The QUIC Transport Protocol:
Design and Internet-Scale Deployment

Published in;: SIGCOMM '17

Summarized by
Sangwon Lim (sangwonlim@snu.ac.kr)
2023-02-07

mailto:sangwonlim@snu.ac.kr

Contents

* Introduction

« Motivation: Why QUIC?

* QUIC Design and Implementation
* Experimentation Framework

* QUIC Performance

» EXxperiments and Experiences

« Conclusion

2117

Introduction

* QUIC is a new transport designed from the ground up to improve
performance for HTTPS traffic

! HTTP/2 shim
Application HTTP/2 J [g

N g ™
Security TLS Quic

() N\ /
Transport TCP [UDP
___________ - e
Network IP

e A

< QUIC in the traditional HTTPS stack >

3/17

Introduction

 History of QUIC
« Protocol for HTTPS transport, deployed at Google starting 2014

« Between Google services and Chrome / mobile apps

 Improves application performance
* YouTube Video Rebuffers: 15~18%
» Google Search Latency: 3.6~8%

35
30
25
20
15
10

% egress over QUIC

o wm
l

Aug |-

« 35% of Google’s egress traffic (7% of Internet) —

Feb

Mar

Apr
May
Jun
Sep |-
Oct -
Nov
Dec
Jan |-

« IETF QUIC working group formed in Oct 2016 2015 2016

* Modularize and standardize QUIC

Ref: Janardhan lyengar’s presentation 4117

Motivation: Why QUIC??

« Growth in latency-sensitive web services and use of the web as a platform
were placing unprecedented demands on reducing web latency

« Fundamental limitations of the TLS/TCP ecosystem
v" Protocol Entrenchment
v Implementation Entrenchment
v' Handshake Delay
v Head-of-line Blocking Delay

5/17

QUIC Design and Implementation

« Connection Establishment €< Handshake Delay
* Mostly 0-RTT, sometimes 1-RTT

Client Server

."-"J'Choa{e CHLO

REJ

SHLO

Initial 1-RTT Handshake

Client

Compiete CHLO
Encrypred request

Co
E —Llete ChLo
nc
YPled reqy e,
SHLO
sponse
Encr*p‘ed respP

Server Client

Successful 0-RTT Handshake

Complete CHLO
“orypreg "equest
REJ
Complere CHLO
Encf}fpted Request

SHLO
nse

gncrypted rese?

Server

Rejected 0-RTT Handshake

REJ message contains:

(i) a server config that includes the server’s
long-term Diffie-Hellman public value ,

(i) a certificate chain authenticating the server,

(i) a signature of the server config using the
private key from the leaf certificate of the
Chain, and

(iv) a source-address token: an authenticated-
encryption block that contains the client’s
publicly visible IP address (as seen at the
server) and a timestamp by the server.

6/17

QUIC Design and Implementation

« Stream Multiplexing € Head-of-line Blocking Delay
 Lightweight abstraction within a connection

« Authenticated and Encrypted Headers < Protocol Entrenchment
* Atop UDP
v Evolvability 1

« Open-Source Implementation < Implementation Entrenchment
e In userspace
v’ Deployability 1

7117

QUIC Design and Implementation

* Loss Recovery
« Unique packet number
* Receiver timestamp

* Flow Control
 Connection-level flow control & Stream-level flow control
* Credit-based flow-control

« Congestion Control
» Pluggable interface
* Not rely on a specific congestion control

8/17

QUIC Design and Implementation

* NAT Rebinding and Connection Migration
* 64-bit connection ID
 Also, connection migration and multipath

« QUIC Discovery for HTTPS

« When a QUIC client makes an HTTP request to an origin for the first time, it sends the
request over TLS/TCP

« QUIC servers advertise QUIC support by including an "Alt-Svc" header in their HTTP
responses

« On a subsequent HTTP request to the same origin, the client races a QUIC and a
TLS/TCP connection

9/17

Experimentation Framework

* Using Chrome
« Randomly assign users into experiment groups
« Experiment ID on requests to server
+ Client and sever stats tagged with experiment ID

* Novel development strategy for a transport protocol
« The Internet as the testbed
« Measure value before deploying any feature
« Rapid disabling when something goes wrong

Ref: Janardhan lyengar’s presentation 10/17

QUIC Performance

« Handshake latency

« at the server as the time from receiving the first TCP SYN or QUIC client hello packet
to the point at which the handshake is considered complete

Handshake Latency (ms)

2000

1500

1000

500

0

TCPyq

QUICy (all) ——

QUICy (1-RTT+) -

;

100

200

300 400 500
Minimum RTT (ms)

600

2-RTT+b

1-RTT +a

11/17

QUIC Performance

e Search Latency
« User enter search term - entire page is loaded

* Video playback Latency
 User clicks on a video - video starts playing

* Percent reduction in global Search and
Video Latency for QUIC users, —
at the mean and at specific percentiles

% latency reduction by percentile
Lower latency

Higher latency

Mean | 1% 5% 10% 50% 90% 95% 99%
Search
Desktop 80| 04 13 14 15 58 103 16.7
Mobile 36/-06 -03 03 05 45 88 143
Video
Desktop 80| 1.2 31 33 46 84 9.0 106
Mobile 53100 06 05 12 44 58 75

12/17

QUIC Performance

* Video Rebuffer Rate
* Rebuffer time / (rebuffer time + video play time)

« Percent reduction in global Video Rebuffer Rate for QUIC users at the
mean and at specific percentiles

% rebuffer rate reduction by percentile

Fewer rebuffers More rebuffers

Mean | < 93% 93% 94 % 95% 99%

Desktop 18.0 * 100.0 704 60.0 18.5
Mobile 15.3 X « 100.0 52.7 8.7

13/17

QUIC Performance

* QUIC improvement by Country

% Reduction in Search Latency % Reduction in Rebuffer Rate

Country Mean Min RTT (ms) Mean TCP Rtx % Desktop Mobile Desktop Mobile
South Korea 38 1 1.3 1.1 0.0 10.1
USA 50 2 3.4 2.0 4.1 12.9
India 188 8 13.2 5.5 22.1 20.2

 The CPU cost of serving QUIC to approximately twice that of TLS/TCP

14717

Experiments and Experiences

« UDP Blockage and Throttling
* The 0.3% of users are in networks that seem to rate limit QUIC and/or UDP traffic

« Packet Size Considerations
« Google chose 1350 bytes as the default payload size for QUIC

% unreachable
|—|
(@)
|

2 | | | | |
1200 1250 1300 1350 1400 1450 1500

UDP packet payload (bytes)

15/17

Experiments and Experiences

« User-space Development
« Rapid deployment and evolution

 Middleboxes

 Firewall used first byte of packets for QUIC classification
» Flags byte, was 0x07 at the time
* Broke QUIC when they flipped a bit

v “when deploying end-to-end changes, encryption is the only means available to
ensure that bits that ought not be used by a middlebox are in fact not used by one”

16/17

Conclusion

* QUIC was designed and launched as an experiment, and it has now
become a core part of Google’s serving infrastructure

* They are working on reducing QUIC’s CPU cost at both the server and the
client and in improving QUIC performance on mobile devices

* The lessons the authors learned and described in this paper are
transferable to future work on Internet protocols

171717

