, (✓) par-
tially available, and ✓ offered by protocols.

it is also possible to perform the secure handshake during the TCP
handshake. Furthermore, it is also possible to exchange application
data during the handshake. The TLS 1.3 record layer protects all
application data with encryption and authentication. This record
layer is extensible, and the TLS record types are also encrypted to
prevent ossification.

Despite the Internet layered architectural principle, network op-
erators have deployed a variety of middleboxes (e.g., firewalls, NATs,
transparent proxies) [94] that sometimes interfere with TCP or its
extensions [24, 46, 67]. Several types of middlebox interference have
been identified by researchers and network engineers. The most
relevant ones for TCP are: (i) Network Address Translators (NAT)
which change IP addresses, port numbers and also the TCP check-
sum [106], (ii) Application Level Gateways which modify the TCP
payload [43], (iii) firewalls that discard packets containing TCP
Options that were not known when the firewall was designed [25],
(iv) firewalls that replace unknown TCP Options with the NOP
TCP Option, (v) transparent proxies which terminate TCP connec-
tions [107], and (vi) high-speed network adapters that fragment
large TCP packets in a series of smaller packets and reassemble
them [46]. All these in-path network functions make assumptions
about the TCP packets content, invalidating the TCP end-to-end
paradigm. Moreover, they do not always strictly follow the TCP
specifications [41, 46], which may negatively affect TCP’s evolu-
tion and performance [25]. Furthermore, deployed middleboxes
remain inside the network for several years and sometimes up to a
decade. Many of the older middleboxes are not regularly updated.
These middleboxes severely limit the TCP extensibility. Multipath
TCP [29, 82] (MPTCP) managed to cope with the interferences listed
above, but at the price of increased complexity, most notably the
utilization of a second level of checksum to detect middlebox in-
terference [41, 82], and fallback mechanisms. Choosing another
transport is not a deployable approach as many middleboxes block
transport protocols other than TCP and UDP [8].

Google took a different approach at solving this problem by
developing an entirely new secure transport protocol, QUIC [56],
combining TCP, TLS, and HTTP features in a single protocol im-
plemented in a userspace library and running above UDP. QUIC
prevents middlebox interference by encrypting and authenticat-
ing the data, but also most of the control information such as the
acknowledgments except a very small header. QUIC leverages TLS
1.3 [84] to negotiate the security keys and authenticate the server.
This results in latency reduction, more security, and better extensi-
bility. QUIC has a flexible framing system and packets are encrypted
separately, similarly to TLS records. QUIC allows the application to

46

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Opaque Type
AppData

TLS Version
0x303

Length

Encrypted payload Record type
e.g. AppData

 TLS 1.3 Record

Opaque Type
AppData

TLS Version
0x303

Length

Encrypted control
or application data

Record type
TCPLS

 TCPLS Record

Figure 1: TCPLS extends the encrypted TLS records to convey
control and application data.

use different datastreams over a single connection such as SCTP [95]
or Structured Streams [30]. QUIC has been adopted by the industry
and standardized within the IETF [50]. There are more than a dozen
QUIC implementations [34, 63]. QUIC is already used in production
as shown by recent measurement studies [102].

Table 1 summarizes the main features of TCP, MPTCP, TLS over
TCP (TLS/TCP), and QUIC. All protocols include reliability and con-
gestion control. TLS and QUIC provide the same security features.
MPTCP efficiently supports failovers and QUIC includes a connection
migration capability. QUIC supports streams and prevents Head-
of-Line (HoL) blocking. MPTCP is the only standardized transport
protocol that is able to aggregate the bandwidth of several paths.
MPTCP implementations include several path management strate-
gies [39, 40] to control the different paths utilization. QUIC allows
the client to migrate its connection.

3 TCPLS DESIGN
The slow pace of innovation in TCP-based transport services can be
explained by several factors. First, the amount of bytes for exten-
sions in the TCP header is limited to 40 bytes. Second, TCP is often
implemented as a part of the OS kernel, which adds complexity to
implement and deploy any modification. Third, it is exchanged in
cleartext and is known to be heavily ossified due to middleboxes,
strongly restraining changes in the header semantics and to TCP
Options. Following the recent advances in the transport layer, we
go back to RQ1 and askHow can TCP and TLS be combined to improve

extensibility and middlebox resilience ?
We answer RQ1 by leveraging the flexible encrypted TLS records

to supplement the TLS-encrypted application data with transport-
level control data allowing TCPLS to provide a large range of new
transport services. In addition, existing TCP Options can be securely
conveyed in new TLS records. These records are indistinguishable
on the wire from TLS 1.3 AppData records, ensuring middlebox
compatibility.

In this section, we explain how we combine TCP and TLS into TC-
PLS. In particular, Sec. 3.1 first introduces the TCPLS records which
are the basic unit of communication in TCPLS. Sec. 3.2 explains how
a TCPLS session is managed. Sec. 3.3 then shows what are the new
transport services this combination can offer (RQ2) by showing how
TCPLS uses TCPLS records to provide modern transport services
such as multiplexing, connection migration, and a novel multipath
approach.

3.1 TLS Records and Extensions
Each protocol has a basic unit for exchanging application and con-
trol data. For instance, TCP segments are split in two with only the
header dedicated to control data. In QUIC, the basic unit is a QUIC
packet which can carry several and different types of QUIC frames.
TLS supports records of different types and lengths. As illustrated
in Fig. 1, TCPLS leverages the TLS encrypted records that hide their
true type and content frommiddleboxes in opaque AppData records.
In this way, TCPLS can extend the messages exchanged with TLS in
a secure and flexible manner.

We chose to design the TCPLS framing at the TLS record level
so that decryption operations can be performed with a zero-copy
codepath within a contiguous memory buffer, unlike QUIC. Indeed,
any TCPLS control information not relevant to the application is
located at the end of the record so that, by adjusting the offset
when decrypting the TCPLS records, the receiver can overwrite
them and achieve zero-copy within a contiguous allocated memory.
This specific protocol design choice allows TCPLS implementations
to easily offer zero-copy data delivery through a simple API. In
comparison, QUIC’s design forces developers to achieve zero-copy
by offering a more complex API delivering potentially fragmented
data.

TLS also offers a mean for requesting extended functionalities
in a TLS session through request/response messages called TLS En-
crypted Extensions. TCPLS leverages these messages to negotiate
during the handshake some of the new transport services it offers.

TCPLS uses these records and extensions to exchange TCP Op-
tions. They can be negotiated at the start of the connection using
TLS extensions or be exchanged later throughout the connection in
encrypted TCPLS records. Since TLS messages are conveyed in the
TCP payload, they are not space-constrained as existing TCP options.
They are also exchanged reliably, which is a requirement for sev-
eral TCP Options including TCP User Timeout option [33], MPTCP’s
ADD_ADDR and REMOVE_ADDR option and some experimental TCP op-
tions [97]. They also cannot be modified by middleboxes as they are
secured by TLS. However, TCP proxies could prevent an end-to-end
TCP connection and only exchanging the TCP bytestream, in which
case this mechanism should not be used. Detecting TCP proxies is
easy as one could echo a part of the TCP header in a TCPLS record
to detect them.

3.2 Starting a TCPLS Session
A TCPLS session starts with a TCP handshake followed by a TLS
handshake. This process can be safely accelerated through the use
of TCP Fast Open [18]. A TCPLS client indicates its willingness to
use TCPLS with the TCPLS Hello extension in its TLS ClientHello
message. Upon reception of this extension, the TCPLS server replies
with a TLS ServerHello message echoing the TCPLS Hello exten-
sion in TLS EncryptedExtensions. These are encrypted with the
handshake key which is not part of the context used to derive the
eventual application key. Once the TLS handshake has succeeded,
the endpoints can exchange TCPLS records.

Our design ensures that middleboxes cannot distinguish TCPLS
from TLS past the handshake. This eases the TCPLS deployment
and hardens censorship attempts. Whenever a middlebox blocks
the client TCPLS’s handshake extensions, the later could choose

47

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

N N-32 64 0

TLS 1.3 AEAD Initial Vector
+ ⊕

TCPLS Stream ID Stream record sequ.

Figure 2: The AEAD Nonce of TCPLS Streams is derived from
TLS 1.3.

to enable TCPLS after the handshake using TCPLS control records,
provided that the server announced TCPLS support. The censor
would not be able to distinguish this behaviour from regular TLS,
hardening potential attempts for censoring applications using TC-
PLS. The server handshake extensions are encrypted and part of
the TLS handshake transcript hash, and thus cannot be dropped by
the censor without breaking the TLS handshake for all TLS clients.

3.3 TCPLS Transport Services
By leveraging TCPLS records and extensions, we can design new
modern transport services atop the combination of TCP and TLS. In
this subsection, we answer our second research question (RQ2) by
presenting three transport services: stream multiplexing (Sec. 3.3.1),
connectionmigration (Sec. 3.3.2), and bandwidth aggregation (Sec. 3.3.3).
We leverage the TCPLS records to multiplex concurrent encrypted
bytestreams. By extending the TLS handshake, TCPLS allows join-
ing several TCP connections to a single TCPLS session to support
connection migration, stream steering and bandwidth aggregation.
These features are built atop the TCP bytestream, and as such they
avoid middleboxe interferences that modify the TCP header.

