
The Performance of Post-Quantum TLS 1.3
Markus Sosnowski
Technical University of

Munich, Germany

Florian Wiedner
Technical University of

Munich, Germany

Eric Hauser
Technical University of

Munich, Germany

Lion Steger
Technical University of

Munich, Germany

Dimitrios Schoinianakis
Nokia Bell Labs
Athens, Greece

Sebastian Gallenmüller
Technical University of

Munich, Germany

Georg Carle
Technical University of

Munich, Germany

ABSTRACT
Quantum Computers (QCs) differ radically from traditional comput-
ers and can efficiently solve mathematical problems fundamental
to our current cryptographic algorithms. Although existing QCs
need to accommodate more qubits to break cryptographic algo-
rithms, the concern of “Store-Now-Decrypt-Later” (i.e., adversaries
store encrypted data today and decrypt them once powerful QCs
become available) highlights the necessity to adopt quantum-safe
approaches as soon as possible. In this work, we investigate the per-
formance impact of Post-Quantum Cryptography (PQC) on TLS 1.3.
Different signature algorithms and key agreements (as proposed
by the National Institute of Standards and Technology (NIST)) are
examined through black- and white-box measurements to get pre-
cise handshake latencies and computational costs per participating
library. We emulated loss, bandwidth, and delay to analyze con-
strained environments. Our results reveal that HQC and Kyber are
on par with our current state-of-the-art, while Dilithium and Falcon
are even faster. We observed no performance drawback from using
hybrid algorithms; moreover, on higher NIST security levels, PQC
outperformed any algorithm in use today. Hence, we conclude that
post-quantum TLS is suitable for adoption in today’s systems.

CCS CONCEPTS
• Networks → Network performance analysis; • Security and
privacy → Cryptography.
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1 INTRODUCTION
Quantum Computers (QCs) are no longer perceived as a conjecture
of computational sciences and theoretical physics. Considerable
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Figure 1: TLS 1.3 handshake, including the two phases where
latency can be measured without decryption.

research efforts and enormous corporate and government funding
are invested in practical QCs. Examples of accelerated efforts to-
ward large-scale QCs include Google’s announcement of achieving
quantum supremacy [1] and IBM’s latest 433-qubit processor [9].
The existence of a QC would mark a cornerstone in technologi-
cal evolution. It would mean that some computational problems
considered intractable for today’s conventional computers become
tractable for QCs. Unfortunately, two of the few practical algo-
rithms that can be efficiently solved on QCs are the mathematical
problems constituting the basis of today’s public-key cryptography,
namely the integer factorization and the discrete logarithm prob-
lem [23]. Thus, most of today’s public-key algorithms, including
Rivest–Shamir–Adleman (RSA), Diffie-Hellman (DH), and ECDH,
as well as the accompanying digital Signature Algorithms (SAs),
would need to be replaced by ones that offer cryptanalytic resis-
tance against QCs. To mitigate this threat, the National Institute of
Standards and Technology (NIST) launched a competition in 2016
to identify and standardize novel algorithms based on mathematical
problems resistant to QCs, commonly referred to as Post-Quantum
Cryptography (PQC) [22]. At the end of 2022 and after three evalu-
ation rounds, winners (Kyber, Dilithium, Falcon, and SPHINCS+)
were announced [16]. Their standardization is expected by 2024.
NIST also announced a fourth round with three Key Agreements
(KAs) still under consideration: HQC, Bike, and Classic McEliece.

The problem of “Store-Now-Decrypt-Later” (adversaries storing
encrypted data today, may be able to decrypt them once powerful
QCs become available) essentially dictates that every day we lose
today by not deploying a quantum-safe solution might correspond
to exposed data in the future. As such, PQC becomes increasingly
relevant, and selecting the best-performing algorithms for actual
applications like Transport Layer Security (TLS) gets important.

Thiswork investigates the performance of pre- and post-quantum
algorithms in TLS, providing the following contributions: i) a com-
parison of traditional and Post-Quantum (PQ) algorithms used for
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the KA and as SAs in TLS using the same measurement methodol-
ogy on identical hardware for comparability; ii) black- and white-
box measurements providing end-to-end handshake latency, trans-
mitted data volumes, and insights into causes of observed behavior
revealing potential bottlenecks; iii) findings on how the choice of
the seemingly independent KA and SA can influence each other;
iv) recommendations on the best-suited algorithms from a perfor-
mance perspective; and v) published experiment scripts and raw
measurement data to enable reproducible results and to support
the community (cf., Appendix B).

2 BACKGROUND
This work focuses on TLS 1.3, the most popular option for estab-
lishing secure connections between two endpoints [32]. TLS uses
algorithms affected by PQ for the initial KA, the handshake signa-
ture, and the signatures forming the x509 Public Key Infrastructure
(PKI). After a completed handshake, TLS switches to symmetric en-
cryption, which is only partly affected by PQ cryptanalysis. Grover
developed an algorithm which, theoretically, halves the security
level of symmetric encryption [13]. However, the implications for
symmetric algorithms are out of this paper’s scope.

