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Introduction

* QUIC is a new transport designed from the ground up to improve
performance for HTTPS traffic

! HTTP/2 shim
Application HTTP/2 J [ g

N g ™
Security TLS Quic

( ) N\ /
Transport TCP [ UDP
___________ - e
Network IP

e A

< QUIC in the traditional HTTPS stack >

3/17



Introduction

 History of QUIC
« Protocol for HTTPS transport, deployed at Google starting 2014

« Between Google services and Chrome / mobile apps

 Improves application performance
* YouTube Video Rebuffers: 15~18%
» Google Search Latency: 3.6~8%
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« IETF QUIC working group formed in Oct 2016 2015 2016

* Modularize and standardize QUIC

Ref: Janardhan lyengar’s presentation 4117



Motivation: Why QUIC??

« Growth in latency-sensitive web services and use of the web as a platform
were placing unprecedented demands on reducing web latency

« Fundamental limitations of the TLS/TCP ecosystem
v" Protocol Entrenchment
v Implementation Entrenchment
v' Handshake Delay
v Head-of-line Blocking Delay
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QUIC Design and Implementation

« Connection Establishment €< Handshake Delay
* Mostly 0-RTT, sometimes 1-RTT
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REJ message contains:

(i) a server config that includes the server’s
long-term Diffie-Hellman public value ,

(i) a certificate chain authenticating the server,

(i) a signature of the server config using the
private key from the leaf certificate of the
Chain, and

(iv) a source-address token: an authenticated-
encryption block that contains the client’s
publicly visible IP address (as seen at the
server) and a timestamp by the server.
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QUIC Design and Implementation

« Stream Multiplexing € Head-of-line Blocking Delay
 Lightweight abstraction within a connection

« Authenticated and Encrypted Headers < Protocol Entrenchment
* Atop UDP
v Evolvability 1

« Open-Source Implementation < Implementation Entrenchment
e In userspace
v’ Deployability 1
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QUIC Design and Implementation

* Loss Recovery
« Unique packet number
* Receiver timestamp

* Flow Control
 Connection-level flow control & Stream-level flow control
* Credit-based flow-control

« Congestion Control
» Pluggable interface
* Not rely on a specific congestion control
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QUIC Design and Implementation

* NAT Rebinding and Connection Migration
* 64-bit connection ID
 Also, connection migration and multipath

« QUIC Discovery for HTTPS

« When a QUIC client makes an HTTP request to an origin for the first time, it sends the
request over TLS/TCP

« QUIC servers advertise QUIC support by including an "Alt-Svc" header in their HTTP
responses

« On a subsequent HTTP request to the same origin, the client races a QUIC and a
TLS/TCP connection
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Experimentation Framework

* Using Chrome
« Randomly assign users into experiment groups
« Experiment ID on requests to server
+ Client and sever stats tagged with experiment ID

* Novel development strategy for a transport protocol
« The Internet as the testbed
« Measure value before deploying any feature
« Rapid disabling when something goes wrong

Ref: Janardhan lyengar’s presentation 10/17



QUIC Performance

« Handshake latency

« at the server as the time from receiving the first TCP SYN or QUIC client hello packet
to the point at which the handshake is considered complete

Handshake Latency (ms)
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QUIC Performance

e Search Latency
« User enter search term - entire page is loaded

* Video playback Latency
 User clicks on a video - video starts playing

* Percent reduction in global Search and
Video Latency for QUIC users, —
at the mean and at specific percentiles

% latency reduction by percentile
Lower latency

Higher latency

Mean | 1% 5% 10% 50% 90% 95% 99%
Search
Desktop 80| 04 13 14 15 58 103 16.7
Mobile 36/-06 -03 03 05 45 88 143
Video
Desktop 80| 1.2 31 33 46 84 9.0 106
Mobile 53100 06 05 12 44 58 75
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QUIC Performance

* Video Rebuffer Rate
* Rebuffer time / (rebuffer time + video play time)

« Percent reduction in global Video Rebuffer Rate for QUIC users at the
mean and at specific percentiles

% rebuffer rate reduction by percentile

Fewer rebuffers More rebuffers

Mean | < 93% 93% 94 % 95%  99%

Desktop  18.0 * 100.0 704 60.0 18.5
Mobile 15.3 X « 100.0 52.7 8.7
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QUIC Performance

* QUIC improvement by Country

% Reduction in Search Latency % Reduction in Rebuffer Rate

Country Mean Min RTT (ms) Mean TCP Rtx % Desktop Mobile Desktop Mobile
South Korea 38 1 1.3 1.1 0.0 10.1
USA 50 2 3.4 2.0 4.1 12.9
India 188 8 13.2 5.5 22.1 20.2

 The CPU cost of serving QUIC to approximately twice that of TLS/TCP
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Experiments and Experiences

« UDP Blockage and Throttling
* The 0.3% of users are in networks that seem to rate limit QUIC and/or UDP traffic

« Packet Size Considerations
« Google chose 1350 bytes as the default payload size for QUIC
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Experiments and Experiences

« User-space Development
« Rapid deployment and evolution

 Middleboxes

 Firewall used first byte of packets for QUIC classification
» Flags byte, was 0x07 at the time
* Broke QUIC when they flipped a bit

v “when deploying end-to-end changes, encryption is the only means available to
ensure that bits that ought not be used by a middlebox are in fact not used by one”
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Conclusion

* QUIC was designed and launched as an experiment, and it has now
become a core part of Google’s serving infrastructure

* They are working on reducing QUIC’s CPU cost at both the server and the
client and in improving QUIC performance on mobile devices

* The lessons the authors learned and described in this paper are
transferable to future work on Internet protocols
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