3.3.1 Stream Multiplexing. Stream Multiplexing is a transport ser-
vice that has been part of recent protocols such as SCTP [95], QUIC [50]
and HTTP/2.0 [9]. The latter also proposes multiplexing with an in-
dependent framing system atop the TLS-encrypted TCP bytestream.
In TCPLS, we choose to implement multiplexing with TCPLS records.
We dedicate a TCPLS record type to TCPLS stream data. Each stream
has a separate cryptographic context allowing concurrent encryp-
tion and decryption of data within the same session with per-stream
buffers. A TCPLS stream consists of a sequence of TCPLS stream
data records encrypted with their cryptographic contexts. Each
stream is attached to one TCP connection.

One simple way to provide separate cryptographic contexts is to
use multiple application-level keys. But this is known to degrade
the security properties proportionally to the number of additional
keys [17]. To overcome this, we propose an Initial Vector (IV) deriva-
tion technique that enables independent encryption/decryption for
each stream without this security degradation. We add two goals to
the design of this technique. First, the TLS 1.3 wire format must be
preserved to avoid possible middleboxes interference. Second, each
record of the TCPLS session must have a unique nonce in order to
maintain the security properties of AEAD.

Fig. 2 illustrates how the AEAD IV is computed for a given TCPLS
record of a TCPLS stream. First the left-most bits of the IV derived
from the TLS handshake are summed with the 32-bit TCPLS Stream
ID. Then the right-most bits are XORed with the 64-bit stream
record sequence number. Each TCPLS stream has a separate record
sequence number space. These two operations guarantee that every

Client Server
IPv4 IPv6IPv4 IPv6

ClientHello+TCPLS Hello

ServerHello+TCPLS Hello

+ADDR(v6)+SESSID(α)+COOKIE(β1, β2)

ClientHello+TCPLS Join
(SESSID(α),COOKIE(β1))

Figure 3: TCPLS supports joining additional TCP connections
to a TCPLS session. The SESSID and COOKIE in the Server-
Hello are encrypted with the handshake key.

record of every TCPLS stream has a unique nonce. The Stream ID
space is split between the client and the server. Stream ID 0 is
equivalent to the cryptographic context derived directly from the
handshake.

To avoid possible middleboxe interferences, in addition to the
record sequence number, the TCPLS Stream ID is kept implicit as
well. When an endpoint receives a TCPLS record, it leverages the
AEAD cipher to check the authentication tag repeatedly until the
correct TCPLS Stream ID is found. It does not involve a complete
decryption as all TLS 1.3 AEAD ciphers use an Encrypt-then-MAC
construct [36, 84], and the tag verification is computationally light,
especially on AES-GCM [66]. Reducing this cost could be achieved
by adding explicit signaling when another stream is scheduled over
the TCP connection2.

From a security standpoint, each failed decryption is considered
as a forgery attempt. However, the limits on confidentiality and
integrity of AEAD ciphers force the attacker to commit to an im-
portant number of attempts before a successful forgery may be
considered with a non-negligible probability [35, 62]. For instance,
in the case of ChaCha20 + Poly1305, an adversary has to perform
260 forgery attempts before succeeding with probability 2−33. Also,
note that in case the adversary succeeds in decrypting the packet,
it will very likely lead to a plain payload non-conforming to the
TCPLS protocol.

3.3.2 Connection Migration. TCPLS allows joining several TCP con-
nections to an existing TCPLS session. We leverage this mechanism
to implement new transport services such as connection migration.
Compared to the subflow joining mechanism of MPTCP [39, 40, 82],
our design is more secure. Indeed, MPTCP supports additional sub-
flows by initially exchanging short keys inside cleartext TCP Op-
tions during the TCP handshake [28, 29]. These keys are then used
to authenticate the association of subflows. An attacker having
observed the key exchange during the TCP handshake can associate
subflows to an existing MPTCP connection [6].

Joining TCP connections. TCPLS leverages TLS extensions to
solve this problem in amore secure manner. Fig. 3 illustrates the TLS
and TCPLS messages exchanged when a client connects to a server
over IPv4 and later joins another connection over IPv6. First, the

2The worst case is when the sender schedules records of N streams over a TCP con-
nection. Then, TCPLS may announce within the last record of the current stream the
Stream ID of the following record.

48

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

TCP connection A

DATA DATA
ID

:0
Seq

:1

ID
:0

Seq
:0

TCP connection B

ACK
ID:1 Seq:0

ACK
ID:0 Seq:0

DATA
ID

:0
Seq

:1
A Fail

SYNC ID:0 Seq:1

DATA
ID

:1
Seq

:0

Failover

1.

2.

Figure 4: Failover resynchronizes and retransmits lost TCPLS
records from a failed TCP connection to another.

client sends a ClientHello containing a TCPLS Hello. The server
replies with a ServerHello containing three encrypted extensions.
First, the server announces its IPv6 address (ADDR(v6)). Second, it
associates one identifier α to the TCPLS session (SESSID(α)). Third,
the server provides a list of TCPLS session cookies β1, β2 in the
COOKIE extension. Each of these session cookies enables the client
to join one additional TCP connection to the TCPLS session. Thus,
by sending n cookies over a session, the server restricts the client
to join up to n TCP connections. This prevents resource exhaustion
attacks that are difficult to counter with MPTCP. The server can later
send additional cookies and update its list of addresses.

To join a new TCP connection to the TCPLS session, for instance
over IPv6, the client sends a ClientHello message containing
the session identifier (SESSID(α) in Fig. 3) and one of the cookies
provided by the server (COOKIE(β1) in Fig. 3). The server uses
the session identifier α to find the corresponding TCPLS session
and checks the validity of the cookie. If the TCPLS session and this
cookie are valid, the TCP connection is joined to the TCPLS session.
The session identifier plays the same role as the MPTCP token, but
is sent encrypted. The cookie provides stronger protection than
MPTCP’s HMAC with security keys exchanged in cleartext. The
TCPLS cookies are sent encrypted by the server and can only be
used once by the client.

Failover. When a TCP connection fails, e.g., due to middleboxes
or network outages, TCPLS leverages its joining mechanism to re-
cover the session over another TCP connection. This is particularly
useful on multihomed devices that often move out of reach of a
given access network, for instance a smartphone moving away from
a Wi-Fi access point, but it also helps devices that suffer from mid-
dleboxes disrupting TCP connections, for instance a firewall intro-
ducing TCP RST on idle TCP connections. Fig. 4 illustrates how TCPLS
reacts to such events during a transfer with two TCPLS streams. To
achieve such a break-before-make, TCPLS sends acknowledgments
for the received records of each stream, allowing the sender to
remove them from its sending buffer. Looking at 1. in Fig. 4, we can
observe that three records were sent but only the first two were
received and acknowledged due to a failure. Then, looking at 2.,
the sender notices that the TCP connection has failed and switches
to the other one. It explicitly notifies the failure to the receiver and
synchronizes the transmission sequence using a dedicated TCPLS

record type (i.e., SYNC in Fig. 4). Then it retransmits the unacknowl-
edged stream data records (i.e. the second record of stream 0 in
Fig. 4). Explicit synchronization prevents a lost acknowledgment
from desynchronizing the endpoints. Notifying the failure to the
peer shortens its reaction time. Thanks to the per-stream crypto-
graphic context, the ciphertext of lost stream data records can be
retransmitted as is.

We present in Section 5.1 measurements quantifying the perfor-
mance impact of adding TCPLS record-level acknowledgments. We
also present in Section 5.3 an analysis of recovery speeds during
different type of outages.

Application-triggeredConnectionMigration. TCPLS also en-
ables the application to trigger a connection migration, e.g., based
on application-level metrics qualifying its experience over the cur-
rent path. For instance, a video streaming application could choose
to move its connection to another access network whenever the
obtained bandwidth does not satisfy the video bitrate requirements.
TCPLS enables the exchange of meta-information to help this deci-
sion. For instance, an interactive application running on a smart-
phone could migrate from LTE to Wi-Fi when it senses an increase
in delays due to bufferbloat for a given period of time, or when a
mobile client detects its home Wi-Fi and the user’s preference is
to move its traffic to the Wi-Fi if detected. To achieve it, the client
moves all its TCPLS streams to another TCP connection. First, it cre-
ates a new TCP connection and joins it to the TCPLS session. Then,
it attaches new streams to the new connection and removes the old
ones from the underperforming connection, effectively moving the
application traffic to the new connection.

This second type of migration does not require application-level
acknowledgments, but it cannot survive from one of the underlying
connections’ failure. During such a migration, data may be sent
over two connections, which brings us to explain how multipath is
designed.

3.3.3 Multipath Capabilities. Like MPTCP, TCPLS allows an applica-
tion to control different TCP connections that are used to exchange
data. MPTCP was designed to be a drop-in replacement for TCP. A
regular application that uses the socket API can use MPTCP with-
out any modification. MPTCP uses a path manager to control the
underlying TCP connections. Several path managers were proposed
in the Linux kernel implementation [12, 39, 40]. However, few ad-
vanced applications have taken advantage of these advanced path
managers. Apple’s MPTCP stack was tuned for specific applications.
For example, the Siri voice recognition application can use both
cellular and Wi-Fi to optimize performance. Apple Music mainly
uses MPTCP to perform seamless handovers. As applications have
very different requirements, TCPLS exposes the underlying TCP con-
nections to the application through its API. The applications use
this API to implement their own policy to manage the underlying
TCP connections.