Transport Layer Security (TLS). TLS 1.3 is independent of con-
crete KAs or SAs. For TLS, they are just negotiated parameters of the
handshake. Hence, PQ-safe TLS only differs from traditional TLS
by announcing and selecting PQC during the handshake. Clients
can pre-compute a key-share for the KA it expects servers to select,
enabling 1-Round Trip Time (RTT) handshakes. This behavior is
typical for TLS 1.3, reducing unnecessary delays while providing
perfect forward secrecy. Therefore, we focus on 1-RTT handshakes
and configured TLS such that the 2-RTT fallback never occurred.
The server certificate determines the SA, and we used specific cer-
tificates to investigate a certain SA. Figure 1 describes a 1-RTT
TLS 1.3 handshake, lists the TLS messages important for this work,
and marks the investigated handshake duration. Clients initiate
handshakes with the Client Hello (CH), and servers respond with
the Server Hello (SH). Both messages perform the KA and are,
therefore, affected by PQ. After the KA is finished, the rest of the
handshake is performed over a symmetrically encrypted channel.
The Certificate message is necessary for the client to authenticate
the server. The included certificates can use PQ signatures; hence,
their size is affected by PQ. Subsequently, the Certificate Verify
message transmits the handshake signature performed with the
server certificate’s private key. Again, this signature is affected by
PQ. At last, the server concludes the handshake with a Handshake
Finished (HF) message, including a hash over all messages to pro-
tect the integrity of the handshake. Depending on the Maximum
Transmission Unit (MTU), the messages from the SH up to the HF
message can be sent in a single IP packet and it is open to the im-
plementation how to combine them efficiently. With the help of the
received certificates, the client verifies the signature and whether
the server is trustworthy according to the PKI. To complete the
handshake, the client sends a dummy Change Cipher Spec and an
HF message; again, containing a hash over previous messages. Both
were always combined in the same IP packet in our measurements.
A passive observer can measure the first (CH to SH) and the second
part (SH to Client Finished) of the handshake because they contain
unencrypted data.

Table 1: Security levels and requirements [17]

Level Comparable difficulty to a . . .

1: key search on a block cipher with a 128-bit key (e.g., AES128)
2: collision search on a 256-bit hash function (e.g., SHA256)
3: key search on a block cipher with a 192-bit key (e.g., AES192)
4: collision search on a 384-bit hash function (e.g., SHA384)
5: key search on a block cipher with a 256-bit key (e.g., AES256)

Post-Quantum Cryptography (PQC). PQC is based on math-
ematical problems considered intractable for QCs. The NIST has
started a challenge across multiple rounds for researchers to submit
candidates or attacks for PQC. Recently, they announced to stan-
dardize four PQ finalists (Kyber, Dilithium, Falcon, and SPHINCS+)
and promoted four additional algorithms (Bike, Classic McEliece,
HQC, and Sike) to a fourth round [16]. However, Sike was broken
shortly after the announcement [7]. Additionally, Classic McEliece
uses key sizes exceeding the 216−1 B anticipated in TLS 1.3 [21] and
would require TLS protocol changes. Therefore, we excluded both
KAs from our list of investigated PQC. All algorithms can be config-
ured to fulfill different security or performance requirements. The
respective authors provide several pre-selected configurations that
can be directly used in a TLS handshake depending on the required
security level. According to NIST [17], an algorithm fulfills a cer-
tain level if its computational complexity is comparable to specific
problems (cf., Table 1). The security of cryptographic algorithms
is hard to prove. Usually, they are “proven over time,” i.e., they are
considered secure because no vulnerabilities are known. The longer
researchers tried to find such vulnerabilities, the higher the chances
that none exist. This causes two challenges for the adoption of the
comparatively new PQC: (i) unknown vulnerabilities might exist,
threatening the security of encrypted communication and (ii) even
if none exist, it is hard to convince people that the new algorithms
are secure and should be adopted. A hybrid approach mitigates
this problem by combining two KAs in a way that both must be
broken, before an attacker can reclaim the shared secret [29]. The
two KAs are performed independently and the final shared secret
is a concatenated version of the two individual secrets. Similarly,
two SAs can be combined [18] such that both need to be broken to
threaten the security of the PKI. We call the resulting combination
using either approach a hybrid. They have the advantage that they
are, per design, as secure as the current state-of-the-art; moreover,
they benefit from the added security of PQC. As a downside, the
overhead of combining algorithms can increase the costs of TLS.

3 RELATEDWORK
The research interest in PQ TLS is considerable and publications,
especially on performance, are numerous.

In 2020, Paquin et al. [19] evaluated different experimental se-
tups with emulated and real-world network conditions. They found
that handshake completion times mainly depend on the speed of
cryptographic operations under good and data size under bad net-
work conditions. In the same year, Sikeridis et al. [25] published
their work on PQ signatures and authentication. They evaluated
cryptographic performance with Internet-wide measurements and
showed that both key and certificate size impact the handshake time
significantly. Sikeridis et al. [24] further investigated the perfor-
mance impact of PQC on TLS and SSH handshakes. They measured
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Figure 2: Measurement setup

an increased delay that can be mitigated by increasing the TCP ini-
tial window size to achieve competitive performance to traditional
algorithms. Paul et al. [20] investigated mixing algorithms in an
x509 PKI. They showed promising results with a combination of
XMSS for root certificates andDilithium for the rest of the certificate
chain. Focusing on low-power embedded systems, Bürstinghaus-
Steinbach et al. [6] evaluated Kyber and SPHINCS+ against their
traditional counterparts, ECDH and ECDSA. Because some algo-
rithms, especially Kyber, outperformed non-PQ variants, they ar-
gued deploying PQCs is feasible with little overhead. Continuing
the focus on embedded devices, Marchsreiter and Sepúlveda [14]
analyzed hybrid PQ algorithms and found that while PQC can be
more efficient, handshake times can still be negatively impacted
by choosing hybrid algorithms. They argued that the performance
on constrained devices might suffer from large key sizes and a
slower connection. In 2022, Tzinos et al. [31] evaluated a variety of
KAs in a local network setting. They concluded that their results
align with the choices of NIST, suggesting Kyber as a new stan-
dard. Measurements by Cloudflare [33] showed the competitive
performance of PQ algorithms. Further, Cloudflare offers hybrid
KAs (currently, only Kyber [8] and no SAs) as a beta service to its
customers. Recently, claims [5] were made that the Kyber security
calculation is flawed; thus, reducing Kyber-512 below NIST level 1.
Therefore, Kyber may require longer keys and longer calculation
times to actually achieve comparable security.

