
1 / 17

The QUIC Transport Protocol: 
Design and Internet-Scale Deployment

Published in: SIGCOMM '17

Summarized by

Sangwon Lim (sangwonlim@snu.ac.kr)

2023-02-07

mailto:sangwonlim@snu.ac.kr


2 / 17

Contents

• Introduction

• Motivation: Why QUIC?

• QUIC Design and Implementation

• Experimentation Framework

• QUIC Performance

• Experiments and Experiences

• Conclusion



3 / 17

Introduction 

• QUIC is a new transport designed from the ground up to improve 
performance for HTTPS traffic

< QUIC in the traditional HTTPS stack >



4 / 17

Introduction 

• History of QUIC 
• Protocol for HTTPS transport, deployed at Google starting 2014

• Between Google services and Chrome / mobile apps

• Improves application performance 
• YouTube Video Rebuffers: 15~18%

• Google Search Latency: 3.6~8%

• 35% of Google’s egress traffic (7% of Internet)

• IETF QUIC working group formed in Oct 2016
• Modularize and standardize QUIC

Ref: Janardhan Iyengar’s presentation



5 / 17

Motivation: Why QUIC??

• Growth in latency-sensitive web services and use of the web as a platform 
were placing unprecedented demands on reducing web latency

• Fundamental limitations of the TLS/TCP ecosystem

✓ Protocol Entrenchment

✓ Implementation Entrenchment

✓ Handshake Delay

✓ Head-of-line Blocking Delay



6 / 17

QUIC Design and Implementation

• Connection Establishment  Handshake Delay
• Mostly 0-RTT, sometimes 1-RTT

REJ message contains: 

(i) a server config that includes the server’s 

long-term Diffie-Hellman public value , 

(ii) a certificate chain authenticating the server, 

(iii) a signature of the server config using the 

private key from the leaf certificate of the 

Chain, and

(iv) a source-address token: an authenticated-

encryption block that contains the client’s 

publicly visible IP address (as seen at the 

server) and a timestamp by the server.



7 / 17

QUIC Design and Implementation

• Stream Multiplexing  Head-of-line Blocking Delay
• Lightweight abstraction within a connection

• Authenticated and Encrypted Headers  Protocol Entrenchment
• Atop UDP

✓Evolvability ↑

• Open-Source Implementation  Implementation Entrenchment
• In userspace

✓Deployability ↑



8 / 17

QUIC Design and Implementation

• Loss Recovery
• Unique packet number

• Receiver timestamp

• Flow Control
• Connection-level flow control & Stream-level flow control

• Credit-based flow-control

• Congestion Control 
• Pluggable interface

• Not rely on a specific congestion control



9 / 17

QUIC Design and Implementation

• NAT Rebinding and Connection Migration
• 64-bit connection ID

• Also, connection migration and multipath

• QUIC Discovery for HTTPS
• When a QUIC client makes an HTTP request to an origin for the first time, it sends the 

request over TLS/TCP

• QUIC servers advertise QUIC support by including an "Alt-Svc" header in their HTTP 
responses

• On a subsequent HTTP request to the same origin, the client races a QUIC and a 
TLS/TCP connection



10 / 17

Experimentation Framework

• Using Chrome
• Randomly assign users into experiment groups

• Experiment ID on requests to server

• Client and sever stats tagged with experiment ID

• Novel development strategy for a transport protocol
• The Internet as the testbed

• Measure value before deploying any feature

• Rapid disabling when something goes wrong

Ref: Janardhan Iyengar’s presentation



11 / 17

QUIC Performance

• Handshake latency 
• at the server as the time from receiving the first TCP SYN or QUIC client hello packet 

to the point at which the handshake is considered complete

1-RTT + a

2-RTT + b



12 / 17

QUIC Performance

• Search Latency 
• User enter search term → entire page is loaded

• Video playback Latency
• User clicks on a video → video starts playing

• Percent reduction in global Search and 
Video Latency for QUIC users, 
at the mean and at specific percentiles



13 / 17

QUIC Performance

• Video Rebuffer Rate
• Rebuffer time / (rebuffer time + video play time)

• Percent reduction in global Video Rebuffer Rate for QUIC users at the 
mean and at specific percentiles



14 / 17

QUIC Performance

• QUIC improvement by Country

• The CPU cost of serving QUIC to approximately twice that of TLS/TCP



15 / 17

Experiments and Experiences

• UDP Blockage and Throttling
• The 0.3% of users are in networks that seem to rate limit QUIC and/or UDP traffic

• Packet Size Considerations
• Google chose 1350 bytes as the default payload size for QUIC



16 / 17

Experiments and Experiences

• User-space Development
• Rapid deployment and evolution

• Middleboxes
• Firewall used first byte of packets for QUIC classification

• Flags byte, was 0x07 at the time

• Broke QUIC when they flipped a bit

✓ “when deploying end-to-end changes, encryption is the only means available to 
ensure that bits that ought not be used by a middlebox are in fact not used by one”



17 / 17

Conclusion

• QUIC was designed and launched as an experiment, and it has now 
become a core part of Google’s serving infrastructure

• They are working on reducing QUIC’s CPU cost at both the server and the 
client and in improving QUIC performance on mobile devices

• The lessons the authors learned and described in this paper are 
transferable to future work on Internet protocols