Stream Steering. TCPLS enables the application to combine
multiplexing with the ability to join several TCP connections to a
TCPLS session. This allows the application to steer TCPLS streams
over the different TCP connections. While Failover moves TCPLS
streams from one connection to another when a TCP connection
fails, stream steering allows the application to distribute at any time
the streams over the different TCP connections of a TCPLS session.

49

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

We already discussed a very simple use of stream steering when
performing Application Connection Migration to move application
data to a new connection.

Applications assign TCPLS streams to TCP connections through
the TCPLS API. An interactive game could use different streams for
chat messages and player’s commands. Also, an HTTP server could
choose the TCP connection for the stream of each response based
on the content type of the response. Latency-critical objects could
be sent over low-latency connections. By sending each application-
level object in a separate stream, the application can benefit from
multiple network paths while maintaining the ability to process
each stream in a zero-copy manner, and with no head-of-line block-
ing. TCPLS enables the application to attach streams to separate
TCP connections to avoid head-of-line blocking.

Coupling streams for aggregated bandwidth. Applications
that benefit from the aggregated bandwidth of several network
paths when transmitting a single application object can use TCPLS
coupled streams. Coupled streams send data alongside a sequence
number located at the end of the record. The sender can sched-
ule TCPLS records of an application object over these streams and
benefit from their aggregated bandwidth by sending data over the
two streams using a strategy that fits the application usage. The
receiving application reads the application object in order, as TCPLS
handles the reordering of coupled streams decrypted records.

Dozens of packet schedulers were proposed for MPTCP. The de-
fault one is the RTT-based scheduler that favors the subflow with
the lowest RTT [75]. Other schedulers include the redundant sched-
uler that sends data over both subflows [31], schedulers that help
to minimize reordering on the receiver side [48, 59], schedulers
specialized for mobile applications [22], . . .The most flexible ap-
proach remains the application-defined MPTCP scheduler [32], but
this solution has never been integrated in MPTCP implementations.

TCPLS takes a different viewpoint. It exposes the underlying TCP
connections and the sender side TCPLS record scheduler to the ap-
plication. This enables the application to actively decide the TCP
connection that it will use to send each record. A remote terminal
application running over TCPLS could send the screen updates over
a high bandwidth but high latency connection and the keyboard
input over the lower latency one. Using socket options such as
tcp_info, an application can retrieve useful statistics about the
performance of the underlying TCP connections (e.g. RTT, conges-
tion window, . . .). A more advanced application could also define
TCPLS records to actively probe a connection, e.g. with an echo/re-
quest record to actively measure delays, or retrieve information
from the remote host, e.g. by retrieving the remote host’s tcp_info
structure.

Coupled streams can also be used when performing Application
Connection Migration to smoothly transition from one network
path to another without impacting the application goodput.

3.4 Security and Information Leakage
Compared to MPTCP, the join mechanism of TCPLS allows crypto-
graphically authenticated endpoints to add new TCP connections
to an existing TCPLS session. It contrasts to MPTCP for which any
observer of the initial handshake owns the required information
to join the MPTCP connection. The multipath capabilities of TCPLS

may also require stronger situational attacker models. One exam-
ple would be preventing different IP networks from colluding and
linking TCP connections belonging to a TCPLS session. The TCPLS
handshake and the join mechanism can be enhanced to support
this goal by leveraging encrypted tokens. One could then use a
token for each connection join, effectively acting as both a session
identifier and a cookie. Additional tokens could be generated and
shared upon successful joins.

4 TCPLS PROTOTYPE
In this section, we describe our TCPLS implementation which pro-
vides the following benefits. (i , Sec. 4.1) Applications can use parallel
streams with different cryptographic contexts and multiplex them
over a TCP connection. (ii) TCP options can be sent through the
secure TCPLS records, improving the extensibility of TCP (see [87]).
(iii , Sec. 4.2) Applications can trigger Connection Migration and
enable Failover. (iv , Sec. 4.3) Applications can leverage multipath
capabilities such as stream steering and bandwidth aggregation. (v ,
Sec. 4.4) The server can securely send eBPF bytecode to the client
to upgrade its TCP congestion control scheme or tune other TCP
mechanisms [15, 99]. Through these examples, we demonstrate
that our design enables modern transport services.

Our prototype is a fork of the picotls TLS 1.3 implementa-
tion [26] to which we added 9k lines of C code to implement TCPLS.

4.1 Multiplexing
We leverage the TCPLS records and the TCPLS stream cryptographic
contexts to build our prototypewith a zero-copy receive path.When
a record is received, TCPLS first finds the corresponding crypto-
graphic context, i.e., the corresponding TCPLS stream for which
the derived IV leads to a successful authentication of the tag. This
search is limited to the streams attached to the TCP connection of
the received record. Our prototype tries first the last successful
TCPLS stream. The receiver only has to find the right cryptographic
context occasionally depending on the application, i.e., when the
sender schedules another stream over the TCP connection.

At this stage, prior to full decryption, the TCPLS stream of the
record is known. Our prototype can then locate the corresponding
buffer to perform full decryption at the expected offset without any
extra copy. Applications can benefit from large contiguous buffers
to perform reads instead of receiving stream data on a per-packet
basis, as often found in QUIC implementations.

4.2 Failover
We leverage the TCPLS records to securely exchange the TCP User
Timeout option. This option enables endpoints to detect blackholed
and failed TCP connections after a given time threshold. We use
this as one trigger of the Failover. The sender configures this time
threshold at the receiver side by sending this TCP option in a TCPLS
record. The receiver can then notice when it stops receiving data
and trigger the Failover. Receiving a TCP RST or FIN over a TCP
connection for which TCPLS streams are attached does also trigger
the Failover.

The stream-level acknowledgments required for the Failover to
detect the lost TCPLS records can be enabled at the start of a TCPLS
session. The default policy is to acknowledge every 16 received

50

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

records, or when a stream has processed a given amount of bytes
since the last acknowledgment.

Our prototype handles failover over IPv4 and IPv6 TCP con-
nections, and by default, chooses different source and destination
addresses than the failed TCP connection if possible.

Application running on more constrained devices can choose
to disable Failover to gain in performance. They can also enable
Failover during a TCPLS session by sending a message on the secure
channel. We evaluate the performance impact of Failover in Sec. 5.3

4.3 Multipath
Stream steering. TCPLS exposes the TCP connections it manages to
the application. This allows the application to directly distribute the
TCPLS streams over the TCP connections at any point of the TCPLS
session. A simple distribution is to move all TCPLS streams from one
connection to another, as performed during Application-triggered
Connection Migration. Our prototype enables these operations in
a few API calls. More complex stream attachment policies can be
implemented by the application to meet its requirements.

Bandwidth Aggregation. The application can create and join
several TCP connections to the same TCPLS session. When coupled
streams are attached to different TCP connections, TCPLS adds a
sequence number encrypted in the TLS record payload. It is used to
reorder the received records after decryption. Our prototype only
supports coupling all streams together. The sending application im-
plements the scheduling coupled streams over the different TCPLS
connections. We expect to support other schedulers in the future
and allow the application to select its preferred scheduler through
the API, or even send it as eBPF bytecode over the session. The
more TCPLS receives records in order, the more it can deliver them
in a zero-copy fashion to the application. When a record is received
out-of-sequence, its content is pushed on an efficient reordering
heap. The performance of our multipath bandwidth aggregation is
evaluated in Sec. 5.5.

4.4 eBPF Code Remote Attachment
Recent work on restructuring congestion control has proposed a
generic architecture for congestion controllers [69]. Linux kernel
developers have relied on eBPF to make the Linux TCP/IP stack
easier to extend [15, 100]. Since Linux kernel version 5.6, an appli-
cation can attach congestion control schemes entirely implemented
in eBPF. A broader approach was proposed for QUIC in Pluginizing
QUIC [23].

Our TCPLS prototype enables the server to attach a new eBPF
congestion controller to the client over the TCPLS session. The
type of eBPF code that can be attached could be easily extended to
other points of the TCP execution path. The eBPF code is conveyed
securely in a dedicated TCPLS record. When the code is larger than
a single TLS record, it can be chunked in several records and sent
using a TCPLS stream cryptographic context. This service illustrates
how the flexibility of TCPLS record and streams can be leveraged
to implement novel transport mechanisms.

4.5 TCPLS Session Establishment
Our prototype is fully compatible with TLS 1.3 0-RTT session re-
sumption and TCP Fast Open option (TFO) [81]. By combining them,

the TCPLS handshake can be sent together with the TCP SYN starting
the three-way handshake. This provides a low-latency and secure
connection establishment. It is not enabled by default in TCPLS, as
TFO trades off some privacy [96]. More advanced techniques such
as TCP Fast Open Privacy [96] could be integrated into TCPLS to
solve this issue.

4.6 TCPLS API
The API used by applications to interact with a protocol plays an
important role in leveraging all the protocol features. The most
popular API to interact with the transport layer is the BSD socket
API. Researchers and the IETF have explored other ways to expose
a transport API [47, 77, 93, 104].