4 MEASUREMENT METHODOLOGY
We measured the performance of PQCs in TLS through a series of
sequential TLS handshakes in 60 s intervals. In TLS 1.3, the KA and
SA are selected independently. However, a TLS handshake requires
both, demanding a combined measurement and a specific combi-
nation of KA and SA. We analyzed the four general KAs: ECDH,
HQC, Kyber, and Bike, each available in multiple variants, resulting
in 23 KAs. Similarly, the four general SAs (RSA, Falcon, Dilithium,
and SPHINCS+) result in 22 investigated SAs. SPHINCS+ offers 36
variants causing latencies between a few milliseconds and several
seconds. Our paper considers only the fastest SPHINCS+ configura-
tion (simple haraka signature optimized for signing speed) and sub-
sets of the theoretical |KA× SA| combinations. Further SPHINCS+
and KA-SA combinations can be found according to Appendix B.
Each measurement was performed twice: as i) black-box and ii)
white-box measurements. The former ran without interference of
other utilities, while the latter analyzed CPU usage.

Measurement setup. Figure 2 shows our measurement setup.
Client and server are separate hosts, directly connected via 10Gbit/s
fiber links. The third host (timestamper) tapped into the connection
via passive optical fiber taps. This three-node setup allowed the col-
lection of precise hardware timestamps for all packets exchanged
between client and server with minimal impact on latency and
jitter due to passive tapping. All nodes used identical hardware,
Intel Xeon D-1518 SoCs (4 cores, 2.2GHz), dual-port Intel X552
NICs, and 32GB of RAM. Client and server ran Debian Bullseye

(Linux kernel v5.10). For TLS offering support for PQC, we used a
fork of OpenSSL [3]. We measured the TLS handshakes using the
integrated OpenSSL client and server. The timestamper ran Debian
buster (Linux kernel v4.19) and MoonGen [12] to record hardware
timestamps. Our measurements and analyses were automated, en-
suring the repeatability of our results. We measured the handshake
performance for 60 s. During the measurement period, we observed
between 1 k and 30 k handshakes, depending on the complexity of
the investigated algorithms. The reported latencies are the median
values taken during each measurement period.

Black-Box Measurements. Only the TLS server and client were
running on the respective nodes, the timestamper node monitored
the connection. As described in Figure 1, we measured two parts
of the entire handshake. Because our TLS library always sent the
“Finished” message with the unencrypted “Change Cipher Spec”
message, we could accurately timestamp the three events without
decrypting the traffic. The first part includes computations related
to the KA on the server. We observed situations where the server
implementation withheld the SH until it computed the handshake
signature. In these cases, the first part additionally depends on
the SA. We analyzed such cases in Section 5.2. The second part
depends both on the KA and SA because of the necessary key
computation and signature verification on the client. Left out were
any CH-related computations on the client.

White-Box Measurements. We used the profiling tool Linux
perf to analyze delays and computational costs. Linux perf halts
code execution in a predefined frequency and traces the current call
stack. Over time, perf recordings allow reconstructing the execution
times of individual functions. We pinned the client/server appli-
cations to dedicated cores, avoiding unnecessary jitter. However,
collecting stack traces can impact application performance. There-
fore, any latency recorded by perf may differ from the black-box
measurements. After recording, Linux perf offers various possibili-
ties to sort, combine, and filter the stack traces, e.g., collapse and
group them according to the shared object or library.

Optimized TLS Message Buffering In our study, we identified
inconsistent behavior of our OpenSSL library: for specific algo-
rithms, the server occasionally buffered all computed TLS messages
and sent them to the client as a batch (depending on the MTU in
a single IP packet); or, sent some messages earlier. This behavior
was caused by an internal library buffer of 4096 B. By default, the
library would compute all messages and forward them to the client
only after the Certificate Verify message was completed; however,
whenever the buffer size was exceeded by a message, its content
(notably, the SH) was flushed to the TCP stack and forwarded to the
client. This behavior impacts the handshake latency; especially for
expensive key decapsulations on the client. Overall performance
improves if clients start computing the secret key while servers
still compute the rest of the handshake. To improve consistency,
we modified the OpenSSL library to immediately send the SH and
the Certificate Message to the client as soon as they are computed.

5 EVALUATION
The following sections present our measurement results. It is only
possible to measure the TLS handshake performance impacted by
both KAs and SAs because one cannot work without the other. To
evaluate them individually, we fix KA and SA to X25519 and RSA
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Table 2: Handshakes latency, data usage, and total number
conducted in the one minute period per NIST security level

(a) KAs combined with rsa:2048 as SA

Lvl KA
Handshake Data Sent (B)

Latency Median (ms) # Total Client Server

1 X25519 0.25, 1.48 22.3k 689 1455
bikel1 0.24, 2.79 13.4k 2250 3048
hqc128 0.27, 1.48 21.9k 2958 6060
kyber512 0.20, 1.78 20.8k 1457 2191
kyber90s512 0.19, 1.79 20.5k 1457 2191
p256 0.33, 1.50 21.2k 722 1488
p256_bikel1 0.42, 2.58 13.5k 2315 3113
p256_hqc128 0.52, 1.31 20.5k 3023 6125
p256_kyber512 0.51, 1.81 17.9k 1522 2256

3 bikel3 0.42, 6.07 6.9k 3844 4642
hqc192 0.53, 1.40 19.5k 5387 10 761
kyber768 0.25, 1.82 19.2k 1893 2511
kyber90s768 0.20, 1.78 20.7k 1893 2511
p384 3.09 2.63 7.0k 754 1520
p384_bikel3 3.23 9.00 3.7k 3941 4739
p384_hqc192 3.39 3.30 6.1k 5484 10 858
p384_kyber768 3.17 2.72 6.7k 1990 2608

5 hqc256 0.72, 1.92 15.3k 8214 16 412
kyber1024 0.25, 1.78 19.8k 2277 3043
kyber90s1024 0.22, 1.78 20.0k 2277 3043
p521 6.97 5.30 3.4k 790 1556
p521_hqc256 7.52 9.38 2.4k 8347 16 545
p521_kyber1024 7.06 5.41 3.3k 2410 3176

(b) SAs combined with X25519 as KA

Lvl SA
Handshake Data Sent (B)

Latency Median (ms) # Total Client Server

rsa:1024 0.32, 0.68 30.0k 689 1066
rsa:2048 0.25, 1.48 22.3k 689 1455

1 falcon512 0.36, 1.02 24.3k 689 2920
rsa:3072 0.26, 3.41 12.6k 689 1839
rsa:4096 0.25, 6.88 7.4k 689 2223
sphincs128 15.020.28 3.7k 1001 36 153
p256_falcon512 0.39, 1.35 21.7k 689 3137
p256_sphincs128 15.480.28 3.5k 1001 36 372

2 dilithium2 0.39, 0.84 27.1k 689 6981
dilithium2_aes 0.39, 0.78 27.5k 689 6981
p256_dilithium2 0.39, 1.27 22.6k 689 7185

3 dilithium3 0.36, 0.94 26.1k 741 9471
dilithium3_aes 0.38, 0.86 27.0k 741 9471
sphincs192 23.830.27 2.4k 1105 74 769
p384_dilithium3 0.31, 3.86 11.6k 741 9823
p384_sphincs192 28.750.27 2.0k 1105 75 087

5 dilithium5 0.36, 1.10 24.1k 793 12 923
dilithium5_aes 0.36, 0.98 25.2k 793 12 923
falcon1024 0.38, 1.89 18.4k 689 5097
sphincs256 49.520.27 1.2k 1209 104 253
p521_dilithium5 0.29, 7.55 6.8k 793 13 330
p521_falcon1024 0.35, 8.72 6.0k 689 5572
p521_sphincs256 60.780.27 1.0k 1209 104 679

Legend: Pre-Quantum Hybrid CH→ SH SH→ Client Finished

2048 for most analyses, respectively. Unless stated otherwise, we
used the optimized version of OpenSSL, described in Section 4.

5.1 Black-box Measurements
For this analysis, we measured the latency and the amount of data
exchanged between client and server for a TLS 1.3 handshake. The
black-box approach does not deploy any analysis tools, resulting
in unbiased measurements. Results for the investigated KAs and
SAs are listed in Tables 2a and 2b. Algorithms with an underscore
(_) are hybrids. The depicted latency shows the median time to
complete the handshake split into two phases (cf. Figure 1). Lastly,
we present the data volume client or server sent in each handshake.

Results showed that PQC (except Bike and SPHINCS+) challenge
traditional algorithms on security level one, while greatly outper-
forming them on higher levels. Moreover, we observed almost no
overhead in using hybrid algorithms. On level one, the hybrids are
effectively as fast as Elliptic Curve Cryptography (ECC) or PQC.
The pre-quantum algorithms (except Bike) bottleneck the hybrids
on higher levels. Handshakes with Dilithium, regardless of the se-
curity level, were faster than our current state-of-the-art rsa:2048
that is considered sub-level one (effectively correlating to a 112-bit
rather than the required 128-bit key length [4]). We observed minor
performance improvements using variants of Kyber and Dilithium
(indicated as 90s or aes), which use AES instead of SHAKE for
masking and sampling. Even the fastest SPHINCS+ variant used
in Table 2b offered low performance; handshake latency and data
usage (due to large signatures) were up to 20 times higher.

5.2 Independence of KA / SA
KAs and SAs are independently selected in TLS 1.3 and we assumed
that they influence the handshake independently. However, this
was not always the case based on the following experiment.

If we assume that the KA and SA independently impact the
TLS handshake and the latency caused by each algorithm is de-
terministic, we should be able to predict the handshake latency
of arbitrary combinations. Otherwise, they somehow influenced
each other. Given two KAs 𝑘1, 𝑘2 and two SAs 𝑠1, 𝑠2, we can mea-
sure the TLS handshake latency 𝑀 : 𝐾𝐴 × 𝑆𝐴 → R. If both are
independent, then𝑀 (𝑘1, 𝑠1) +𝑀 (𝑘2, 𝑠2) = 𝑀 (𝑘1, 𝑠2) +𝑀 (𝑘2, 𝑠1) .
Hence, we can calculate an expected value for arbitrary combi-
nations with our baseline 𝐸 : 𝐾𝐴 × 𝑆𝐴 → R with 𝐸 (𝑘, 𝑠) =

𝑀 (𝑘, rsa2048) +𝑀 (X25519, 𝑠) −𝑀 (X25519, rsa2048).We combined
all KAs and SAs (except hybrids and only rsa:3072) on their respec-
tive NIST security level and calculated the deviation 𝐸 (𝑘, 𝑠)−𝑀 (𝑘, 𝑠)
for both default and optimized OpenSSL version—which sends SHs
immediately after computation—in Figures 3a and 3b, respectively.