The TCPLS API builds upon good practices proposed by the out-
lined works. In this spirit, application-level developers are only re-
quired to configure a TCPLS context and register function callbacks.
We design the TCPLS API such that it facilitates application devel-
opment by offering a session-level interface based on asynchronous
network events. The TCPLS API offers to application developers the
opportunity to tune the transport protocol. They can then make
the best choices for their applications.

As an example illustrating the flexibility of the TCPLS API, we
consider a simple use case inspired by Happy Eyeballs [92]. This
technique is used by web browsers when interacting with dual-
stack servers. They start parallel TCP connections using IPv4 and
IPv6 and then choose the one that offers the lowest latency. This
avoids problems when one type of address is not supported on
a network path but not the other, or when one results in lower
latency [7].

Fig. 5 shows an example of our current API workflow. The API
can handle explicit multipath techniques such as Happy Eyeball by
chaining an optional call to tcpls_connect(), here with a time-
out of 50ms, as shown in the Figure. TCPLS lets the application
explicitly choose the addresses between which a TCP connection
should be established by calling several times tcpls_connect(src,
dest, timeout) in a TCPLS session. The application may config-
ure callbacks to connection events occurring within TCPLS, such
as connection establishments, stream attachments, multipath joins
and the receipt of a TCP option to tune TCP.

4.7 TCPLS Fairness
Fairness is an important property of transport protocols guarantee-
ing an equal share of resources between users of the Internet. Our
TCPLS prototype does not alter the congestion control algorithm
of TCP. As such, a single connection of a TCPLS session is fair to a
single TCP connection. However there are two situations in which
this can be improved in future works.

First, when two or more TCP connections are used in a TCPLS
session over network paths that share a common bottleneck, TCPLS
can be unfair proportionally to the extent of this bottleneck. This
problem is well known and solutions proposed for MPTCP such as
coupled congestion control schemes [53, 78, 109] could be applied
to TCPLS using eBPF.

51

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

Sender Receiver

tcpls_new() listen()

tcpls_add_v4(addr, primary)
*tcpls_add_v6(addr6)

[if (tcpls_connect(addr, NULL)<0)*
tcpls_connect(addr6, timeout)*]

TCP Handshake

Callback event

accept()

tcpls_new()
tcpls_accept()

tcpls_handshake() tcpls_handshake()

TCPLS Handshake

Callback event Callback event

[tcpls_handshake(addr6)*
tcpls_send()*
tcpls_stream_new()*
tcpls_streams_attach()*
tcpls_send_tcpoption()*]

{TCPLS Data} {AP-
PDATA}

tcpls_receive()

Figure 5: API Workflow example. * means optional call, []
means optional call flow, and { } means encrypted.

Second, when an application using TCPLS multiplexes several
streams over a single connection, it has to compete with applica-
tions not using TCPLS that spread these streams over several con-
nections, such as HTTP/1.1. This problem is also well known [68].
Recently, it led Google adapting mulTCP [20] when implementing
gQUIC [56]. A similar approach could also be integrated in TCPLS
with eBPF.

5 TCPLS EVALUATION
In this section, we evaluate TCPLS with several experiments. First,
we evaluate the raw performance of our TCPLS prototype (Sec. 5.1).
Then, we report how TCPLS interacts with middleboxes in a con-
trolled environment in Sec. 5.2.We then emulate, usingMininet [38],
more complex scenarios involving Failover (Sec. 5.3), Application
ConnectionMigration (Sec. 5.4) and BandwidthAggregation (Sec. 5.5).

For the two first experiments of our TCPLS prototype (Sec. 5.1
and 5.2), we use the testbed depicted in Fig. 6. It consists of three
servers equipped with Intel Xeon CPU E5-2630 2.40GHz, 16 GB
RAM, running Debian with Linux 5.9 and 5.7 kernels. Two of these
machines are used as, respectively, Client and Server, while the
third one is used as a router or a middlebox, depending on the
scenario. Each machine is equipped with an Intel XL710 2x40 Gbps

Figure 6: Performance Measurements Setup. C = Client. S =
Server. R = Router/Middlebox.

NIC. For all measurements, with all implementations, we use a
single thread on each machine to run the client and server.

In the emulated experiments of Sec. 5.3, 5.4 and 5.5, we use
a Mininet network [38] composed of a client and a server, both
dual-stacks. The IPv4 and IPv6 paths are completely disjoint in this
emulated network, each offering 25 Mbps and 10 ms latency if not
stated otherwise.

5.1 Raw Performance
In our first experiment, we demonstrate that TCPLS can be imple-
mented at a low cost compared to TCP and TLSwhile offering better
raw performance than several QUIC implementations. To this end,
we use the physical testbed presented in Fig. 6 and run throughput
measurements for large transfers with TCP/TLS, TCPLS and three
QUIC implementations. The results are reported in Fig. 7 with the
bandwidth in gigabits per second and packets per second obtained
for each test. Each bar corresponds to the medianmeasurement over
10 seconds of stable throughput. A preliminary test in our testbed
shows that a single TCP connection can saturate the 40 Gbps link
when setting theMTU to 9000 bytes.With a 1500-byteMTU, a single
TCP connection reaches 22 Gbps. We also benchmarked the AES128-
GCM-SHA256 cipher with in-memory 16,384-byte TLS records and
observed that decryption in our client reaches 24.59 Gbps while
encryption on our server reaches 13.62 Gbps.

TCP/TLS. To get a fair reference point, we first evaluate TLS over
TCP using picotls with the AES128-GCM-SHA256 cipher at the
commit starting our fork. We also manually configured the receiv-
ing and sending buffer size to match the ones we use internally
in TCPLS. This modification fixes fragmentation and unnecessary
copies of received TLS records that could occur and improves by
≈ 40% the throughput of picotls’s measurement client. Our TCPLS
prototype avoids these mistakes by design by offering to the ap-
plication developers a transport API preventing them. Indeed, for
example in TCPLS the question of how much the caller wants to
read does not map to how much TCPLS should read from TCP due
to the requirement of having a complete record to decrypt it. In
this case, one may want to read more from TCP to prevent record
fragmentation. So with this modification in picotls, we can ob-
serve that TCP/TLS reaches 10.3 Gbps with a 1500-byte MTU and
12.6 Gbps with a 9000-byte MTU. Both leverage TCP Segmentation
Offload (TSO), which is a feature commonly enabled on high-speed
NICs.

TCPLS. To benchmark TCPLS, we use a simple application per-
forming large memory-to-memory transfers over a TCPLS session
using a single stream, also configured to use the AES128-GCM-
SHA256 cipher. We first compare TCPLS without the transport ser-
vices presented in Sec. 3.3. We can observe that TCPLS reaches
similar throughput than TLS/TCP over both MTU sizes. The small
advantage of TCPLS at an MTU of 1500 bytes may be attributed by

52

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Figure 7: Throughput comparison between TCPLS, TCP/TLS,
and three QUIC implementations. The TCPLS prototype is
faster than several major QUIC implementations while offer-
ing a superset of transport services and similar flexibility.

implementation differences in the two benchmarks tools. TCPLS
has thus a similar throughput than TCP/TLS when using the base
protocol.

We then evaluate the cost of enabling Failover, which adds
TCPLS-record-level acknowledgments. Our measurements show
that Failover has a small impact on raw throughput as TCPLS reaches
9.66 Gbps with a 1500 bytes MTU. This is due to an increase in
control records that are exchanged during the file transfer and
additional buffer management within TCPLS. This impact could
be reduced by lowering the number of record acknowledgments,
which could further improve the throughput with an MTU of 9000
bytes. We leave finding the optimal acknowledgment frequency as
future work.

Finally, we evaluate the cost of using coupled streams over sev-
eral TCP connections. We configured TCPLS to use IPv4 and IPv6 as
separate network paths and start a TCP connection on each path.
The TCPLS server sends the records over the two TCP connections in
a round-robin manner. The TCPLS client receives and reorders the
records using an efficient heap. Our measurements show that cou-
pling when two streams in our testbed, TCPLS reaches a throughput
of 8.8 Gbps, i.e. less than 10% below Failover.

QUIC. We evaluate three representative QUIC implementations
in our testbed: Facebook’s mvfst [2, 52], Microsoft’s msquic [1],
and Fastly’s quicly [4]. They are intended for production use and
include throughput measurement applications. Furthermore, mvfst
and quicly support Generic Segmentation Offload (GSO), which
offloads UDP segmentation and checksum computation to the kernel
and NICs. We configured the QUIC implementations to the most
comparable setting as TLS/TCP and TCPLS. That is, we changed the
cipher and set the CUBIC congestion controller when available.

The results obtained show that TCPLS compares favorably with
the tested QUIC implementations. The fastest QUIC implementation
is quicly, with GSO and a 1500-byte MTU, it reaches 4.4 Gbps.
TCPLS with TSO is twice faster with the same CPU usage and
similar receiving buffer sizes. Surprisingly, quicly’s performance
decreases with jumbo frames but is still faster than without GSO.
msquic reaches 1.96 Gbps while mvfst was slower despite GSO.