While we expected small deviations, the results reveal that spe-
cific combinations significantly impacted each other. Dilithium-
HQC combinations were slightly slower than expected, Bike and
ECDHs were faster, depending on the SA. Though we cannot rule
out additional factors, we found this was due to the TLS message
buffering of OpenSSL (cf., Section 4). It introduces a dependency
between KA-SA and causes deviations from the calculated expected
latency. We found two explanations: first, algorithm combinations
were slightly faster if their combined key sizes caused an early push
of the SH, although, one algorithm alone would not trigger the push.
The outliers for the optimized OpenSSL version are smaller because
this push was consistent (see Figure 3b). Second, CPU-intensive
KAs (i.e., Bike, or ECDH above level one) benefited from the paral-
lel processing enabled by the early SH; especially, when the SA is
computationally heavy as well (e.g., for SPHINCS+ and RSA 3072).
This is the dominating factor for both OpenSSL versions. In the
case of Bike and RSA, the effect is only visible for the optimized
version because they did not cause a push in the default version.

Aligning the OpenSSL behavior had an interesting effect: most
handshakes were faster, as shown in Figure 3c. Combinations with
SPHINCS+ improved up to 7.4ms; indicating optimization potential
libraries could utilize for some algorithms. We showed the hand-
shake latency can be reduced when the SH is pushed to the client
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Figure 3: Comparison of the handshake latency for KA-SA combinations on the same level. The OpenSSL behavior of assembling
TLS messages (default and optimized) influences the latency. A positive deviation means it was faster-than-predicted.

Table 3: Results from the white-box measurements

Lvl KA SA HS [1/s]
CPU Cost [ms]
Server Client

Packets Sent
Server Client Server Library Distribution Client Library Distribution

≤ 2 X25519 rsa:2048 402 3.1 1.9 3 1 77.37 13.27 45.54 34.62 8.7 7.5
kyber512 dilithium2 473 1.6 1.7 6 1 49.71 28.16 11.74 6.4 40.63 34.01 14.16 8.7
bikel1 dilithium2 231 1.8 6.5 7 2 48.17 30.51 13.27 74.21 11.10 9.35
kyber512 sphincs128 59 24.1 5.1 27 1 95.62 77.24 14.53
hqc128 falcon512 370 2.3 2.5 7 2 59.29 19.49 13.10 6.2 35.98 28.80 25.79 6.5
p256_kyber512 dilithium2 382 2.0 2.2 6 1 54.87 23.38 10.83 7.1 48.25 29.02 10.78 9.48

3 kyber768 dilithium3 403 1.8 1.9 8 2 53.26 26.52 11.38 6.3 44.49 30.14 13.67 8.2

5 kyber1024 dilithium5 419 2.0 2.3 13 2 54.20 25.27 12.09 48.83 28.65 13.28 7.1

Legend: Pre-Quantum Hybrid libcrypto.so.1.1 kernel.kallsyms libssl.so.1.1 libc-2.31.so ixgbe python3.9

as soon as it is computed. This introduces a dependency between
KA-SA; however, it is low compared to the whole handshake.

5.3 White-box Measurements
The white-box measurement results are displayed in Table 3, show-
ing a small selection of analyzed KA and SA pairs. To access the
entire table, refer to Appendix B. In addition to the profiling results
in the columns CPU cost, server-, and client library distribution, we
added the handshake rate and the number of transmitted pack-
ets for better comparison. The CPU cost is derived from the total
CPU time divided by the total number of handshakes. The library
distributions show the time spent in each library during the ex-
periment. The libraries with the largest shares are: i) libcrypto:
Summing up the computing time spent on cryptographic functions;
ii) kernel: Computing time spent in the kernel, e.g., for packet pro-
cessing; iii) libssl: Comprising the computing time spent on TLS
protocol functions; iv) libc: C standard library functions; v) ixgbe:
Processing in the NIC driver; vi) python: Programs used for the
testbed tools performing the experiment. At first glance, libcrypto,
kernel, and libssl typically dominate with an approx. portion of
90 %. Ixgbe, python, and libc have a minor impact on the overall
handshake performance. We used the PQ combination of X25519
and RSA as baseline. For it, we observed that the server-side com-
putations are more resource-intensive than the client-side. Based
on the perf profiling, we identify the computations in libcrypto as
root cause. The combination of the PQC Kyber and Dilithium per-
formed well, and we observed only minimal performance decreases
on higher levels. The combination of Dilithium and Bike performed
good on the server-side but lacked performance on the client-side.
In this case, the libssl dominated the computation on the client.
Rather than using the cryptographic functions of libcrypto, the
Bike client is predominantly implemented in libssl. Especially for

low-power embedded systems, increased CPU costs are problem-
atic. In contrast, the combination of Kyber and SPHINCS+ required
significantly more resources on the server. In this case, libcrypto
dominated with over 95 % of the total computational time. Still, the
client had overall CPU cost of 5.1ms, second-worst performance
in this comparison. HQC in combination with Falcon, showed rea-
sonable performance on both ends even though the client spent
more time in libssl. Furthermore, the hybrid algorithm of Kyber, in
combination with Dilithium, showed a good performance.

All in all, the presented white-box measurements reveal whether
the server or the client required more resources. Moreover, the
library distribution exposes the CPU costs each library consumed.

5.4 Constrained Environments
Up to this point, we have used a loss-free, low-latency connection
with high bandwidth (cf., Section 4). This allowed observing TLS
and PQC performance under beneficial conditions. To investigate re-
alistic network conditions, we extended our analyses to constrained
environments considering loss, delay, and limited bandwidths; e.g.,
faced by embedded devices or wireless communication.

We used netem [30] to emulate different scenarios: dealing with
high loss (10%), long delay (1 s RTT), low bandwidth (1Mbit/s), and
two scenarios modeled after real-world settings: LTE-M over 15km
and a 5G setup. Details are presented in Appendix A, Table 4. We
noticed several findings: i) a high loss slowed down handshakes,
but compared to the other parameters it had the least impact; ii) a
low bandwidth slowed down all handshakes and had an increased
impact on the algorithms that transferred a lot of data (e.g., HQC,
Dilithium, or SPHINCS+); iii) the latency of TLS grows approxi-
mately linearly with added delay; and iv) the two realistic scenarios
mostly depended on the RTT, although the high loss of the LTE-
M scenario caused the median latency to occasional increases by
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Figure 4: Key Agreements (top) and Signature Algorithms (bottom) ranked depending on the logarithmic handshake latency
we measured. Top and Bottom is ranked separately with the algorithms on the left being the fastest.

several RTTs. Note that we measured consecutive handshakes in
a 60 s period, which resulted in significantly fewer samples for
high-delay scenarios. The 1 s RTT scenario revealed an interesting
finding: All SPHINCS+ and HQC and Dilithium on level 5 required
multiple RTTs to complete the handshake. This was caused by the
TLS messages from the server exceeding the TCP Congestion Win-
dow (CWND). Every TLS handshake was conducted after the TCP
handshake; thus, the CWND was still at the configured minimum
of the Slow Start Phase (usually 10×𝑀𝑆𝑆). Table 2 shows that PQC
has an increased data volume, resulting in occasional two to four
RTTs for the TLS handshakes. To conclude, the larger PQC keys
significantly impact environments with reduced bandwidth or high
RTTs. Kyber and Falcon surpass the other PQ algorithms in low-
bandwidth settings (e.g., LTE-M) due to shorter keys. We expect
the initial CWND will become an important tuning factor for TLS
servers to retain the ability for 1-RTT handshakes; especially, when
combining PQ KAs and SAs, both increasing handshake size.

5.5 PQ TLS for Attack Scenarios
Our results present PQ TLS as a protocol with a potentially high
degree of asymmetry. This might be exploited, e.g., to overload
servers utilizing skewed computation costs between client and
server [10]. We demonstrated the CPU costs can be up to 6× higher
on the server (cf., Table 3). Significant size differences of client re-
quests and server replies may be used to overwhelm targets utilizing
spoofed requests [15]. Table 2b lists server replies up to 96× larger
than the initial client requests. For comparison, QUIC mandates
a maximum amplification factor of 3 to prevent such attacks [15].
The main lever in both attack scenarios was the choice of SA.

6 DISCUSSION OF RESULTS
While we do not evaluate the algorithms’ security, we provide pre-
cise measurements demonstrating their end-to-end performance.
However, our tables are complex and we wanted to refine, simplify,
and put our results into context so they can be used as recommen-
dations. Therefore, Figure 4 provides a PQC ranking. We took the
overall latency from Tables 2a and 2b, computed the 𝑙𝑜𝑔, linearly
scaled the results to [0, 10], and rounded them to whole numbers.
This results in a ranking of the algorithms with the top ranks on the
left. We see that the PQ algorithms challenge our state of the art and
some SA are even faster. Moreover, the hybrid algorithms provided
no performance downside on NIST level one. On higher levels, the
PQ algorithms become faster than the hybrids (which have the pre-
quantum algorithms as bottleneck). Note that latency should not
always be the main criterion; especially on constrained devices, the
clients’ computational might be more important. Moreover, in case
of low-bandwidth or high-delay environments, the data volume

can be more important and Section 5.4 showed that in such cases
Kyber and Falcon surpassed other PQ algorithms because of their
smaller keys. See Appendix B for additional rankings.

In conclusion, we recommend shifting towards hybrid algorithms
as they i) provide the security of our current algorithms proven-
over-time, ii) protect against actors capturing network traffic to ex-
tract sensitive data when powerful QCs are available, and iii) cause
no significant performance drawback. The performance disadvan-
tage of SPHINCS+ is apparent, a “clear drawback” [2], according to
its authors. However, its underlying mathematical properties are
well understood in the cryptography community. Hence, SPHINCS+
may be considered more secure from today’s perspective.

7 CONCLUSION
This work compares the performance of traditional and PQ algo-
rithms for TLS. All measurements were conducted using the same
measurement methodology on identical hardware to ensure the
comparability of results. The focus of our measurement campaign
was the initial handshake of TLS, as it is based on asymmetric
cryptography, which is considered broken by QCs in the future.
Our results allow to compare the performance of all pre- and post-
quantum algorithms currently relevant for TLS. Additionally, we
found that PQ handshakes can exceed the initial TCP Congestion
Window on servers, resulting in additional round trips per hand-
shake. The initial Congestion Window could become an important
tuning factor for PQ TLS. Our findings showed that PQC can be very
fast (HQC and Kyber) and challenges the state-of-the-art; regard-
ing authentication, Dilithium and Falcon are even faster than RSA
while claiming higher NIST security levels. In low-bandwidth envi-
ronments, PQC can be slower than the current state-of-the-art due
to the increased data volume. On NIST security levels three to five,
PQC outperforms all algorithms in use today. In conclusion, there
is no significant performance drawback in using PQC or hybrid
algorithms. We expect our results will be useful for optimizing TLS
libraries and for choosing the right algorithm for each application.
We hope the further PQC development considers our performance
perspective such that PQ algorithms remain practical for TLS. Ide-
ally, they are a performance improvement of our state-of-the-art,
providing an additional incentive for their adoption.
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A ADDITIONAL MATERIAL APPENDIX
To supplement our analysis from Section 5.4 we show the measure-
ment results obtained by emulating different network scenarios in
Tables 5a and 5b. We argue it provides valuable insights to deal with
such network environments and to optimize the TLS handshake
performance of servers. Notable are the additional RTTs visible in
the High-Delay scenario caused by the handshake size exceeding
the initial TCP Congestion Window as discussed in Section 5.4.
Note that all PQC algorithms have large key sizes and combining
PQC KA and SA will have an additive effect on the handshake size,
resulting in additional RTTs for even more algorithms.
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Table 4: Median handshakes latency measured for different network scenarios. Loss, RTT, and bandwidth were emulated with
netem. The width of the bars are scaled depending on the Maximum latency per table and scenario.