The lower performance of QUIC implementations can be explained
by several factors originating from the Linux UDP interface and
QUIC design. (i) Early QUIC implementations use sendmsg/recvmsg,
exchanging one packet at a time with the kernel. (ii) GSO is often
not supported by the NIC and implemented in the kernel, unlike
TSO. (iii) Pacing is implemented in userspace. (iv) Acknowledg-
ments are handled in userspace, increasing further the number
of context switches. (v) QUIC packets are smaller units than TLS
records for encryption and decryption. While there are ongoing
works to improve i , ii , and iii [3], it is likely that performance par-
ity will require more offload capabilities, which could lessen the
flexibility of QUIC. From a security standpoint, assuming NICs are
opaque components of the network and not part of the user stack,
it would be less compliant to the end users threat model.

Further works should also evaluate multiple TCPLS and QUIC
sessions at the same time. In addition, the effect of multiple par-
allel streams for both protocol stacks would also be interesting to
compare in a fairness evaluation over realistic Internet-like experi-
mental conditions.

5.2 Middlebox Interference
We have tested TCPLS against different opensource and commercial
stateful firewalls and proxy implementations (i.e., pfSense, IPFire,
Cisco ASAv, mitmproxy) and found no unexpected interference.
Stateful filtering and stateful packet inspection policies did not im-
pact the TCPLS handshake and transparent TLS proxy successfully
triggered TCPLS fallback to TLS/TCP. Still, the security appliances
that block TLS 1.3 or some of its features [13, 57, 83] would also
block TCPLS.

When faced with middleboxes that modify TLS 1.3 [13, 83], only
one type of TCPLS messages can be impacted. The client TLS ex-
tensions, that are integrity-protected but not confidential, can be
modified by these middleboxes. They contain messages such as
TCPLSHello, TCPLS Join, SESSID, andCOOKIE presented in Sec. 3.3.
Other messages conveyed in encrypted TLS records cannot be dis-
tinguished or tampered with. When a client opens a TCPLS session
through a TLS terminating proxy not supporting TCPLS, it replies
with a ServerHello message omitting the TCPLS Hello extension.
Then, the client can implicitly fall back to TLS and continue with
the handshake.

Some legacy TLS server implementations do not implement the
TLS specification properly and might abort connections when re-
ceiving unknown TLS extensions. Similar behavior has been ob-
served in overly restrictive stateful firewalls. To ensure connectivity
in the presence of such policies, TCPLS implements an explicit fall-
back mechanism. If a client receives a TCP RST in response to the
TCPLS ClientHello or no response, it tries negotiating a regular
TLS connection after a timeout. In the same manner, a TCPLS Join
extension might be blocked on a path when joining connections. In
this case, the subflow attachment is canceled, and the application
is notified to react appropriately, e.g., to cancel the migration.

A more complete evaluation of middlebox interference would
require measurements in various operational networks that include
such devices [46, 72, 83]. This is outside the scope of this paper and
left for further work.

53

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

Figure 8: Recovery delays of TCPLS compared to MPTCP during
a single outage.

5.3 Failover
Failover is designed to provide resilience to TCPLS connection fail-
ures. Network outages may happen for several reasons, e.g., middle-
box interference or mobile clients losing one access network (LTE
or Wi-Fi). We first discuss and compare the recovery time for dif-
ferent types of outages during a file transfer for TCPLS and MPTCP3.
We configure the client and the server with two interfaces, with
one set to the backup mode in the case of MPTCP, i.e., no subflows
are opened on the backup interface unless an issue is detected on
the first interface. We consider two types of outages: a middlebox
blackholing all the traffic and the reception of a spurious RST. Fig. 8
compares the goodput achieved by MPTCP and TCPLS over time
when encountering these events.

We can observe that upon reception of a TCP RST, both TCPLS and
MPTCP react fast. This is an explicit signal they both act on quickly
and resume the transfer. However, a network outage is more difficult
to detect. Both stacks rely on timers to decide to switch paths. In the
case of TCPLS, we configure a timer using the TCP User Timeout
option, which is set to 250ms in our experiment. This value can
also be chosen by the application according to specific use cases.
When the timer expires, the client creates a connection over the
other path and joins it to the session. The server then replays the
unacknowledged records. Once these steps have succeeded, the
transfer can continue. We can observe that this process takes ≈ 1
second to recover from this single outage in our experiment.

We now extend our first experiment by adding periodic outages
during the transfer in a 4-path network topology. MPTCP is a more
mature multipath transport implementation that is maintained and
used in production. Fig. 9 compares how MPTCP and TCPLS recover
when three paths out of four are blackholed every five seconds.

3ExistingMPQUIC implementations [21, 23] are not evaluated as detecting and reacting
to network failures were not part of their prototypes.

Figure 9: MPTCP has difficulties to react to successive network
outages during a 60MB file download. TCPLS reacts quickly
to such outages and completes the file transfer faster.

We rotate the working path so that each implementation has first
to find it before recovering the transfer. We observe that MPTCP’s
default path manager performs well on the first failure. For the
next ones, it requires several seconds to recover the right path. We
also tried injecting TCP RST instead of blackholing paths and MPTCP
indefinitely stalled after the second RST. However, TCPLS finds the
right path quicker and recovers the session in a short time similarly
to the drop and RST outage studied in Fig. 8. Moreover, since those
connections are fresh, they can quickly use the available bandwidth.

5.4 Application-Level Connection Migration
When there are multiple network paths, connection migration can
be used by applications to adapt to the changing network conditions
based on application metrics.

Applications can migrate their traffic from one network path to
another using a few TCPLS API calls. Fig. 10 shows the goodput
obtained when performing such a migration during a file transfer
with TCPLS. We do not compare TCPLS to MPTCP and QUIC as none of
their implementations offer this feature directly to applications. In
this experiment, we reuse the Mininet topology and set a bandwidth
of 30 Mbps on each path, a 40 ms round-trip-time for the IPv4 link,
and 80 ms for the IPv6 link. Our test application downloads a 60MiB
file and migrates once from the IPv4 to the IPv6 path and once again
back to the IPv4 path.

Fig. 10 reports the goodput obtained during the experiment. We
can observe peaks during the migration windows marked with
vertical black bars. During this window, the client uses coupled
streams to transition smoothly from one TCP connection to the
other, i.e., the first TCP connection finishes transmitting the queued
TCPLS record while the second transmits the following records.
TCPLS reorders the records and delivers the data to the client. The
goodput increase corresponds to the additional bandwidth of the
TCP connection over the new path during the migration time win-
dow. The application can thus trigger a connection migration and
sustain its bandwidth during the process.

54

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Figure 10: Application-level connection migration during a
60 MiB file download. TCPLS temporarily aggregates the two
network paths during such a migration.

5.5 Bandwidth Aggregation
We compare the TCPLS bandwidth aggregation capability to the
state-of-the-art MPTCP. Our experiment consists of transferring a
60 MiB file over a single path and enabling the second one after 5
seconds. MPTCP automatically detects the new path once we enable
the Client’s second network interface. For TCPLS, managing paths is
different: the application can use the API to add local or peer-related
addresses at any point of the session. In this experiment, we send
this information after 5 seconds, create a new TCP connection to the
peer, and attach a new stream to it. The two streams are coupled
together. Our results appear in Fig. 11. Both protocols aggregate
the two paths and reach a goodput of ≈ 50 Mbps.

We identify two differences. First, for MPTCP, there is a delay be-
fore it becomes fully utilized. This delay is the time required by the
Linux kernel to configure the new network interface IP address, add
the required routes, and finally inform MPTCP [74]. Second, TCPLS’s
aggregated goodput seems less stable than MPTCP. We explain this
discrepancy by the difference of chunk size manipulated by the
reordering algorithms in our experiment: MPTCP reorders packets
with a payload of 1,460 bytes, while TCPLS reorders records with
the maximum payload size of 16,384 bytes. As concurrent network
paths introduce reordering, which is reordered back by both MPTCP
and TCPLS, a larger chunk size leads to larger goodput irregularities.

Running the experiment with a record size of 1,500 bytes smooths
out the irregularity at a slightly higher CPU cost since encryption
and decryption are performed more often. Appendix A shows the
results of the same experiment but using a TLS record size of 1,500
bytes instead. With these differences explained, we can conclude
that TCPLS offers a bandwidth aggregation service similar to the
one offered by state-of-the-art MPTCP.

5.6 Dynamically Extending TCPLS
To illustrate how TCPLS can be dynamically extended, we show
how a server can send an eBPF congestion controller to its client

Figure 11: Bandwidth aggregation comparison between
MPTCP (top plot) and TCPLS (bottom plot) with a record pay-
load size of 16,384 bytes.

Figure 12: TCPLS hosts can exchange eBPF congestion con-
trollers and enable them during a TCPLS session.

that attaches it in the middle of a TCPLS session. Fig. 12 reports
the goodput obtained by two TCPLS sessions during a file upload
on a Mininet network with a 100 Mbps and 60 ms RTT link. The
orange curve is the first TCPLS session that starts with the Vegas
congestion controller [16]. It rapidly reaches the full capacity of
the link. Then, a second TCPLS session, depicted in blue, starts with
the CUBIC congestion controller [85]. This quickly results in an
unfair distribution of the bandwidth. The server then sends an eBPF
bytecode implementing the CUBIC congestion controller to the first
TCPLS session which attaches it for the current connection only.
The bandwidth distribution becomes fair. We performed the same
experiment using different delays, varying from 10 ms to 100 ms
and obtained similar results.

6 RELATEDWORK
By combining TCP and TLS, TCPLS builds upon two of the most
important Internet protocols. Given their importance within the
research community and the IETF, we restrict our discussion to close

55

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

related works. Readers may refer to survey papers for additional
context information [58, 76, 79].

Regarding its transport features, TCPLS’ stream abstraction has
similarities to the Structured Streams Abstraction [30], in which
each stream does not need 3-way handshaking, is independent if
attached to a different TCP connection and can proceed in paral-
lel without head-of-line blocking if the streams are not coupled.
However, TCPLS pushes further the abstraction, involving benefits
leveraged from multiple connections.

TCPLS uses TLS records to encode data and control informa-
tion. Researchers have also explored the idea of encoding control
information in the TCP bytestream in different protocols. During
the initial discussions for Multipath TCP, Multi-Connection TCP
(MCTCP) [91] was proposed as an alternative that encodes control
information in the bytestream. The MPTCP Working Group did not
adopt this solution because it notably feared of possible problems
with middleboxes. Multipath TCP [29, 82] uses TCP Options to en-
code control information and use different paths. TCPLS uses TLS
records for this purpose and prevents middlebox tampering. Since
TLS records are encrypted, their integrity is protected and content
is obfuscated, so middleboxes cannot interfere with the control
information that TCPLS exchanges. In contrast, with MPTCP, a mid-
dlebox that modifies the payload, such as a transparent TCP proxy
or an application level gateway running on a NAT [44], can disrupt
the protocol. Minion [71] also encodes control information in the
TCP payload but to support unreliable data.

Given its security features, TCPLS must be compared with tcp-
crypt [10, 11] which predates TLS 1.3. It uses TCP options to support
opportunistic encryption but is not secure against an active network
attacker. TCPLS extends TLS while retaining its security properties,
and supporting new features. It is also compatible with middleboxes,
as it leaves the TCP wire format untouched.

MPTCP [28, 82] supports several coupled congestion control schemes
[53, 78, 109] that preserve fairness when different paths share the
same bottleneck. A similar solution could be applied to TCPLS by
leveraging eBPF to access and modify the congestion controller
state. We leave this engineering effort as future work. The ini-
tial idea of coupling MPTCP and TLS was proposed in an Internet
draft [73] that was not adopted by the IETF. MPTCPSec [51] adds
security capabilities to MPTCP but comes with a large performance
penalty.

Another important related work is QUIC. QUIC version 1 [50]
also supports connection migration, but to our knowledge current
implementations do not allow applications to trigger it. Multipath
extensions [21, 60, 61, 105] to QUIC have been discussed but not yet
adopted within the IETF. Finally, PQUIC [23] proposed to convey
eBPF code over QUIC connections to deploy new protocol features.
The same benefits are also being considered for other distributed
systems, such as BGP [108] and anonymous overlay networks [88].
This goes beyond the exchange of a congestion controller in TCPLS.

Finally, several solutions have been proposed to provide mul-
tipath capabilities in the application layer. Examples include MP-
H2 [70] that extends HTTP/2, MP-DASH [37] for video streaming
or mHTTP [54] that extends HTTP.

TCPLS also share similarities with TLS FOP [96], which solves
the privacy issue with TFO by using TLS. However, TCPLS is more

generic, and its extensibility enables more advanced concerns and
transport services.

7 CONCLUSION
TCP and TLS were designed as independent protocols, but they are
very often used together. In this paper, we have shown that this is
possible to design and implement the TCPLS protocol that is fast,
flexible, and secure by closely coupling TCP and TLS.

TCPLS inherits the security features of TLS 1.3 and all the relia-
bility and congestion control techniques that have been added to
TCP during the last decades. More specifically, TCPLS extends the
TLS 1.3 handshake and the record layer to create a secure control
channel between the two communicating hosts. The messages ex-
changed over this channel are placed inside TLS records that are
encrypted and authenticated and also hidden from middleboxes.
TCPLS leverages these control messages to support fast failovers,
smooth migration of the TCPLS session from one path to another
and to provide bandwidth aggregation under full control of the
application through an API. TCPLS can also use the secure channel
to extend TCP with new options and even use the TCPLS session to
exchange a different congestion control scheme that is then used
for this session.

Thanks to TCPLS’s design, our TCPLS implementation provides a
flexible API that allows the applications to perform zero-copy data
transfers, and easily manipulate the different features presented
in this research work. The performance evaluation shows that
our prototype is more than twice as fast as currently available
QUIC implementations while supporting additional features such
as bandwidth aggregation and stream steering.

TCPLS is both simple and powerful. Simple because it can be im-
plemented inside existing TLS libraries without any kernel change
in contrast to MPTCP. TCPLS is wire-compatible with the existing
TCP middleboxes and can thus be used in all environments where
TLS 1.3 is used over TCP. Given the performance benefits of TCPLS,
the flexibility it offers and the features that it already provides, we
believe that it can be a powerful contender to QUIC for modern
services, including HTTP.

SOFTWARE ARTEFACTS
Our TCPLS prototype [86] is a fork of the picotls TLS 1.3 implemen-
tation. It contains about 9k additional lines of C code and supports
the features described in the paper. In addition, it also includes
support for QLOG/QVIS [64] similarly to several QUIC implemen-
tations. Instructions to reproduce our results are available 4.

ACKNOWLEDGMENTS
We thanks the anonymous reviewers for their helpful feedback.
We thank Mathieu Jadin for his helpful guidance with IPMininet,
Quentin De Coninck for his neat and available open-source tools,
and Gaëtan Cassiers for helpful discussions. This research is sup-
ported by theWalloon Region through the “Programme de recherche
d’intérêt généralWALINNOV -MQUIC project (convention number
1810018)” and European Union through the NGI Pointer programme
for the TCPLS project (Horizon 2020 Framework Programme, Grant
agreement number 871528).
4https://github.com/frochet/tcpls_conext21

56

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES
[1] [n. d.]. Msquic implementation. https://github.com/microsoft/msquic. ([n. d.]).

Accessed: Jan 2021.
[2] [n. d.]. mvfast implementation. https://github.com/facebookincubator/mvfst.

([n. d.]). Accessed: Jan 2021.
[3] [n. d.]. [PATCH RFC net-next 0/6] multi release pacing for UDP

GSO. https://lwn.net/ml/netdev/20200609140934.110785-1-willemdebruijn.
kernel@gmail.com/. ([n. d.]).

[4] [n. d.]. Quicly implementation. https://github.com/h2o/quicly. ([n. d.]). Ac-
cessed: Jan 2021.

[5] B. Anderson and D. McGrew. 2019. TLS Beyond the Browser: Combining End
Host and Network Data to Understand Application Behavior. In Proc. ACM

Internet Measurement Conference (IMC).
[6] M. Bagnulo. 2011. Threat Analysis for TCP Extensions for Multipath Operation

with Multiple Addresses. RFC 6181. Internet Engineering Task Force.
[7] V. Bajpai and J. Schönwälder. 2019. A longitudinal view of dual-stacked

websites—failures, latency and happy eyeballs. IEEE/ACM Transactions on Net-

working 27, 2 (April 2019), 577–590.
[8] R. Barik, M. Welzl, G. Fairhurst, A. Elmokashfi, T. Dreibholz, and S. Gjessing.

2020. On the usability of transport protocols other than TCP: A home gateway
and internet path traversal study. Computer Networks (COMNET) 173 (May
2020), 107211.

[9] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version
2 (HTTP/2). RFC 7540. Internet Engineering Task Force.

[10] A. Bittau, D. Giffin, M. Handley, D. Mazieres, Q. Slack, and E. Smith. 2018. Cryp-
tographic Protection of TCP Streams (tcpcrypt). RFC 8548. Internet Engineering
Task Force.

[11] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh. 2010. The
case for ubiquitous transport-level encryption. In Proc. USENIX conference on

Security.
[12] L. Boccassi, M. M. Fayed, and M. K. Marina. 2013. Binder: A System to Aggregate

Multiple Internet Gateways in Community Networks. In Proc. ACM MobiCom

Workshop on Lowest Cost Denominator Networking for Universal Access (LCDNet).
[13] K. Bock, iyouport, Anonymous, L.-M. Merino, D. Fifield, A. Houmansadr, and D.

Levin. 2020. Exposing and Circumventing China’s Censorship of ESNI. (August
2020). https://gfw.report/blog/gfw_esni_blocking/en/.

[14] D. Borman, R. Braden, and V. Jacobson. 1992. TCP Extensions for High Perfor-

mance. RFC 1323. Internet Engineering Task Force.
[15] L. Brakmo. 2017. TCP-BPF: Programmatically tuning TCP behavior through

BPF. In Proc. Technical Conference on Linux Networking (Netdev 2.2).
[16] L. Brakmo, S. O’Malley, and L. Peterson. 1994. TCP Vegas: New Techniques for

Congestion Detection and Avoidance. ACM SIGCOMM Computer Communica-

tion Review 24, 4 (October 1994), 24–35.
[17] S. Chatterjee, A. Menezes, and P. Sarkar. 2011. Another look at tightness. In

Proc. International Workshop on Selected Areas in Cryptography (SAC).
[18] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. 2014. TCP Fast Open. RFC 7413.