(a) KAs combined with rsa:2048 as SA
Lvl KA No Emulation High Loss (10%) Low Bandwidth1 High Delay (1s RTT) LTE-M2 5G3

1 X25519 1.77 2.03 14.11 1002.19 214.13 46.20
bikel1 3.08 6.16 26.97 1006.56 226.99 50.61
hqc128 1.78 2.05 51.29 1002.22 251.31 46.31
kyber512 2.00 2.26 20.00 1002.48 220.02 46.44
kyber90s512 2.00 2.25 19.97 1002.41 220.02 46.41
p256 1.86 1.98 14.37 1002.20 314.70 46.18
p256_bikel1 3.03 6.86 27.49 1007.03 227.52 51.06
p256_hqc128 1.85 2.56 51.83 1002.75 251.88 46.78
p256_kyber512 2.31 2.50 20.51 1002.61 220.55 46.67

3 bikel3 6.48 16.28 45.08 1016.51 508.81 60.54
hqc192 1.94 2.95 89.25 1003.00 568.28 47.17
kyber768 2.08 2.29 22.56 1002.44 222.57 46.46
kyber90s768 1.99 2.30 22.56 1002.48 222.58 46.45
p384 5.73 8.15 17.17 1008.35 245.19 52.32
p384_bikel3 12.26 23.26 52.55 1023.41 257.99 67.36
p384_hqc192 6.73 9.82 92.90 1009.95 507.41 54.00
p384_kyber768 5.90 8.33 25.98 1008.51 226.12 52.52

5 hqc256 2.65 4.42 139.84 2004.79 706.85 92.77
kyber1024 2.07 2.30 26.93 1002.52 226.95 46.51
kyber90s1024 2.04 2.28 26.93 1002.47 367.57 46.45
p521 12.29 17.35 21.25 1017.55 221.46 61.57
p521_hqc256 16.91 20.83 158.08 2020.86 498.69 108.89
p521_kyber1024 12.50 17.66 34.45 1017.79 234.60 61.81

(b) SAs combined with X25519 as KA
Lvl SA No Emulation High Loss (10%) Low Bandwidth1 High Delay (1s RTT) LTE-M2 5G3

rsa:1024 1.03 1.37 10.99 1001.64 411.23 45.57
rsa:2048 1.77 2.01 14.11 1002.17 214.13 46.16

1 falcon512 1.44 1.77 25.93 1001.93 225.96 45.97
p256_falcon512 1.74 2.60 28.04 1002.78 228.05 46.81
p256_sphincs128 15.77 15.99 297.80 2006.62 908.87 136.12
rsa:3072 3.74 4.02 17.18 1004.17 475.42 48.17
rsa:4096 7.19 7.51 20.42 1007.71 220.39 51.92
sphincs128 15.32 15.53 294.72 2005.75 906.08 94.00

2 dilithium2 1.22 1.70 58.66 1001.93 258.69 45.83
dilithium2_aes 1.17 1.55 58.69 1001.74 258.68 45.74
p256_dilithium2 1.64 2.43 60.59 1002.66 440.73 46.64
rsa3072_dilithium2 4.11 4.44 69.26 1004.61 354.71 48.71

3 dilithium3 1.31 1.89 78.86 1002.01 475.77 46.13
dilithium3_aes 1.24 1.70 78.81 1001.84 278.84 45.94
p384_dilithium3 4.23 8.97 85.28 1009.18 285.33 53.15
p384_sphincs192 29.06 29.75 613.66 3008.62 1722.59 184.76
sphincs192 24.13 24.55 607.69 3005.05 1473.52 181.56

5 dilithium5 1.46 2.27 106.53 2001.72 504.71 89.82
dilithium5_aes 1.35 1.93 106.38 2001.60 480.44 89.69
falcon1024 2.23 2.49 43.73 1002.77 445.76 46.70
p521_dilithium5 7.90 18.01 116.98 2009.55 510.47 97.55
p521_falcon1024 9.10 18.15 55.41 1018.15 255.46 62.14
p521_sphincs256 61.06 61.59 857.28 4013.40 1999.60 233.52
sphincs256 49.80 50.19 846.05 4005.62 1885.13 226.03

Legend: Pre-Quantum Full handshake (CH→ Client Finished)
1 1Mbit/s
2 10% loss, 200ms RTT, and 1Mbit/s bandwidth. These are realistic values for a communication over 15 km taken from Ref. [11].
3 4% loss, 44ms RTT, and 880Mbit/s. The parameters were taken from Ref. [34] and represent actually measured values.

B ARTIFACT APPENDIX
B.1 Abstract
A major goal of our research is the creation of reproducible ex-
periments and publication of associated measurement data. This
section provides an overview of the artifacts and published data. We
prepared a website [28] presenting additional results and a step-by-
step guide to reproduce our findings. For our experiments we used
3 nodes with optical splitters and hardware timestamping to reduce
external effects; however, which is not accessible to everyone. To
make the artifacts available to a broad community, we converted
our scripts to run in a containerized 2-node environment, acces-
sible via GitHub [27]. It enables executing similar measurements
on any hardware; although, results might differ because of the

containers, virtualized networks, software timestamping, and the
different underlying hardware. However, it should reproduce the
presented trends and our conclusions. Additionally, we provide raw
PCAPs and CPU profiler results recorded on our infrastructure [26]
to reproduce the exact paper evaluations. Artifact requirements
are Debian Bullseye, Docker, and Python3. The key results are all
presented data from the paper. The Docker setup does not allow
profiling the CPU from within a container. Therefore, we provide
the recordings of our bare-metal measurement runs.

B.2 Artifact check-list (meta-information)
• Data set: 161GB, available at [26]
• Run-time environment: Linux kernel 5.9, Python3, and Docker
• Output: CSV tables, PDF plots, and PCAPs
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• How much disk space required? 300GB
• Time needed to prepare workflow? 30min
• Time needed to complete experiments? 24 h
• Publicly available?: Yes
• Code and data licenses: CC BY 4.0
• Archived: Yes, over mediaTUM [26] and Zenodo [27]

B.3 Description
B.3.1 How to access. We provide the following resources:

• Code repository to execute experiments and evaluate re-
sults [27].

• A dataset, accessible via mediaTUM [26].
• Awebsitewith additional results and detailed descriptions [28].

B.3.2 Software dependencies. The minimal requirements is an in-
stalled Docker (we used version 24.0.6) and Python3 with addi-
tional libraries; i.e., provided by the Debian packages python3,
python3-click, and python3-yaml. The published Perf record-
ings can be only evaluated using a Linux Kernel Version 5.9, e.g.,
provided by Debian Bullseye.

B.3.3 Data sets. Datasets for reproducing the exact paper results
are available under [26]. It can be downloaded via rsync from:

rsync://m1725057@dataserv.ub.tum.de/m1725057/

B.4 Installation
After installing the dependencies, clone the repository and down-
load our measurement results.
B.5 Experiment workflow
We suggest two workflows:
i) Run the provided experiments locally and evaluate the results.
There might be differences to the paper results and not all
experiments are available in the docker environment.

ii) Download our raw measurement results and evaluate them
locally to reproduce the exact paper results.

B.6 Experiments Naming Schema
In the following sections, we use short names to describe the dif-
ferent conducted experiments. The same naming schema was used
in this description, the published scripts, and measurement data.
Unless stated otherwise, the experiment was conducted with our
optimized OpenSSL version.

• all-kem: Combining all KAs together with rsa:2048 as SA.
• all-sig: Measuring all SAs together with X25519 as KA.
• all-[kem,sig]-scenarios: same as all-kem or all-sig
but for each emulated constrained environment.

• level[1,3,5]: Every combination of SA and KA on the
respective NIST security levels (grouped level one and two).

• level[1,3,5]-nopush: Same as above but conducted with
the default OpenSSL behavior.

• level[1,3,5]-perf: Same as the level[1,3,5] experiments,
but with additional CPU profiling.

• all-sphincs: Only used to identify the fastest SPHINCS+
variant.

B.7 Local Post-Quantum TLS Experiments
To run the dockerized experiments locally, we provide a script that
takes a list of pre-defined experiments as argument and then creates
a new folder under the $OUT directory per experiment:

./experiment.py -o \$OUT all-kem all-sig

Only all-kem, level[1,3,5], all-kem-scenarios,
all-sig and all-sig-scenarios are defined for the docker envi-
ronment. The script spawns two containers for each experiment
and conducts measurements for each combination of parameters
in the respective configuration file of the loop_var directory.
B.8 Evaluation and expected results
To reproduce our evaluations, we provide an evaluate script that
takes a list of experiment folders as argument and saves the results
under $EVAL, e.g.:

./evaluate.py -o $EVAL $OUT/*

For each folder, the script will load the PCAPs into a PostgreSQL
database, run evaluation scripts, and process the created CSVs fur-
ther to retrieve the data presented in the paper.

Table 2. To reproduce the table, evaluate all-kem and all-sig.
The relevant content can be found in latencies.csv. The columns
for the bars are partAMedian and partBMedian, which are the la-
tencies from CH to SH and from SH to Client Finished, respectively.

Figure 3. This figure is a combination of level[1,3,5], and
level[1,3,5]-nopush. The deviation analysis can be exported
with the additional --deviation-analysis True flag.

This will create a deviations.csv and corresponding plot in
the output directories. Figures 3a and 3b are a combination over the
different security levels, skipping hybrids. Figures 3c was created
by subtracting the expected latency of the *-nopush experiments
with the ones obtained using the optimized OpenSSL version.

The *-nopush experiments can be run locally using a differ-
ent branch of our OpenSSL library; i.e., by using basic-sphincs
instead of basic-sphincs-psh (cf., Appendix B.9).

Table 3. The CPU profiling analysis can be reproduced by an-
alyzing the level[1,3,5]-perf experiments. These results con-
tain additional CPU profiling data, which can be transformed into
our white-box analysis by passing an additional --cpu-profiling
True flag to evaluation script.

Figure 4. The ranking is based on the all-kem and all-sig
experiments. We combined the rankings from both experiments
found in the handshake_latency.pdf plots.

Table 4. This table contains the data from the constrained en-
vironment experiments all-[kem,sig]-scenarios. It shows the
median handshake latency (the partAllMedian column from
latencies.csv) for each of KA, SA, and network emulation.
B.9 Experiment customization
Additional experiments are defined by adding files to the loop_var
directory. Adapting the docker-compose.yml allows changing the
OpenSSL version, set a different measurement time (we used 60 s),
or change the number of parallel jobs running during the evaluation.
The latter can be decreased if the PostgreSQL database takes up too
much resources during evaluation.
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