Internet Engineering Task Force.
[19] D. Clark, V. Jacobson, J. Romkey, and H. Salwen. 1989. An analysis of TCP

processing overhead. IEEE Communications Magazine 27, 6 (June 1989), 23–29.
[20] Jon Crowcroft and Philippe Oechslin. 1998. Differentiated end-to-end Internet

services using a weighted proportional fair sharing TCP. ACM SIGCOMM

Computer Communication Review 28, 3 (1998), 53–69.
[21] Q. De Coninck and O. Bonaventure. 2017. Multipath QUIC: Design and evalua-

tion. In Proc. ACM CoNEXT.
[22] Q. De Coninck and O. Bonaventure. 2018. Tuning multipath TCP for interactive

applications on smartphones. In Proc. IFIP Networking Conference.
[23] Q. De Coninck, F. Michel, M. Piraux, F. Rochet, T. Given-Wilson, A. Legay, O.

Pereira, and O. Bonaventure. 2019. Pluginizing QUIC. In Proc. ACM SIGCOMM.
[24] K. Edeline and B. Donnet. 2019. A Bottom-Up Investigation of the Transport-

Layer Ossification. In Proc. IFIP Network Traffic Measurement and Analysis Con-

ference (TMA).
[25] K. Edeline and B. Donnet. 2020. Evaluating the Impact of Path Brokenness

on TCP Options. In Proc. ACM/IRTF Applied Networking Research Workshop

(ANRW).
[26] Kazuho Oku et al. 2021. picotls – TLS 1.3 implementation in C. (2021).

https://github.com/h2o/picotls
[27] A. Feldmann, O. Gasser, F. Lichtblau, E. Pujol, I. Poese, C. Dietzel, D. Wagner, M.

Wichtlhuber, J. Tapiador, N. Vallina-Rodriguez, O. Hohfeld, and G. Smaragdakis.
2020. The Lockdown Effect: Implications of the COVID-19 Pandemic on Internet
Traffic. In Proc. ACM Internet Measurement Conference (IMC).

[28] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. 2013. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824. Internet Engineering
Task Force.

[29] A. Ford, C. Raiciu, M. Handley, O. Bonaventure, and C. Paasch. 2020. TCP

Extensions for Multipath Operation with Multiple Addresses. RFC 8684. Internet
Engineering Task Force.

[30] B. Ford. 2007. Structured streams: a new transport abstraction. In Proc. ACM

SIGCOMM.

[31] A. Frommgen, T. Erbshäußer, A. Buchmann, T. Zimmermann, and K. Wehrle.
2016. ReMP TCP: Low latency multipath TCP. In Proc. IEEE International Con-

ference on Communications (ICC).
[32] A. Frömmgen, A. Rizk, T. Erbshäußer, M. Weller, B. Koldehofe, A. Buchmann,

and R. Steinmetz. 2017. A programming model for application-defined multipath
TCP scheduling. In Proc. ACM/IFIP/USENIXMiddleware Conference (Middleware).

[33] F. Gont and L. Eggert. 2009. TCP User Timeout Option. RFC 5482. Internet
Engineering Task Force.

[34] QUIC Working Group. 2021. Available QUIC Implementations. (January 2021).
https://github.com/quicwg/base-drafts/wiki/Implementations.

[35] F Günther, M. Thomson, and C.A. Wood. 2020. Usage Limits on AEAD Algo-

rithms. Internet Draft (Work in Progress) draft-irtf-cfrg-aead-limits-00. Internet
Engineering Task Force.

[36] P. Gutmann. 2014. Encrypt-then-MAC for Transport Layer Security (TLS) and

Datagram Transport Layer Security (DTLS). RFC 7366. Internet Engineering Task
Force.

[37] B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. 2016. MP-DASH: Adaptive video
streaming over preference-aware multipath. In Proc. ACM CoNEXT.

[38] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. 2012. Repro-
ducible network experiments using container-based emulation. In Proc. ACM

CoNEXT.
[39] B. Hesmans and O. Bonaventure. 2016. An enhanced socket API for Multipath

TCP. In Proc. ACM Applied Networking Research Network (ANRW).
[40] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and O. Bonaventure. 2015. SMAPP:

Towards smart Multipath TCP-enabled applications. In Proc. ACM CoNEXT.
[41] B. Hesmans, F. Duchene, C. Paasch, G. Detal, and O. Bonaventure. 2013. Are TCP

Extensions Middlebox-Proof?. In Proc. Workshop on Hot Topics in Middleboxes

and Network Function Virtualization (HotMiddlebox).
[42] K. Hickman. 1995. The SSL Protocol. Internet Draft (Work in Progress) draft-

hickman-netscape-ssl-00. Internet Engineering Task Force.
[43] Paul Hoffman. 2002. SMTP Service Extension for Secure SMTP over Transport

Layer Security. (2002).
[44] M. Holdrege and P. Srisuresh. 2001. Protocol Complications with the IP Network

Address Translator. RFC 3027. Internet Engineering Task Force.
[45] R. Holz, J. Amann, A. Razaghpanah, and N. Vallina-Rodriguez. 2019. The Era of

TLS 1.3: Measuring Deployment and Use with Active and Passive Methods. cs.CR
1907.12762. arXiv.

[46] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda.
2011. Is It Still Possible to Extend TCP?. In Proc. ACM Internet Measurement

Conference (IMC).
[47] T. Hruby, T. Crivat, H. Bos, and A. Tanenbaum. 2014. On Sockets and Sys-

tem Calls: Minimizing Context Switches for the Socket API. In Proc. USENIX

Conference on Timely Results in Operating Systems (TRIOS).
[48] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, O. Alay, and N. Kuhn. 2019.

Low-latency scheduling in MPTCP. IEEE/ACM Transactions on Networking 27, 1
(February 2019), 302–315.

[49] J. Iyengar, P. Amer, and R. Stewart. 2006. Concurrent multipath transfer using
SCTPmultihoming over independent end-to-end paths. ‘IEEE/ACM’ Transactions

on networking 14, 5 (October 2006), 951–964.
[50] J. Iyengar and M. Thomson. 2021. QUIC: A UDP-Based Multiplexed and Secure

Transport. RFC 9000. Internet Engineering Task Force.
[51] M. Jadin, G. Tihon, O. Pereira, and O. Bonaventure. 2017. Securing Multipath

TCP: Design & implementation. In Proc. IEEE INFOCOM.
[52] M. Joras and Y. Chi. 2020. How Facebook is bringing QUIC to billions. (Oc-

tober 2020). https://engineering.fb.com/2020/10/21/networking-traffic/how-
facebook-is-bringing-quic-to-billions/.

[53] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec. 2013. MPTCP is not Pareto-
optimal: Performance issues and a possible solution. IEEE/ACM Transactions

On Networking 21, 5 (October 2013), 1651–1665.
[54] J. Kim, Y.-C. Chen, R. Khalili, D. Towsley, and A. Feldmann. 2014. Multi-source

multipath HTTP (mHTTP) a proposal. In Proc. ACM SIGMETRICS.
[55] E. Kohler, M. Handley, and S. Floyd. 2006. Designing DCCP: Congestion control

without reliability. ACM SIGCOMM Computer Communication Review 36, 4
(August 2006), 27–38.

[56] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F.
Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Kulik, P. Westin,
R. Tenneti, R. Shade, R. Hamilton, V. Vasiliev, W. Chang, and Z. Shi. 2017. The
QUIC transport protocol: Design and Internet-scale deployment. In Proc. ACM

SIGCOMM.
[57] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T. Chung, and T. Kwon. 2019. maTLS:

How to Make TLS middlebox-aware?. In Proc. Network and Distributed Systems

Security (NDSS).
[58] M. Li, A. Lukyanenko, Z. Ou, A. Ylä-Jääski, S. Tarkoma, M. Coudron, and S. Secci.

2016. Multipath transmission for the Internet: A survey. IEEE Communications

Surveys & Tutorials 18, 4 (2016), 2887–2925.
[59] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. 2017. ECF: An MPTCP

path scheduler to manage heterogeneous paths. In Proc. ACM CoNEXT.

57

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany F. Rochet et al.

[60] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Christian
Huitema, and Mirja Kuehlewind. 2021. Multipath Extension for QUIC. Internet-
Draft draft-lmbdhk-quic-multipath-00. IETF Secretariat. https://www.ietf.org/
archive/id/draft-lmbdhk-quic-multipath-00.txt https://www.ietf.org/archive/
id/draft-lmbdhk-quic-multipath-00.txt.

[61] Y. Liu, Y. Ma, C. Huitema, Q. An, and Z. Li. 2020. Multipath Extension for

QUIC. Internet Draft (Work in Progress) draft-liu-multipath-quic-02. Internet
Engineering Task Force.

[62] A. Luykx and K. Paterson. 2017. Limits on authenticated encryption use in TLS.
(August 2017). https://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf.

[63] R. Marx, J. Herbots, W. Lamotte, and P. Quax. 2020. Same Standards, Different
Decisions: A Study of QUIC andHTTP/3 Implementation Diversity. In Proc. ACM
Workshop on the Evolution, Performance, and Interoperability of QUIC (EPIQ).

[64] R. Marx, M. Piraux, P. Quax, and W. Lamotte. 2020. Debugging QUIC and
HTTP/3 with qlog and qvis. In Proc. ACMApplied Networking ResearchWorkshop

(ANRW).
[65] M. Mathis, J. NB Mahdavi, S. Floyd, and A. Romanow. 1996. TCP Selective

Acknowledgment Options. RFC 2018. Internet Engineering Task Force.
[66] D. McGrew and J. Viega. 2004. The Galois/counter mode of operation (GCM).

submission to NIST Modes of Operation Process 20 (2004), 0278–0070.
[67] A. Medina, M. Allman, and S. Floyd. 2004. Measuring Interactions Between

Transport Protocols and Middleboxes. In Proc. ACM Internet Measurement Con-

ference (IMC).
[68] Jiwon Min and Youngseok Lee. 2019. An Experimental View on Fairness be-

tween HTTP/1.1 and HTTP/2. In 2019 International Conference on Information

Networking (ICOIN). IEEE, 399–401.
[69] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana, R. Mittal, M.

Alizadeh, and H. Balakrishnan. 2018. Restructuring endpoint congestion control.
In Proc. ACM SIGCOMM.

[70] A. Nikravesh, Y. Guo, X. Zhu, F. Qian, and Z. Mao. 2019. MP-H2: a Client-only
Multipath Solution for HTTP/2. In Proc. ACM Conference on Mobile Computing

and Networking (MobiCom).
[71] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford. 2012. Fitting

Square Pegs Through Round Pipes: Unordered Delivery Wire-Compatible with
TCP and TLS. In Proc. USENIX Symposium on Networked Systems Design and

Implementation (NSDI).
[72] M. O’Neill, S. Ruoti, K. Seamons, and D. Zappala. 2016. TLS proxies: Friend or

foe?. In Proc. ACM Internet Measurement Conference (IMC).
[73] C. Paasch and O. Bonaventure. 2012. Securing the MultiPath TCP handshake

with external keys. Internet Draft (Work in Progress) draft-paasch-mptcp-ssl-00.
Internet Engineering Task Force.

[74] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. 2012. Exploring
mobile/WiFi handover with multipath TCP. In Proc. ACM SIGCOMM Workshop

on Cellular Networks: Operations, Challenges, and Future Design (CellNet).
[75] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. 2014. Experimental Evaluation

of Multipath TCP Schedulers. In Proc. ACM SIGCOMMWorkshop on Capacity

Sharing Workshop (CSWS).
[76] G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo, P. Hurtig,

N. Khademi, M. Tüxen, M. Welzl, D. Damjanovic, and S. Mangiante. 2016. De-
ossifying the Internet transport layer: A survey and future perspectives. IEEE
Communications Surveys & Tutorials 19, 1 (2016), 619–639.

[77] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst, C. Perkins, P. Tiesel, and
C. Wood. 2020. An Architecture for Transport Services. Internet Draft (Work in
Progress) draft-ietf-taps-arch-07. Internet Engineering Task Force.

[78] Q. Peng, A. Walid, J. Hwang, and S. Low. 2016. Multipath TCP: Analysis, design,
and implementation. IEEE/ACM Transactions on Networking 24, 1 (February
2016), 596–609.

[79] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi. 2019. A
survey on recent advances in transport layer protocols. IEEE Communications

Surveys & Tutorials 21, 4 (2019), 3584–3608.
[80] J. Postel. 1981. Transmission Control Protocol. RFC 793. Internet Engineering

Task Force.
[81] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. 2011. TCP Fast

Open. In Proc. ACM CoNEXT.
[82] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure,

and M. Handley. 2012. How Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP. In Proc. USENIX Symposium on Networked Systems

Design and Implementation (NSDI).

[83] R. Raman, A. Stoll, J. Dalek, A. Sarabi, R. Ramesh, W. Scott, and R. Ensafi. 2020.
Measuring the deployment of network censorship filters at global scale. In Proc.

Network and Distributed Systems Security (NDSS).
[84] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC

8446. Internet Engineering Task Force.
[85] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffenegger. 2018.

CUBIC for Fast Long-Distance Networks. RFC 8312. Internet Engineering Task
Force.

[86] Florentin Rochet. 2021. picotcpls, a first TCPLS implementation. https://github.
com/pluginized-protocols/picotcpls. (2021).

[87] F. Rochet, E. K. Assogba, and O. Bonaventure. 2020. TCPLS: Closely Integrating
TCP and TLS. In Proc. ACM Workshop on Hot Topics in Networks (HotNets).

[88] F. Rochet, O. Bonaventure, and O. Pereira. 2019. Flexible Anonymous Network.
In Proc. Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETS).
https://arxiv.org/abs/1906.11520.

[89] J. Roskind. 2013. QUIC, Quick UDP Internet Connections. https:
//docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-
ev2jRFUoVD34/preview. (2013).

[90] R. Sanders and A. Weaver. 1990. The Xpress transfer protocol (XTP) – a tutorial.
ACM SIGCOMM Computer Communication Review 20, 5 (October 1990), 67–80.

[91] M. Scharf. 2010. Multi-Connection TCP (MCTCP) Transport. Internet Draft (Work
in Progress) draft-scharf-mptcp-mctcp-01. Internet Engineering Task Force.

[92] D. Schinazi and T. Pauly. 2017. Happy Eyeballs Version 2: Better Connectivity

Using Concurrency. RFC 8305. Internet Engineering Task Force.
[93] P. Schmidt, T. Enghardt, R. Khalili, and A. Feldmann. 2013. Socket intents:

Leveraging application awareness for multi-access connectivity. In Proc. ACM

CoNEXT.
[94] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. 2012.

Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service. In Proc. ACM SIGCOMM.

[95] R. Stewart. 2007. Stream Control Transmission Protocol. RFC 4960. Internet
Engineering Task Force.

[96] E. Sy, T. Mueller, C. Burkert, H. Federrath, and M. Fischer. 2020. Enhanced
performance and privacy for TLS over TCP fast open. Proc. Privacy Enhancing

Technologies (April 2020).
[97] J. Touch. 2013. Shared Use of Experimental TCP Options. RFC 6994. Internet

Engineering Task Force.
[98] J. Touch and W. Eddy. 2018. TCP Extended Data Offset Option. Internet Draft

(Work in Progress) draft-ietf-tcpm-tcp-edo-10. Internet Engineering Task Force.
[99] V.-H. Tran and O. Bonaventure. 2019. Beyond socket options: making the Linux

TCP stack truly extensible. In Proc. IFIP Networking Conference.
[100] V.-H. Tran and O. Bonaventure. 2020. Beyond socket options: Towards fully

extensible Linux transport stacks. Computer Communications (COMCOM) 162
(October 2020), 118–138.

[101] M. Trevisan, D. Giordano, I. Drago, and A. S. Khatouni. 2021. Measuring HTTP/3:

Adoption and Performance. cs.NI 2102.12358. arXiv.
[102] M. Trevisan, D. Giordano, I. Drago, M. Munafò, and M. Mellia. 2020. Five years

at the edge: Watching Internet from the ISP network. IEEE/ACM Transactions

on Networking 28, 2 (April 2020), 561–574.
[103] M. Trevisan, D. Giordano, I. Drago, M.M.Munafo, andM.Mellia. 2020. Five Years

at the Edge: Watching Internet from the ISP Networks. IEEE/ACM Transactions

on Networking 28, 2 (April 2020), 561–574.
[104] M. Tüxen, V. Yasevich, P. Lei, R. Stewart, and K. Poon. 2011. Sockets API Exten-

sions for the Stream Control Transmission Protocol (SCTP). RFC 6458. Internet
Engineering Task Force.

[105] T. Viernickel, A. Froemmgen, A. Rizk, B. Koldehofe, and R. Steinmetz. 2018.
Multipath QUIC: A deployable multipath transport protocol. In Proc. IEEE Inter-

national Conference on Communications (ICC).
[106] Zhaoguang Wang, Zhiyun Qian, Qiang Xu, Zhuoqing Mao, and Ming Zhang.

2011. An untold story of middleboxes in cellular networks. ACM SIGCOMM

Computer Communication Review 41, 4 (2011), 374–385.
[107] Nicholas Weaver, Christian Kreibich, Martin Dam, and Vern Paxson. 2014. Here

be web proxies. In International Conference on Passive and Active Network Mea-

surement. Springer, 183–192.
[108] T. Wirtgen, Q. De Coninck, R. Bush, L. Vanbever, and O. Bonaventure. 2020.

xBGP: When You Can’t Wait for the IETF and Vendors. In Proc. ACM Workshop

on Hot Topics in Networks (HotNets).
[109] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. 2011. Design, Imple-

mentation and Evaluation of Congestion Control for Multipath TCP. In Proc.

USENIX Symposium on Networked Systems Design and Implementation (NSDI).

58

TCPLS: Modern Transport Services with TCP and TLS CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

A MULTIPATH AGGREGATION
Figure 13 shows the same experiment as the one provided in Sec-
tion 5.5. However, we now configure TCPLS with a 1,500 bytes
record size to demonstrate that the irregularities are mainly due
to the payload chunk size that the reordering algorithm has to ma-
nipulate. The larger the records, the bigger the payload chunk size,
and higher irregularities should be observed. We observe here a
steady goodput with several large irregularities, which is a progress
compared to Figure 11. However, large peaks remain, which are
probably linked to the some remaining bugs in our current TCPLS
prototype implementation.

Figure 13: TCPLS path aggregation with 1500, bytes record
size, compared to TLS over MPTCP with 16,384 bytes record
size

59

